The Emoting City

Total Page:16

File Type:pdf, Size:1020Kb

The Emoting City The Emoting City Designing feeling and artificial empathy in mediated environments Sayjel Vijay Patel1, Raffi Tchakerian2, Renata Lemos Morais3, Jie Zhang4, Simon Cropper5 1,2,3Dubai Institute of Design and Innovation 4OPT Architects 5University of Mel- bourne 1,2,3{sayjel.patel|raffi.tchakerian|renata.morais}@didi.ae 4jiezhang5@gmail. com [email protected] This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. `The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines `alloplastic' and `autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution. Keywords: Artificial Intelligence, Responsive Architecture, Affective Computation, Human-AI Interfaces, Artificial Empathy INTRODUCTION “the shapeless and dynamic acts of life and the Formalist approaches have dominated architecture ephemeral feelings evoked by architecture” (Pal- for the past century, but have been criticized for a lasma, 2015). The introduction of ambient data- geometric rationality which distances the city from generating technologies such as sensors, wearables, D2.T8.S1. THE COGNITIVE CITY (AI) - Volume 2 - eCAADe 38 | 261 and personal robots in mediated environments cre- empathy in environmental design. It also investi- ates the possibility of a new architecture, one with gates the technical implementation of these con- the power to perceive and elicit human emotions in cepts by proposing new architectural elements capa- non-anthropomorphic ways. ble of artificial perception and the ability to express Currently, autonomous technologies are perva- artificial empathy. ‘The Emoting City’ brings to light sive in cities, and have been used extensively to reg- new modes of human-human and human-AI interac- ulate human behavior. From medical wearables and tion that are emerging in the context of autonomous robotic vacuums to digital thermostats, autonomous environments. It brings forth a new proposition for technologies operate in a continuous loop of mon- the development of spaces that go beyond surveil- itoring, analysis, and feedback. Machine Learn- lance systems and anthropomorphic designs coming ing (ML) will soon provide even greater autonomy from social robotics, and that move forward to inno- through adaptive programming. The ability of au- vate in the design of interfaces that are transparent tonomous systems to operate with no human inter- and self-effacing and therefore conducive to seam- vention raises new design challenges and significant less levels of interactivity. ethical concerns. These include unintended or aggra- By connecting emotion sensing software (Mc- vating behavior (Picard 2008) and issues surrounding Duff et al, 2016) with kinetic architecture, ’The Emot- risk and responsibility for that risk; exemplified by the ing City’s interactive model facilitates the design of controversy surrounding driverless vehicles and their new elements in the built environment which re- safety. Furthermore, autonomous systems utilizing spond to the facial expressions of occupants using facial recognition are often designed in a way that ob- motion and colour as semiotic tools for the purposes jectifies, limits and seeks to control human behaviour of personal insight. By perceiving and decoding hu- in a way that contributes to skepticism surrounding man emotions, it is possible to create environments their use (Gates 2011). which facilitate the integration of autonomous tech- nologies in ways that radically expand what is possi- ble within traditional formalist environments. Figure 1 The Emoting City Design Installation. CONTEXT (© Credit Dalila Empathy is defined as the ability to share someone Tondo ) else’s feelings or experiences by imagining what it would be like to be in that person’s situation. This definition is generally applied to human-human in- teraction but as we interact with non-human systems more and more the concept of empathy requires some modification to include human-AI interaction. Indeed, the role of human-AI ‘empathy’ in interactive design has never been so important. This modified application of Empathy has its roots in the concept of This paper presents a theoretical blueprint for im- Cybernetics originally formulated by Norbert Wiener plementing artificial empathy into the built environ- (Wiener, 1948), Pask’s (1976) proposal for human- ment. ‘The Emoting City’, an interactive installation machine, teach-learn feedback in ‘Conversation The- presented at the 2019 Shenzhen Bi-City Biennale of ory’,and is at the core of embodied interaction (Dour- Urbanism/Architecture (Figure 1) represents an ini- ish 2001) and user-centred design (Black 1998, Wood- tial steps into this emerging field. The installation cock et al. 2018, Wright & McCarthy 2008). explores the possibilities of human-AI mediated self- 262 | eCAADe 38 - D2.T8.S1. THE COGNITIVE CITY (AI) - Volume 2 In the context of affective and aesthetic in- databases of institutions, however individuals have teractive experiences that blend human and artifi- no access to their own information. cial intelligences, our understanding of empathy ac- The potential facial-recognition systems show in quires