Project 491 Ruiqi Zhao, Liting Chen String Similarity Metrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model
Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model Grigori Sidorov1, Alexander Gelbukh1, Helena Gomez-Adorno1, and David Pinto2 1 Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Mexico D.F., Mexico 2 Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico {sidorov,gelbukh}@cic.ipn.mx, [email protected], [email protected] Abstract. We show how to consider similarity between 1 Introduction features for calculation of similarity of objects in the Vec tor Space Model (VSM) for machine learning algorithms Computation of similarity of specific objects is a basic and other classes of methods that involve similarity be task of many methods applied in various problems in tween objects. Unlike LSA, we assume that similarity natural language processing and many other fields. In between features is known (say, from a synonym dictio natural language processing, text similarity plays crucial nary) and does not need to be learned from the data. role in many tasks from plagiarism detection [18] and We call the proposed similarity measure soft similarity. question answering [3] to sentiment analysis [14-16]. Similarity between features is common, for example, in The most common manner to represent objects is natural language processing: words, n-grams, or syn the Vector Space Model (VSM) [17]. In this model, the tactic n-grams can be somewhat different (which makes objects are represented as vectors of values of features. them different features) but still have much in common: The features characterize each object and have numeric for example, words “play” and “game” are different but values. -
Evaluating Vector-Space Models of Word Representation, Or, the Unreasonable Effectiveness of Counting Words Near Other Words
Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths University of California, Berkeley fnematzadeh, smeylan, tom griffi[email protected] Abstract angle between word vectors (e.g., Mikolov et al., 2013b; Pen- nington et al., 2014). Vector-space models of semantics represent words as continuously-valued vectors and measure similarity based on In this paper, we examine whether these constraints im- the distance or angle between those vectors. Such representa- ply that Word2Vec and GloVe representations suffer from the tions have become increasingly popular due to the recent de- same difficulty as previous vector-space models in capturing velopment of methods that allow them to be efficiently esti- mated from very large amounts of data. However, the idea human similarity judgments. To this end, we evaluate these of relating similarity to distance in a spatial representation representations on a set of tasks adopted from Griffiths et al. has been criticized by cognitive scientists, as human similar- (2007) in which the authors showed that the representations ity judgments have many properties that are inconsistent with the geometric constraints that a distance metric must obey. We learned by another well-known vector-space model, Latent show that two popular vector-space models, Word2Vec and Semantic Analysis (Landauer and Dumais, 1997), were in- GloVe, are unable to capture certain critical aspects of human consistent with patterns of semantic similarity demonstrated word association data as a consequence of these constraints. However, a probabilistic topic model estimated from a rela- in human word association data. -
A Generalized Framework for Analyzing Taxonomic, Phylogenetic, and Functional Community Structure Based on Presence–Absence Data
Article A Generalized Framework for Analyzing Taxonomic, Phylogenetic, and Functional Community Structure Based on Presence–Absence Data János Podani 1,2,*, Sandrine Pavoine 3 and Carlo Ricotta 4 1 Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, H-1117 Budapest, Hungary 2 MTA-ELTE-MTM Ecology Research Group, Eötvös University, H-1117 Budapest, Hungary 3 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, 75005 Paris, France ; [email protected] 4 Department of Environmental Biology, University of Rome ‘La Sapienza’, 00185 Rome, Italy; [email protected] * Correspondence: [email protected] Received: 17 October 2018; Accepted: 6 November 2018; Published: 12 November 2018 Abstract: Community structure as summarized by presence–absence data is often evaluated via diversity measures by incorporating taxonomic, phylogenetic and functional information on the constituting species. Most commonly, various dissimilarity coefficients are used to express these aspects simultaneously such that the results are not comparable due to the lack of common conceptual basis behind index definitions. A new framework is needed which allows such comparisons, thus facilitating evaluation of the importance of the three sources of extra information in relation to conventional species-based representations. We define taxonomic, phylogenetic and functional beta diversity of species assemblages based on the generalized Jaccard dissimilarity index. This coefficient does not give equal weight to species, because traditional site dissimilarities are lowered by taking into account the taxonomic, phylogenetic or functional similarity of differential species in one site to the species in the other. These, together with the traditional, taxon- (species-) based beta diversity are decomposed into two additive fractions, one due to taxonomic, phylogenetic or functional excess and the other to replacement. -
