Comprehensive Survey of Evolutionary Morphological Soft Robotic Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolving Symbolic Controllers
Evolving Symbolic Controllers Nicolas Godzik1, Marc Schoenauer1, and Mich`ele Sebag2 1 Projet Fractales, INRIA Rocquencourt, France 2 LRI, Universit´eParis-Sud, France Published in G. Raidl et al., eds, Applications of Evolutionary Computing, pp 638-650, LNCS 2611, Springer Verlag, 2003. Abstract. The idea of symbolic controllers tries to bridge the gap be- tween the top-down manual design of the controller architecture, as advo- cated in Brooks’ subsumption architecture, and the bottom-up designer- free approach that is now standard within the Evolutionary Robotics community. The designer provides a set of elementary behavior, and evolution is given the goal of assembling them to solve complex tasks. Two experiments are presented, demonstrating the efficiency and show- ing the recursiveness of this approach. In particular, the sensitivity with respect to the proposed elementary behaviors, and the robustness w.r.t. generalization of the resulting controllers are studied in detail. 1 Introduction There are two main trends in autonomous robotics. There are two main trends in autonomous robotics. The first one, advocated by R. Brooks [2], is a human- specified deterministic approach: the tasks of the robot are manually decom- posed into a hierarchy of independent sub-tasks, resulting in the the so-called subsumption architecture. On the other hand, evolutionary robotics (see e.g. [13]), is generally viewed as a pure black-box approach: some controllers, mapping the sensors to the actua- tors, are optimized using the Darwinian paradigm of Evolutionary Computation; the programmer only designs the fitness function. However, the scaling issue remains critical for both approaches, though for arXiv:0705.1244v1 [cs.AI] 9 May 2007 different reasons. -
China's Space Robotic Arm Programs
SITC Bulletin Analysis October 2013 China’s Space Robotic Arm Programs Kevin POLLPETER Deputy Director, Study of Innovation and Technology in China Project UC Institute on Global Conflict and Cooperation On July 20, 2013, China launched three satellites on a Long March 4C launch vehicle, ostensibly to test space debris observation and space robotic arm technologies. The three satellites, Chuangxin-3, Shiyan-7, and Shijian-15, drew the attention of satellite tracking enthusiasts when two of them began conducting orbital maneuvers with each other and an additional satellite that had been launched in 2005. The maneuvers began on August 1 and involved one satellite acting as the target and another satellite, most likely equipped with a robotic arm, grappling the target satellite. Exactly which two of the three satellites were involved in the maneuvers is unknown. Based on data from the U.S. Strategic Command’s Space-Track.org website, however, the largest satellite of the three, possibly the Shijian-15, fired its thrusters to move to the smallest of the three satel- lites, possibly the Chuangxin-3, which remained in a set orbit.1 The third satellite, possibly the Shiyan-7, does not appear to be involved in the test. These maneuvers continued until August 17 and resulted in the largest satellite closing in on and then away from the smallest satellite. On August 18, the largest satellite changed orbits and closed in on a completely separate satellite, the Shijian-7, that had been launched in 2005. These maneuvers have caused concern that the tests go beyond the stated objectives and are actually a cover for testing on-orbit anti-satellite (ASAT) technologies. -
2.1: What Is Robotics? a Robot Is a Programmable Mechanical Device
2.1: What is Robotics? A robot is a programmable mechanical device that can perform tasks and interact with its environment, without the aid of human interaction. Robotics is the science and technology behind the design, manufacturing and application of robots. The word robot was coined by the Czech playwright Karel Capek in 1921. He wrote a play called “Rossum's Universal Robots” that was about a slave class of manufactured human-like servants and their struggle for freedom. The Czech word robota loosely means "compulsive servitude.” The word robotics was first used by the famous science fiction writer, Isaac Asimov, in 1941. 2.1: What is Robotics? Basic Components of a Robot The components of a robot are the body/frame, control system, manipulators, and drivetrain. Body/frame: The body or frame can be of any shape and size. Essentially, the body/frame provides the structure of the robot. Most people are comfortable with human-sized and shaped robots that they have seen in movies, but the majority of actual robots look nothing like humans. Typically, robots are designed more for function than appearance. Control System: The control system of a robot is equivalent to the central nervous system of a human. It coordinates and controls all aspects of the robot. Sensors provide feedback based on the robot’s surroundings, which is then sent to the Central Processing Unit (CPU). The CPU filters this information through the robot’s programming and makes decisions based on logic. The same can be done with a variety of inputs or human commands. -
An Overview of Novel Actuators for Soft Robotics
actuators Review An Overview of Novel Actuators for Soft Robotics Pinar Boyraz 1,2,* ID , Gundula Runge 3 and Annika Raatz 3 1 Mechanics and Maritime Sciences Department, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 Mechanical Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey 3 Institut fur Montagetechnik (match), Leibniz Universität Hannover, 30823 Garbsen, Hannover, Germany; [email protected] (G.R.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-730-49-8780 Received: 10 June 2018; Accepted: 9 August 2018; Published: 16 August 2018 Abstract: In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria. Keywords: soft-robotics; actuator performance; SMA; SMP; FEA; DEAP; E/MA 1. -
Real-Time Kinematics Coordinated Swarm Robotics for Construction 3D Printing