new connotations. Traditional approaches to the context of artificial empathy has been researched empathy-based design have been focused on human extensively by the futurist Pamela Pavliskac (2018, to human empathy processes that rely on cultural 2019), who has coined the term Design Feeling to re- and symbolic systems of emotion expression, per- fer to the new possibilities brought about by emo- ception and interpretation. Empathy among human tional artificial intelligence (McStay 2018). The term actors is derived from audiovisual cues such as dia- recognizes the increasingly interdependent nature of logue and expression, and depends upon a subjec- how technology affects human emotions and how tive interpretation that relies on a particular individ- emotion-detection informs the design of new affec- ual’s ability to decode subtle signs of emotion such as tive technologies. tone of voice and facial expressions. Design Feeling reinforces the vision for a trans- Human-human interactions that are empathic disciplinary architecture that facilitates new experi- generate affective diversity and give origin to emo- ences which connect virtual, environmental, corpo- tional bonds. However in the context of human-AI real, and psychological dimensions. This transdisci- interactions, empathy becomes elusive. A different plinary approach to architecture has been well es- type of question emerges: can empathy exist in the tablished by several seminal architects and artists. context of human-AI interaction? If yes, how differ- Ascott (1995) argues that the current state of west- ent is it from human-human interactions and what ern architecture does not support “the human need makes it unique? There are many initiatives currently for transformation”. Cyberception can enable a new researching possible answers to these questions. form of architecture to support post-biological life, Even though there are many current human-AI characterized by “artificially enhanced interactions of applications that are dedicated to creating new artifi- perception and cognition”. This approach was pio- cial empathy experiences, initiatives that address the neered by Derrick de Kerckhove (2002), who has con- design of embedded sensing capabilities in respon- nected Ascott’s concept of cyberception as architec- sive environments with the specific purpose of pro- ture directly to environmental applications of AI. The moting self-empathy and insight could not be found architecture of intelligence (de Kerckhove 2002) de- in our research for this project. ‘Emoting City’ is our scribes a two-way road bridging material levels of re- response to this gap in human-AI interface design. ality to cognitive levels of experience. EMBEDDED CYBERCEPTION Architectural Precedence Cyberception is defined as “the convergence of The interconnected relations between psychology, perceptive and conceptual processes in which the digital technologies and architecture are clarified by connectivity of telematic networks plays a con- deCOi Architects in their seminal paper Technolog- structive role” (Cipolletta 2018). When consid- ical Latency: from autoplastic to alloplastic (2000). ering environmentally embedded processes of AI, This work marks the beginning of the application of facial-recognition
Recommended publications
  • The Evolution of Intelligence
    Review From Homo Sapiens to Robo Sapiens: The Evolution of Intelligence Anat Ringel Raveh * and Boaz Tamir * Faculty of interdisciplinary studies, S.T.S. Program, Bar-Ilan University, Ramat-Gan 5290002, Israel; [email protected] (A.R.R.); [email protected] (B.T.) Received: 30 October 2018; Accepted: 18 December 2018; Published: 21 December 2018 Abstract: In this paper, we present a review of recent developments in artificial intelligence (AI) towards the possibility of an artificial intelligence equal that of human intelligence. AI technology has always shown a stepwise increase in its capacity and complexity. The last step took place several years ago with the increased progress in deep neural network technology. Each such step goes hand in hand with our understanding of ourselves and our understanding of human cognition. Indeed, AI was always about the question of understanding human nature. AI percolates into our lives, changing our environment. We believe that the next few steps in AI technology, and in our understanding of human behavior, will bring about much more powerful machines that are flexible enough to resemble human behavior. In this context, there are two research fields: Artificial Social Intelligence (ASI) and General Artificial Intelligence (AGI). The authors also allude to one of the main challenges for AI, embodied cognition, and explain how it can viewed as an opportunity for further progress in AI research. Keywords: Artificial Intelligence (AI); artificial general intelligence (AGI); artificial social intelligence (ASI); social sciences; singularity; complexity; embodied cognition; value alignment 1. Introduction 1.1. From Intelligence to Super-Intelligence In this paper we present a review of recent developments in AI towards the possibility of an artificial intelligence equals that of human intelligence.