A Similarity-Based Community Detection Method with Multiple Prototype Representation Kuang Zhou, Arnaud Martin, Quan Pan
A similarity-based community detection method with multiple prototype representation Kuang Zhou, Arnaud Martin, Quan Pan To cite this version: Kuang Zhou, Arnaud Martin, Quan Pan. A similarity-based community detection method with multiple prototype representation. Physica A: Statistical Mechanics and its Applications, Elsevier, 2015, pp.519-531. 10.1016/j.physa.2015.07.016. hal-01185866 HAL Id: hal-01185866 https://hal.archives-ouvertes.fr/hal-01185866 Submitted on 21 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A similarity-based community detection method with multiple prototype representation Kuang Zhoua,b,∗, Arnaud Martinb, Quan Pana aSchool of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China bDRUID, IRISA, University of Rennes 1, Rue E. Branly, 22300 Lannion, France Abstract Communities are of great importance for understanding graph structures in social networks. Some existing community detection algorithms use a single prototype to represent each group. In real applications, this may not adequately model the different types of communities and hence limits the clustering performance on social networks. To address this problem, a Similarity-based Multi-Prototype (SMP) community detection approach is proposed in this paper. -
Text Similarity Estimation Based on Word Embeddings and Matrix Norms for Targeted Marketing
Text Similarity Estimation Based on Word Embeddings and Matrix Norms for Targeted Marketing Tim vor der Bruck¨ Marc Pouly School of Information Technology School of Information Technology Lucerne University of Lucerne University of Applied Sciences and Arts Applied Sciences and Arts Switzerland Switzerland [email protected] [email protected] Abstract determined beforehand on a very large cor- pus typically using either the skip gram or The prevalent way to estimate the similarity of two documents based on word embeddings the continuous bag of words variant of the is to apply the cosine similarity measure to Word2Vec model (Mikolov et al., 2013). the two centroids obtained from the embed- 2. The centroid over all word embeddings be- ding vectors associated with the words in each longing to the same document is calculated document. Motivated by an industrial appli- to obtain its vector representation. cation from the domain of youth marketing, If vector representations of the two documents to where this approach produced only mediocre compare were successfully established, a similar- results, we propose an alternative way of com- ity estimate can be obtained by applying the cosine bining the word vectors using matrix norms. The evaluation shows superior results for most measure to the two vectors. of the investigated matrix norms in compari- Let x1; : : : ; xm and y1; : : : ; yn be the word vec- son to both the classical cosine measure and tors of two documents. The cosine similarity value several other document similarity estimates. between the two document centroids C1 und C2 is given by: 1 Introduction Estimating semantic document similarity is of ut- m n 1 X 1 X most importance in a lot of different areas, like cos( ( x ; y )) \ m i n i plagiarism detection, information retrieval, or text i=1 i=1 (1) Pm Pn summarization. -
Similarity Indices I: What Do They Measure?
NRC-1 Addendum Similarity Indices I: What Do They Measure? by J. W. Johnston November 1976 Prepared for The Nuclear Regulatory Commission Pacific Northwest Laboratories NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. PACIFIC NORTHWEST LABORATORY operated by BATTELLE for the ENERGY RESEARCH AND DEVELOPMENT ADMIFulSTRATION Under Contract E Y-76-C-06-7830 Printed in the Ucited States of America Avai!able from hcat~onalTechntcal lnformat~onService U.S. Department of Commerce 5285 Port Royal Road Spr~ngf~eld,Virginta 22151 Price: Pr~ntedCODV $*; Microfiche $3.00 NTI5 'Pages Selling Price ERDA-RL RICHL&\D M 4 BNWL-2152 NRC-1 Addendum Similarity Indices I: What Do They Measure? by J.W. Johnston November 1976 Prepared for The Nuclear Regulatory Commission Battelle Pacific Northwest Laboratories Richland, Washington 99352 SUMMARY The characteristics of 25 similarity indices used in studies of eco- logical communities were investigated. The type of data structure, to which these indices are frequently applied, was described as consisting of vectors of measurements on attributes (species) observed in a set of sam- ples. A genera1 similarity index was characterized as the result of a two step process defined on a pair of vectors. -
A New Similarity Measure Based on Simple Matching Coefficient for Improving the Accuracy of Collaborative Recommendations