1 Real-time Kinematics Coordinated Swarm Robotics for Construction 3D Printing Darren Wang and Robert Zhu, John Jay High School Abstract Architectural advancements in housing are limited by traditional construction techniques. Construction 3D printing introduces freedom in design that can lead to drastic improvements in building quality, resource efficiency, and cost. Designs for current construction 3D printers have limited build volume and at the scale needed for printing houses, transportation and setup become issues. We propose a swarm robotics-based construction 3D printing system that bypasses all these issues. A central computer will coordinate the movement and actions of a swarm of robots which are each capable of extruding concrete in a programmable path and navigating on both the ground and the structure. The central computer will create paths for each robot to follow by processing the G-code obtained from slicing a CAD model of the intended structure. The robots will use readings from real-time kinematics (RTK) modules to keep themselves on their designated paths. Our goal for this semester is to create a single functioning unit of the swarm and to develop a system for coordinating its movement and actions. Problem Traditional concrete construction is costly, has substantial environmental impact, and limits freedom in design. In traditional concrete construction, workers use special molds called forms to shape concrete. Over a third of the construction cost of a concrete house stems from the formwork alone. Concrete manufacturing and construction are responsible for 6% – 8% of CO2 emissions as well as 10% of energy usage in the world. Many buildings use more concrete than necessary, and this stems from the fact that formwork construction requires walls, floors, and beams to be solid. -
Customizing a Self-Healing Soft Pump for Robot
ARTICLE https://doi.org/10.1038/s41467-021-22391-x OPEN Customizing a self-healing soft pump for robot ✉ Wei Tang 1, Chao Zhang 1 , Yiding Zhong1, Pingan Zhu1,YuHu1, Zhongdong Jiao 1, Xiaofeng Wei1, ✉ Gang Lu1, Jinrong Wang 1, Yuwen Liang1, Yangqiao Lin 1, Wei Wang1, Huayong Yang1 & Jun Zou 1 Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft 1234567890():,; electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation per- formances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power con- verter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics. ✉ 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:2247 | https://doi.org/10.1038/s41467-021-22391-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22391-x nspired by biological systems, scientists and engineers are a robotic vehicle to achieve untethered and versatile motions Iincreasingly interested in developing soft robots1–4 capable of when the customized soft pumps are implanted into them. -
A Model for Virtual Reconfigurable Modular Robots Thomas Breton, Yves Duthen
A Model for Virtual Reconfigurable Modular Robots Thomas Breton, Yves Duthen To cite this version: Thomas Breton, Yves Duthen. A Model for Virtual Reconfigurable Modular Robots. 2011. hal- 01298411 HAL Id: hal-01298411 https://hal.archives-ouvertes.fr/hal-01298411 Preprint submitted on 5 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Model for Virtual Reconfigurable Modular Robots Thomas Breton1 and Yves Duthen1 1VORTEX Research Team, IRIT UMR 5505 University of Toulouse, France [email protected], [email protected] Abstract and communication methods. We propose here a model to accomplish different tasks such as motion planning, This paper presents a model for virtual reconfigurable modu- object displacement, and structure reconfiguration; evolving lar robots in order to evolve artificial creatures, able of self- adaptation to the environment as well as good adjustment to a controller (a neural network) by the mean of a genetic various given tasks. For this purpose, a simulator has been algorithm. entirely developed with the assistance of a physics engine to represent force activities. One of the most crucial points It is true that any consideration taken in modular robotic in modular robot construction is the choice of module type, complexity and diversity. -
Design and Construction of a Robotic Arm for Industrial Automation
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 05, May - 2017 Design and Construction of a Robotic Arm for Industrial Automation Md. Tasnim Rana*, Anupom Roy Department of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna- Khulna University of Engineering & Technology, Khulna- 9203, BANGLADESH 9203, BANGLADESH Abstract - The main concentration of the work was to make a assembly. In some circumstances, close emulation of the cost efficient autonomous robotic arm in terms of industrial human hand is desired, as in robots designed to conduct bomb automation. It is a type of mechanical arm, usually disarmament and disposal. In case of firefighting or rescue programmable, with similar functions to a human arm; the arm operation where human life is in danger robotic arm can be may be a unit mechanism or may be a part of a more complex used as a rescue device. This can be functioned as required robotic process. The end effector or robotic hand can be designed to perform any desired task such as welding, gripping, and can do works risky for human being. In case of rapid spinning etc., depending on the application. For detective production the time limit for production will be shorten with investigations and bomb disposal it can be used as an essential the use of robotic arm. machine. In industry any kind of work which should be accurate and works continuously, normal programming algorithms and 2. BACKGROUND mechanical function can do the job perfectly .It can sense the co- At first robot was developed by Leo nartho the vence. -
Position Control for Soft Actuators, Next Steps Toward Inherently Safe Interaction