    [Show full text]
  • Endowing a Robotic Tutor with Empathic Qualities: Design and Pilot Evaluation
    Heriot-Watt University Research Gateway Endowing a Robotic Tutor with Empathic Qualities: Design and Pilot Evaluation Citation for published version: Obaid, M, Aylett, R, Barendregt, W, Basedow, C, Corrigan, LJ, Hall, L, Jones, A, Kappas, A, Kuester, D, Paiva, A, Papadopoulos, F, Serholt, S & Castellano, G 2018, 'Endowing a Robotic Tutor with Empathic Qualities: Design and Pilot Evaluation', International Journal of Humanoid Robotics, vol. 15, no. 6, 1850025. https://doi.org/10.1142/S0219843618500251 Digital Object Identifier (DOI): 10.1142/S0219843618500251 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Early version, also known as pre-print Published In: International Journal of Humanoid Robotics Publisher Rights Statement: Pre-print General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 October 17, 2018 14:36 WSPC/INSTRUCTION FILE output International Journal of Humanoid Robotics c World Scientific Publishing Company Endowing a Robotic Tutor with Empathic Qualities: Design and Pilot Evaluation Mohammad Obaid1, Ruth Aylett2, Wolmet Barendregt3, Christina Basedow4, Lee J.
    [Show full text]
  • A Theoretical Approach for a Novel Model to Realizing Empathy
    A Theoretical Approach for a Novel Model to Realizing Empathy Marialejandra García Corretjer GTM-Grup de recerca en Tecnologies Mèdia, La Salle-Universitat Ramon Llull, Barcelona, Spain Carrer Quatre Camins 30, Barcelona, Spain, 08022, [email protected] The focus of Marialejandra's current line of research is the result of a diverse industry & academic experiences converging into one challenge. Throughout her career, after two Masters degrees (Multimedia Project Management and Research for Design & Innovation) and a Bachelor degree in Industrial Design & Fine Arts, she was always interested in the relationships between people and their objects, as a form of communication that reveals preferences, expectations, and personalities. Now, she studies the impact of this relationship between humans and smart objects within the Human Computer Interactions discipline, from the perspective of the process of Realizing Empathy. David Miralles GTM-Grup de recerca en Tecnologies Mèdia, La Salle-Universitat Ramon Llull, Barcelona, Spain Carrer Quatre Camins 30, Barcelona, Spain, [email protected] He holds a degree on Theoretical Physics of the University of Barcelona (1995). From 1996 to 2001 he worked at the Fundamental Physics Department at the same university. In 2001 he obtained a PhD on Mathematical Physics. From 2001 to 2007 he worked at the Department of Communication and Signal Theory of Universitat Ramon Llull. Nowadays, he is member of the Grup de recerca en Tecnologies Media at La Salle-Universitat Ramon Llull. Raquel Ros GTM-Grup de recerca en Tecnologies Mèdia, La Salle-Universitat Ramon Llull, Barcelona, Spain Carrer Quatre Camins 30, Barcelona, Spain, [email protected] A Theoretical Approach for a Novel Model to Realizing Empathy 1.
