Iot Security Challenges and Best Practices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1921 Tulsa Race Riot Reconnaissance Survey
1921 Tulsa Race Riot Reconnaissance Survey Final November 2005 National Park Service U.S. Department of the Interior CONTENTS INTRODUCTION 1 Summary Statement 1 Bac.ground and Purpose 1 HISTORIC CONTEXT 5 National Persp4l<live 5 1'k"Y v. f~u,on' World War I: 1896-1917 5 World W~r I and Postw~r ( r.: 1!1t7' EarIV 1920,; 8 Tulsa RaCR Riot 14 IIa<kground 14 TI\oe R~~ Riot 18 AIt. rmath 29 Socilot Political, lind Economic Impa<tsJRamlt;catlon, 32 INVENTORY 39 Survey Arf!a 39 Historic Greenwood Area 39 Anla Oubi" of HiOlorK G_nwood 40 The Tulsa Race Riot Maps 43 Slirvey Area Historic Resources 43 HI STORIC GREENWOOD AREA RESOURCeS 7J EVALUATION Of NATIONAL SIGNIFICANCE 91 Criteria for National Significance 91 Nalional Signifiunce EV;1lu;1tio.n 92 NMiol\ill Sionlflcao<e An.aIYS;s 92 Inl~ri ly E~alualion AnalY'is 95 {"",Iu,ion 98 Potenl l~1 M~na~menl Strategies for Resource Prote<tion 99 PREPARERS AND CONSULTANTS 103 BIBUOGRAPHY 105 APPENDIX A, Inventory of Elltant Cultural Resoun:es Associated with 1921 Tulsa Race Riot That Are Located Outside of Historic Greenwood Area 109 Maps 49 The African American S«tion. 1921 51 TI\oe Seed. of c..taotrophe 53 T.... Riot Erupt! SS ~I,.,t Blood 57 NiOhl Fiohlino 59 rM Inva.ion 01 iliad. TIll ... 61 TM fighl for Standp''''' Hill 63 W.II of fire 65 Arri~.. , of the Statl! Troop< 6 7 Fil'lal FiOlrtino ~nd M~,,;~I I.IIw 69 jii INTRODUCTION Summary Statement n~sed in its history. -
Performance Study of Real-Time Operating Systems for Internet Of
IET Software Research Article ISSN 1751-8806 Performance study of real-time operating Received on 11th April 2017 Revised 13th December 2017 systems for internet of things devices Accepted on 13th January 2018 E-First on 16th February 2018 doi: 10.1049/iet-sen.2017.0048 www.ietdl.org Rafael Raymundo Belleza1 , Edison Pignaton de Freitas1 1Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CP 15064, Porto Alegre CEP: 91501-970, Brazil E-mail: [email protected] Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software developers who build applications on top of these devices. Many applications in this domain have severe non-functional requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some of the key points in the software development for IoT in these constrained devices, like task synchronisation and network communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner, as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them according to their performance evaluation in the obtained results. -
Operating in a New Environment
EMBEDDED DESIGN OPERATING SYSTEMS lthough the concept of the IoT was Ioated around the turn of the Millennium, it is A only recently that the approach has gathered significant momentum. But, because it is a blanket term, IoT is not only being applied to large and small applications alike, it is also being applied in a wide range of end markets. With such a spread, it will come as no surprise to discover that one size does not fit all when it comes to operating systems. At the high end of the market, companies like Intel are vying to provide a complete solution. Alongside its processor technology, Intel can integrate Wind River’s VxWorks operating system and McAfee security software to create a system capable of handling high levels of complexity. But those developing wearable devices, for example, may not want to take advantage of such a system; they may well be looking for an OS that runs in a very small footprint but, nonetheless, offers a range of Operating in a new necessary features while consuming minimal amounts of power. ARM has had its eyes on the sector for some time and, last year, rolled out environment a significant extension to its mbed programme. Previously, mbed was an embedded development community The Internet of Things is posing challenges to OS developers. with ambitions similar to those of Arduino and Raspberry Pi. But mbed How are they responding? By Graham Pitcher. now has a much bigger vision – the IoT. As part of this approach, it is creating mbed OS (see fig 1). -
RIOT: an Open Source Operating System for Low-End Embedded Devices in the Iot Emmanuel Baccelli, Cenk Gundo¨ Gan,˘ Oliver Hahm, Peter Kietzmann, Martine S