I.J. Information Technology and Computer Science, 2019, 6, 37-49 Published Online June 2019 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2019.06.05 A New Similarity Measure Based on Simple Matching Coefficient for Improving the Accuracy of Collaborative Recommendations Vijay Verma Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India-136119 E-mail: [email protected] Rajesh Kumar Aggarwal Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India-136119 E-mail: [email protected] Received: 13 February 2019; Accepted: 22 March 2019; Published: 08 June 2019 Abstract—Recommender Systems (RSs) are essential tools of an e-commerce portal in making intelligent I. INTRODUCTION decisions for an individual to obtain product Nowadays, the world wide web (or simply web) serves recommendations. Neighborhood-based approaches are as an important means for e-commerce businesses. The traditional techniques for collaborative recommendations rapid growth of e-commerce businesses presents a and are very popular due to their simplicity and efficiency. potentially overwhelming number of alternatives to their Neighborhood-based recommender systems use users, this frequently results in the information overload numerous kinds of similarity measures for finding similar problem. Recommender Systems (RSs) are the critical users or items. However, the existing similarity measures tools for avoiding information overload problem and function only on common ratings between a pair of users provide useful suggestions that may be relevant to the (i.e. ignore the uncommon ratings) thus do not utilize all users [1]. RSs help individuals by providing personalized ratings made by a pair of users. -
The Duality of Similarity and Metric Spaces
applied sciences Article The Duality of Similarity and Metric Spaces OndˇrejRozinek 1,2,* and Jan Mareš 1,3,* 1 Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, 530 02 Pardubice, Czech Republic 2 CEO at Rozinet s.r.o., 533 52 Srch, Czech Republic 3 Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic * Correspondence: [email protected] (O.R.); [email protected] (J.M.) Abstract: We introduce a new mathematical basis for similarity space. For the first time, we describe the relationship between distance and similarity from set theory. Then, we derive generally valid relations for the conversion between similarity and a metric and vice versa. We present a general solution for the normalization of a given similarity space or metric space. The derived solutions lead to many already used similarity and distance functions, and combine them into a unified theory. The Jaccard coefficient, Tanimoto coefficient, Steinhaus distance, Ruzicka similarity, Gaussian similarity, edit distance and edit similarity satisfy this relationship, which verifies our fundamental theory. Keywords: similarity metric; similarity space; distance metric; metric space; normalized similarity metric; normalized distance metric; edit distance; edit similarity; Jaccard coefficient; Gaussian similarity 1. Introduction Mathematical spaces have been studied for centuries and belong to the basic math- ematical theories, which are used in various real-world applications [1]. In general, a mathematical space is a set of mathematical objects with an associated structure. This Citation: Rozinek, O.; Mareš, J. The structure can be specified by a number of operations on the objects of the set. -
Using Semantic Folding with Textrank for Automatic Summarization
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Using semantic folding with TextRank for automatic summarization SIMON KARLSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Using semantic folding with TextRank for automatic summarization SIMON KARLSSON [email protected] Master in Computer Science Date: June 27, 2017 Principal: Findwise AB Supervisor at Findwise: Henrik Laurentz Supervisor at KTH: Stefan Nilsson Examiner at KTH: Olov Engwall Swedish title: TextRank med semantisk vikning för automatisk sammanfattning School of Computer Science and Communication i Abstract This master thesis deals with automatic summarization of text and how semantic fold- ing can be used as a similarity measure between sentences in the TextRank algorithm. The method was implemented and compared with two common similarity measures. These two similarity measures were cosine similarity of tf-idf vectors and the number of overlapping terms in two sentences. The three methods were implemented and the linguistic features used in the construc- tion were stop words, part-of-speech filtering and stemming. Five different part-of- speech filters were used, with different mixtures of nouns, verbs, and adjectives. The three methods were evaluated by summarizing documents from the Document Understanding Conference and comparing them to gold-standard summarization cre- ated by human judges. Comparison between the system summaries and gold-standard summaries was made with the ROUGE-1 measure. The algorithm with semantic fold- ing performed worst of the three methods, but only 0.0096 worse in F-score than cosine similarity of tf-idf vectors that performed best. For semantic folding, the average preci- sion was 46.2% and recall 45.7% for the best-performing part-of-speech filter. -
Lecture Note
Algorithms for Data Science: Lecture on Finding Similar Items Barna Saha 1 Finding Similar Items Finding similar items is a fundamental data mining task. We may want to find whether two documents are similar to detect plagiarism, mirror websites, multiple versions of the same article etc. Finding similar items is useful for building recommender systems as well where we want to find users with similar buying patterns. In Netflix two movies can be deemed similar if they are rated highly by the same customers. While, there are many measures of similarity, in this lecture, we will concentrate one such popular measure known as Jaccard Similarity. Definition (Jaccard Similairty). Given two sets S1 and S2, Jaccard similarity of S1 and S2 is defined as |S1∩S2 S1∪S2 Example 1. Let S1 = {1, 2, 3, 4, 7} and S2 = {1, 4, 9, 7, 5} then |S1 ∪ S2| = 7 and |S1 ∩ S2| = 3. 3 Thus the Jaccard similarity of S1 and S2 is 7 . 1.1 Document Similarity To compare two documents to know how similar they are, here is a simple approach: • Compute k shingles for a suitable value of k k shingles are all substrings of length k that appear in the document. For example, if a document is abcdabd and k = 2, then the 2-shingles are ab, bc, cd, da, ab, bd. • Compare the set of k shingled based on Jaccard similarity. One will often map the set of shingled to a set of integers via hashing. What should be the right size of the hash table? Select a hash table size to avoid collision. -
Learning Semantic Similarity for Very Short Texts
Learning Semantic Similarity for Very Short Texts Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, Bart Dhoedt Ghent University – iMinds Gaston Crommenlaan 8-201, 9050 Ghent, Belgium fcedric.deboom, steven.vancanneyt, steven.bohez, thomas.demeester, [email protected] Abstract—Levering data on social media, such as Twitter a single sentence representation that contains most of its and Facebook, requires information retrieval algorithms to semantic information. Many authors choose to average or become able to relate very short text fragments to each maximize across the embeddings in a text [8], [9], [10] or other. Traditional text similarity methods such as tf-idf cosine- similarity, based on word overlap, mostly fail to produce combine them through a multi-layer perceptron [6], [11], by good results in this case, since word overlap is little or non- clustering [12], or by trimming the text to a fixed length existent. Recently, distributed word representations, or word [11]. embeddings, have been shown to successfully allow words The Paragraph Vector algorithm by Le and Mikolov— to match on the semantic level. In order to pair short text also termed paragraph2vec—is a powerful method to find fragments—as a concatenation of separate words—an adequate distributed sentence representation is needed, in existing lit- suitable vector representations for sentences, paragraphs and erature often obtained by naively combining the individual documents of variable length [13]. The algorithm tries to word representations. We therefore investigated several text find embeddings for separate words and paragraphs at the representations as a combination of word embeddings in the same time through a procedure similar to word2vec. -
Distributed Clustering Algorithm for Large Scale Clustering Problems
IT 13 079 Examensarbete 30 hp November 2013 Distributed clustering algorithm for large scale clustering problems Daniele Bacarella Institutionen för informationsteknologi Department of Information Technology Abstract Distributed clustering algorithm for large scale clustering problems Daniele Bacarella Teknisk- naturvetenskaplig fakultet UTH-enheten Clustering is a task which has got much attention in data mining. The task of finding subsets of objects sharing some sort of common attributes is applied in various fields Besöksadress: such as biology, medicine, business and computer science. A document search engine Ångströmlaboratoriet Lägerhyddsvägen 1 for instance, takes advantage of the information obtained clustering the document Hus 4, Plan 0 database to return a result with relevant information to the query. Two main factors that make clustering a challenging task are the size of the dataset and the Postadress: dimensionality of the objects to cluster. Sometimes the character of the object makes Box 536 751 21 Uppsala it difficult identify its attributes. This is the case of the image clustering. A common approach is comparing two images using their visual features like the colors or shapes Telefon: they contain. However, sometimes they come along with textual information claiming 018 – 471 30 03 to be sufficiently descriptive of the content (e.g. tags on web images). Telefax: The purpose of this thesis work is to propose a text-based image clustering algorithm 018 – 471 30 00 through the combined application of two techniques namely Minhash Locality Sensitive Hashing (MinHash LSH) and Frequent itemset Mining. Hemsida: http://www.teknat.uu.se/student Handledare: Björn Lyttkens Lindén Ämnesgranskare: Kjell Orsborn Examinator: Ivan Christoff IT 13 079 Tryckt av: Reprocentralen ITC ”L’arte rinnova i popoli e ne rivela la vita.