    [Show full text]
  • Building Machines That Learn and Think Like People
    BEHAVIORAL AND BRAIN SCIENCES (2017), Page 1 of 72 doi:10.1017/S0140525X16001837, e253 Building machines that learn and think like people Brenden M. Lake Department of Psychology and Center for Data Science, New York University, New York, NY 10011 [email protected] http://cims.nyu.edu/~brenden/ Tomer D. Ullman Department of Brain and Cognitive Sciences and The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139 [email protected] http://www.mit.edu/~tomeru/ Joshua B. Tenenbaum Department of Brain and Cognitive Sciences and The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139 [email protected] http://web.mit.edu/cocosci/josh.html Samuel J. Gershman Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, and The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139 [email protected] http://gershmanlab.webfactional.com/index.html Abstract: Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like
    [Show full text]
  • New Media Art and Embodiment
    New Media Art and Embodiment: Encountering Artificial Intelligence Semeli Panagidou s1601806 [email protected] MA Arts and Culture: Art of the Contemporary World and World Art Studies First reader: Prof. Dr. R. Zwijnenberg Second reader: Dr. A.K.C. Crucq July 2018 Acknowledgments First and foremost, I would like to thank my supervisor Prof. Dr. Rob Zwijnenberg for his continuing support, trust and patience in advising me throughout the process of writing my thesis. I am truly grateful for his time and attention and for all the moments of encouragement he has provided. This would not have been possible otherwise. I would also like to dedicate this effort to my parents for providing me with opportunities to explore and grow in my perception of the world through various means of education and for being understanding and compassionate throughout. In this I have been privileged and I am eternally grateful. 2 Contents INTRODUCTION 4 CHAPTER 1: Being in the world Ideas of cognition in science, philosophy, culture and art 1.1 Postcognitivism, embodiment and the influence of computation. 10 1.2 Hybrid cognitive art and multi-level encounters in the performance Guy Ben-Ary’s cellF. 14 CHAPTER 2: Performative technologies in art Interactions between human and artificial intelligence 2.1 Posthumanist performativity towards empathic communication in a technoetic present. 23 2.2 Meet me halfway: AI as deconstructive co-creator in Oscar Sharp and Ross Goodwin’s Sunspring. 29 2.3 Affective encounters with the machine in Driessens & Verstappen’s Tickle Salon. 35 CONCLUSION 41 LIST OF ILLUSTRATIONS 44 BIBLIOGRAPHY 45 3 Introduction Artificial intelligence has rapidly made its mark as the technology of our generation.
    [Show full text]
  • Artificial Pain May Induce Empathy, Morality, and Ethics in The
    philosophies Article Artificial Pain May Induce Empathy, Morality, and Ethics in the Conscious Mind of Robots Minoru Asada Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; [email protected] Received: 6 June 2019; Accepted: 8 July 2019; Published: 13 July 2019 Abstract: In this paper, a working hypothesis is proposed that a nervous system for pain sensation is a key component for shaping the conscious minds of robots (artificial systems). In this article, this hypothesis is argued from several viewpoints towards its verification. A developmental process of empathy, morality, and ethics based on the mirror neuron system (MNS) that promotes the emergence of the concept of self (and others) scaffolds the emergence of artificial minds. Firstly, an outline of the ideological background on issues of the mind in a broad sense is shown, followed by the limitation of the current progress of artificial intelligence (AI), focusing on deep learning. Next, artificial pain is introduced, along with its architectures in the early stage of self-inflicted experiences of pain, and later, in the sharing stage of the pain between self and others. Then, cognitive developmental robotics (CDR) is revisited for two important concepts—physical embodiment and social interaction, both of which help to shape conscious minds. Following the working hypothesis, existing studies of CDR are briefly introduced and missing issues are indicated. Finally, the issue of how robots (artificial systems) could be moral agents is addressed. Keywords: pain; empathy; morality; mirror neuron system (MNS) 1. Introduction The rapid progress of observation and measurement technologies in neuroscience and physiology have revealed various types of brain activities, and the recent progress of artificial intelligence (AI) technologies represented by deep learning (DL) methods [1] has been remarkable.
    [Show full text]
  • On the Possibility of Robots Having Emotions
    Georgia State University ScholarWorks @ Georgia State University Philosophy Theses Department of Philosophy Summer 8-12-2014 On the Possibility of Robots Having Emotions Cameron Hamilton Follow this and additional works at: https://scholarworks.gsu.edu/philosophy_theses Recommended Citation Hamilton, Cameron, "On the Possibility of Robots Having Emotions." Thesis, Georgia State University, 2014. https://scholarworks.gsu.edu/philosophy_theses/150 This Thesis is brought to you for free and open access by the Department of Philosophy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Philosophy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ON THE POSSIBILITY OF ROBOTS HAVING EMOTIONS by CAMERON REID HAMILTON Under the Direction of Andrea Scarantino ABSTRACT I argue against the commonly held intuition that robots and virtual agents will never have emotions by contending robots can have emotions in a sense that is functionally similar to hu- mans, even if the robots' emotions are not exactly equivalent to those of humans. To establish a foundation for assessing the robots' emotional capacities, I first define what emotions are by characterizing the components of emotion consistent across emotion theories. Second, I dissect the affective-cognitive architecture of MIT's Kismet and Leonardo, two robots explicitly de- signed to express emotions and to interact with humans, in order to explore whether they have emotions.