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of Things Journal 1 RIOT: an Open Source Operating System for Low-end Embedded Devices in the IoT Emmanuel Baccelli, Cenk Gundo¨ gan,˘ Oliver Hahm, Peter Kietzmann, Martine S. Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wahlisch¨ Abstract—As the Internet of Things (IoT) emerges, compact low-end IoT devices. RIOT runs on minimal memory in the operating systems are required on low-end devices to ease devel- order of ≈10kByte, and can run on devices with neither MMU opment and portability of IoT applications. RIOT is a prominent (memory management unit) nor MPU (memory protection free and open source operating system in this space. In this paper, we provide the first comprehensive overview of RIOT. We cover unit). The goal of this paper is to provide an overview of the key components of interest to potential developers and users: RIOT, both from the operating system point of view, and from the kernel, hardware abstraction, and software modularity, both an open source software and ecosystem point of view. conceptually and in practice for various example configurations. We explain operational aspects like system boot-up, timers, power Prior work [28], [29] has surveyed the space of operating management, and the use of networking. Finally, the relevant APIs as exposed by the operating system are discussed along systems for low-end IoT devices. -
Using Mcuboot with RA Family Mcus Introduction Mcuboot Is a Secure Bootloader for 32-Bit Mcus
Application Note Renesas RA Family Using MCUboot with RA Family MCUs Introduction MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader, defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software update. MCUboot is operating system and hardware independent and relies on hardware porting layers from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a Root of Trust (RoT) for the system and perform secure booting and fail-safe application updates. The MCUboot is maintained by Linaro in the GitHub mcu-tools page https://github.com/mcu-tools/mcuboot. There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note will refer to the above-mentioned documents wherever possible and is intended to provide additional information that is related to using the MCUboot Module with Renesas RA FSP v3.0.0 or later. This application note walks the user through application project creation using the MCUboot Module on Renesas EK-RA6M4 and EK-RA6M3 kits. Example projects for the use case of designing with TrustZone for multi-image support is provided for EK-RA6M4. Example projects for the use case of designing with single image support is provided for EK-RA6M3. The MCUboot Module is supported across the entire RA MCU Family. Guidelines of how to adapt the example project configurations for other RA Family MCUs are provided. -
Technical Overview 11 October 2016 Problem and Context
Technical Overview 11 October 2016 Problem and Context First release of a successful connected product… …. now make that repeatable please. An Open Source OS for MCUs • Open source networking stacks: Bluetooth Host and Controller • Pre-empGve, ckless RTOS with power management Security • Secure bootloader and Image Upgrade Networking Stats & Console & Config & • Flash FS and Access Mechanisms Logging Shell Upgrade Drivers Power • Build & Package Management OS HAL • Management Interfaces Secure Bootloader & FFS A Community Driven OS Why Apache So<ware Founda?on? Cloud Providers IP Providers • Liberal, BSD-style license • Strong Licensing and IP policies • Meritocracy • Free to contribute, contributors control project direcGon. • History of working with large organizaons: IBM, Pivotal/ EMC, MicrosoY. • Many years experience managing large, complex projects (e.g., Apache, Hadoop, MCU Vendors End-Users Subversion) Community driven open source best way to maintain healthy ecosystem RTOS • Tickless operaon: low power hooks • Driver Interface • Pre-empGve, mulGtasking RTOS • Strict priority-based scheduling • Up to 253 different priority levels • Unified buffer management • Resource uGlizaon tracking and watchdog • High-resoluGon Gmers • Built-in tasks: • Idle RTOS - Event Driven Model • Event Queues provide a mechanism for “mostly-sleeping” asynchronous tasks • Wake-up on: • Message from another Task • Timer • I/O state change • Incoming packet • Watchdog • Perform operaons: • Send an alert • Respond to a request • Schedule a wakeup • Go back to -