electronics Article Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction Dongshuo Li, Vaishnavi Dornadula, Kengyu Lin and Michael Wehner * Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA; [email protected] (D.L.); [email protected] (V.D.); [email protected] (K.L.) * Correspondence: [email protected] Abstract: Soft robots present an avenue toward unprecedented societal acceptance, utility in popu- lated environments, and direct interaction with humans. However, the compliance that makes them attractive also makes soft robots difficult to control. We present two low-cost approaches to control the motion of soft actuators in applications common in human-interaction tasks. First, we present a passive impedance approach, which employs restriction to pneumatic channels to regulate the inflation/deflation rate of a pneumatic actuator and eliminate the overshoot/oscillation seen in many underdamped silicone-based soft actuators. Second, we present a visual servoing feedback control approach. We present an elastomeric pneumatic finger as an example system on which both methods are evaluated and compared to an uncontrolled underdamped actuator. We perturb the actuator and demonstrate its ability to increase distal curvature around the obstacle and maintain the desired end position. In this approach, we use the continuum deformation characteristic of soft actuators as an advantage for control rather than a problem to be minimized. With their low cost and complexity, these techniques present great opportunity for soft robots to improve human–robot interaction. Citation: Li, D.; Dornadula, V.; Lin, Keywords: soft robot; human–robot interaction; control K.; Wehner, M. Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction. -
Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration Kaushik Phasale1, Praveen Kumar2, Akshay Raut3, Ravi Ranjan Singh4, Amit Nichat5 1,2,3,4Students, 5Assitant Proffesor, Deparatment of Mechanical Engineering, JSPM’s Bhivarabai Sawant Institute of Technology & Research, Wagholi, Pune, Maharasthra, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper deals with the “Design, The use of robots in library is becoming more popular in Manufacturing and Analysis of Robotic Arm with SCARA recent years. The trend seems to continue as long as the Configuration”. In the modern world, robotics has become robotics technology meets diverse and challenging needs in popular, useful and has achieved great successes in several educational purpose. The prototype consists of robotic arm along with grippers capable of moving in the three axes and fields of humanity. Every industrialist cannot afford to an ATMEGA 8 microcontroller. Software such as AVR Studio transform his unit from manual to semi-automatic or fully is used for programming, PROTESUS is used for simulation automatic as automation is not that cheap in India. The basic and PROGISP is used for dumping the program. RFID is used objective of this project is to develop a versatile and low cost for identifying the books and it has two IR Sensors for robotic arm which can be utilized for Pick and Place detecting the path. This robot is about 4 kg in weight and it is operation. Here controlling of the robot has been done by capable of picking and placing a book of weight one kg.s. -
Lab Notebook – Soft Robotics
Technology Lab: Lab Notebook – Soft Robotics ã2018 Boy Scouts of America. All rights reserved. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means without the proper written permission of the Boy Scouts of America or as expressly permitted by law. The design of a circle divided into four quadrants with wavy lines along the perimeter (the “BSA STEM logo”) is a trademark of the Boy Scouts of America. Lab Notebook Soft Robotics OVERVIEW ........................................................................................................................... 3 MEETING 1: SOFT ROBOT STRUCTURES ............................................................................. 5 MEETING 2: POWERING SOFT ROBOTS ............................................................................. 16 MEETING 3: BUILD A SOFT ROBOTIC GRASPER ............................................................... 24 MEETING 4: BUILD A SOFT TENTACLE-ARM ROBOT – PART 1 ......................................... 30 MEETING 5: BUILD A SOFT TENTACLE-ARM ROBOT – PART 2 ........................................ 36 MEETING 6: PROGRAMMING MOTIONS ............................................................................41 2 Lab Notebook Soft Robotics Overview This module will delve into an exciting and newly developing branch of robotics—soft or flexible robotic structures. When you look at an elephant’s trunk or an octopus’s arm, you can see natural examples of flexible structures used to grasp and manipulate objects. There are many tasks in our world that a rigid structure just does not perform well. Soft Robotics explores the development of flexible structures to work in these areas. In this module, you and your team will explore the concept of soft robots and learn how flexible structures move and how they can be programmed to perform useful tasks. This module was developed by the REACH Lab at the University of Tennessee, Knoxville. The group focuses on medical applications of robots and soft robots, and the mathematics behind them. -
Architectures of Soft Robotic Locomotion Enabled by Simple
Architectures of Soft Robotic Locomotion Enabled by Simple Mechanical Principles Liangliang Zhu a, c, Yunteng Cao a, Yilun Liu b, Zhe Yang a, Xi Chen c* a International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China b State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China c Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA Abstract In nature, a variety of limbless locomotion patterns flourish from the small or basic life form (Escherichia coli, the amoeba, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and go beyond existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion * Corresponding author at: Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA. Tel.: +1 2128543787. E-mail address: [email protected] (X. Chen). 1 functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc.