1 PLINK: a toolset for whole genome association and population-based linkage analyses Shaun Purcell1,2, Benjamin Neale1,2,3, Kathe Todd-Brown1, Lori Thomas1, Manuel A R Ferreira1, David Bender1,2, Julian Maller1,2, Paul I W de Bakker1,2, Mark J Daly1,2, Pak C Sham4 1 Center for Human Genetic Research, MGH, Boston, USA. 2 Broad Institute of Harvard and MIT, Cambridge, USA. 3 Institute of Psychiatry, University of London, London, UK. 4 Genome Research Center, University of Hong Kong, Pokfulam, Hong Kong. Correspondence: Shaun Purcell, Rm 6.254, CPZ-N, 185 Cambridge Street, Boston, MA, 02114, USA; Tel: 617-726-7642; Fax: 617-726-0830;
[email protected] Keywords : Whole genome association studies, single nucleotide polymorphisms, identity-by-state, identity-by-descent, linkage analysis, computer software Abstract Whole-genome association studies (WGAS) bring new computational as well as analytic challenges to researchers. Many existing genetic analysis tools are not designed to handle such large datasets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open source C/C++ WGAS toolset. Large datasets, comprising hundreds of thousands of markers geno- typed for thousands of individuals, can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data, that take advantage of whole-genome coverage. We in- troduce PLINK and describe the five main domains of function: data man- agement, summary statistics, population stratification, association analysis and identity-by-descent estimation.