Zephyr-RTOS Übersicht Und Status
Zephyr-RTOS Übersicht und Status ECC 1. Juni 2021, © Markus Kappeler About me ● Markus Kappeler ● 25 years in business ● Soft- and Hardware development ● Founder of bytesatwork ● Sailing, Skiing Hiking and Mountain-Biking Agenda ● Zephyr ● Was ist Zephyr ● Features ● Roadmap ● RTOS – Realtime ● Footprint ● Bootloader mcuboot Zephyr Project ● Opensource Realtime Betriebsystem ● Lebendige Community ● Mehrere Architekturen ● Modular und Konfigurierbar ● Bereit für Produkt-Entwicklung Zephyr Hardware Architekturen Zephyr Projekt Mitglieder Februar 2016 2021 Upstream commits last year Momentum 2016 2021 Entwickler 80 969 Commits 2806 52591 Boards 4 250+ Zephyr Board-Unterstützung Siehe auch: https://docs.zephyrproject.org/latest/boards/index.html Zephyr Ecosystem Kernel / HAL Zephyr OS Zephyr “Community” • Scheduler • Kernel objects und services • Kernel und HAL Zephyr Project • low-level Architektur und BSP • OS Services wie IPC, Logging, file • Power Management und low level systems, crypto Interfaces zur Hardware Zephyr Project OS Services and Low level APIs • Plattform spezifische Treiber Zephyr OS • Generisches I/O API • SDK, Tools und Kernel / HAL Entwicklungsumgebung • File systems, Logging, Debugging und IPC • Zusätzliche Middleware OS Services • Cryptography Services • Device Management und Application Services Bootloader • Networking und Connectivity Application Services Zephyr Community • High Level APIs • Zugang zu standardisierten Daten • 3rd Party Module und Bibliotheken Modellen • Support für Zephyr in 3rd Party • High Level -
A Comparative Study Between Operating Systems (Os) for the Internet of Things (Iot)
VOLUME 5 NO 4, 2017 A Comparative Study Between Operating Systems (Os) for the Internet of Things (IoT) Aberbach Hicham, Adil Jeghal, Abdelouahed Sabrim, Hamid Tairi LIIAN, Department of Mathematic & Computer Sciences, Sciences School, Sidi Mohammed Ben Abdellah University, [email protected], [email protected], [email protected], [email protected] ABSTRACT Abstract : We describe The Internet of Things (IoT) as a network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data in real time with the outside world. It therefore assumes an operating system (OS) which is considered as an unavoidable point for good communication between all devices “objects”. For this purpose, this paper presents a comparative study between the popular known operating systems for internet of things . In a first step we will define in detail the advantages and disadvantages of each one , then another part of Interpretation is developed, in order to analyze the specific requirements that an OS should satisfy to be used and determine the most appropriate .This work will solve the problem of choice of operating system suitable for the Internet of things in order to incorporate it within our research team. Keywords: Internet of things , network, physical object ,sensors,operating system. 1 Introduction The Internet of Things (IoT) is the vision of interconnecting objects, users and entities “objects”. Much, if not most, of the billions of intelligent devices on the Internet will be embedded systems equipped with an Operating Systems (OS) which is a system programs that manage computer resources whether tangible resources (like memory, storage, network, input/output etc.) or intangible resources (like running other computer programs as processes, providing logical ports for different network connections etc.), So it is the most important program that runs on a computer[1]. -
Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. -
A Rust-Based Runtime for the Internet of Things
A Rust-based Runtime for the Internet of Things Fredrik Nilsson Niklas Adolfsson Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Gothenburg, Sweden 2017 Master’s thesis 2017 A Rust-based Runtime for the Internet of Things Fredrik Nilsson Niklas Adolfsson Department of Computer Science and Engineering Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 A Rust-based Runtime for the Internet of Things Fredrik Nilsson Niklas Adolfsson © Fredrik Nilsson, Niklas Adolfsson, 2017. Supervisor: Olaf Landsiedel Examiner: Magnus Almgren Master’s Thesis 2017 Department of Computer Science and Engineering Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg Telephone +46 31 772 1000 Typeset in LATEX Gothenburg, Sweden 2017 iv A Rust-based Runtime for the Internet of Things Fredrik Nilsson Niklas Adolfsson Department of Computer Science and Engineering Chalmers University of Technology and University of Gothenburg Abstract As the number of connected devices increases, known as the Internet of Things (IoT), reliability and security become more important. C and C++ are common programming languages for IoT devices, mostly due to their fine-grained memory management and low runtime overhead. As these languages are not memory-safe and memory management has proven to be difficult to handle correctly, problems such as buffer overflows and dangling pointers are likely to increase as the IoT de- vices become more prevalent. These problems can result in reliability and security issues. In contrast to C and C++, Rust is a memory-safe systems programming lan- guage that, just like C and C++, provides low runtime overhead and fine-grained memory management. -
Operating Systems & Virtualisation Security Knowledge Area
Operating Systems & Virtualisation Security Knowledge Area Issue 1.0 Herbert Bos Vrije Universiteit Amsterdam EDITOR Andrew Martin Oxford University REVIEWERS Chris Dalton Hewlett Packard David Lie University of Toronto Gernot Heiser University of New South Wales Mathias Payer École Polytechnique Fédérale de Lausanne The Cyber Security Body Of Knowledge www.cybok.org COPYRIGHT © Crown Copyright, The National Cyber Security Centre 2019. This information is licensed under the Open Government Licence v3.0. To view this licence, visit: http://www.nationalarchives.gov.uk/doc/open-government-licence/ When you use this information under the Open Government Licence, you should include the following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li- censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at con- [email protected] to let the project know how they are using CyBOK. Issue 1.0 is a stable public release of the Operating Systems & Virtualisation Security Knowl- edge Area. However, it should be noted that a fully-collated CyBOK document which includes all of the Knowledge Areas is anticipated to be released by the end of July 2019. This will likely include updated page layout and formatting of the individual Knowledge Areas KA Operating Systems & Virtualisation Security j October 2019 Page 1 The Cyber Security Body Of Knowledge www.cybok.org INTRODUCTION In this Knowledge Area, we introduce the principles, primitives and practices for ensuring se- curity at the operating system and hypervisor levels. -
RIOT, the Friendly Operating System for The
The friendly operating system for the IoT by Thomas Eichinger (on behalf of the RIOT community) OpenIoT Summit NA 2017 Why? How? What is RIOT? Why? How? What is RIOT? Why a software platform for the IoT? ● Linux, Arduino, … bare metal? ● But as IoT software evolves … ○ More complex pieces e.g. an IP network stack ○ Evolution of application logic ● … non-portable IoT software slows innovation ○ 90% of IoT software should be hardware-independent → this is achievable with a good software platform (but not if you develop bare metal) Why a software platform for the IoT? ✓ faster innovation by spreading IoT software dev. costs ✓ long-term IoT software robustness & security ✓ trust, transparency & protection of IoT users’ privacy ✓ less garbage with less IoT device lock-down Why? How? What is RIOT? How to achieve our goals? Experience (e.g. with Linux) points towards ● Open source Indirect business models ● Free core Geopolitical neutrality ● Driven by a grassroot community Main Challenges of an OS in IoT Low-end IoT device resource constraints ● Kernel performance ● System-level interoperability ● Network-level interoperability ● Trust SW platform on low-end IoT devices ● The good news: ○ No need for advanced GUI (a simple shell is sufficient) ○ No need for high throughput performance (kbit/s) ○ No need to support dozens of concurrent applications ● The bad news: ○ kBytes of memory! ○ Typically no MMU! ○ Extreme energy efficency must be built in! SW platform on low-end IoT devices ● Contiki ● mbedOS (ARM) ● ● Zephyr (Intel) ● TinyOS ● LiteOS (Huawei) ● myNewt ● … ● FreeRTOS ● and closed source alternatives Reference: O. Hahm et al. "Operating Systems for Low-End Devices in the Internet of Things: A survey," IEEE Internet of Things Journal, 2016.