    [Show full text]
  • Margiotta.Pdf
    studi superiori / 993 scienze dell’educazione Questo volume fa parte della serie “I fondamenti della pedagogia”. Direttore scientifico: Massimo Baldacci (Università “Carlo Bo” di Urbino). Comitato scientifico: Marguerite Altet (Università di Nantes), Franco Cambi (Università di Firenze), Enza Colicchi (Università di Messina), Franco Frabboni (Università di Bologna), Antonio Medina Rivilla (Università di Madrid), Luigina Mortari (Università di Verona), Umberto Margiotta (Università di Venezia), Fran- ca Pinto Minerva (Università di Foggia), Simonetta Ulivieri (Università di Firen- ze), Miguel Zabalza Beraza (Università di Santiago de Compostela). La progressiva articolazione della pedagogia, pur consentendo una migliore ade- renza alle varie questioni formative, sta producendo una marcata frammentazione della sua dimensione teorica. Pertanto, vi è l’esigenza di ripristinare prospettive di sintesi unitaria, tornando ai fondamenti della pedagogia come condizione per in- terpretare in maniera non riduttiva le problematiche formative attuali. A questo scopo, la serie “I fondamenti della pedagogia” intende costituire una sorta di trat- tato pedagogico aperto, caratterizzato dall’attenzione prioritaria ai campi (i grandi problemi dell’educazione: l’educazione intellettuale, l’educazione etico-sociale, l’educazione tecnologica ecc.), ai paradigmi (le grandi prospettive teoriche della pedagogia: la pedagogia razionalista, la pedagogia empirista, la pedagogia pragma- tista ecc.) e alle strutture (le grandi “strutture” teoriche della pedagogia:
    [Show full text]
  • A Test for Artificial Empathy by Adam Brandenburger* and Cheryl Loh
    A Test for Artificial Empathy by Adam Brandenburger* and Cheryl Loh** Version 05/15/18 “Empathy, evidently, existed only within the human community” -- Philip K. Dick, Do Androids Dream of Electric Sheep, 1968 1. Introduction The recent rapid advances in AI have led a lot of people to ponder what a world of tomorrow populated with intelligent machines will look like. For some people, the promise is for a bright future for humanity where AI’s help us in our homes, assist in caring for the elderly or raising children, and operate alongside us at work to boost our performance and even our creativity. An example is Kasparov [5, 2017], who describes the successes of human-machine partnerships in chess and extrapolates from these to a positive human future in the age of AI. Other people see the risk of an AI apocalypse where machines seize control of the planet and even threaten our physical existence. Such an existential catastrophe was described by Bostrom [1, 2014], and Stephen Hawking and Elon Musk have issued warnings in the popular media. The dividing line between these two futures may depend on the issue of empathy, or, more precisely, on the possibility of artificial empathy (AE). If it is possible to build machines which reliably possess AE, then we can hope that their behavior will take into account human well-being as well as any objectives of their own. But if tomorrow’s machines have their own goals and pursue them without regard to human welfare, then they may cause us harm --- even existential harm --- without caring.
    [Show full text]
  • Towards Artificial Empathy
    Int J of Soc Robotics DOI 10.1007/s12369-014-0253-z Towards Artificial Empathy How Can Artificial Empathy Follow the Developmental Pathway of Natural Empathy? Minoru Asada Accepted: 21 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The design of artificial empathy is one of the “affectivity” in human robot interaction (hereafter, HRI) most essential issues in social robotics. This is because has been recently addressed in a brief survey from the empathic interactions with ordinary people are needed to viewpoint of affective computing [41]. Several attempts introduce robots into our society. Several attempts have been have been made to address specific contexts (e.g., [26] made for specific situations. However, such attempts have for survey) in which a designer specifies how to manifest provided several limitations; thus, diminishing authenticity. empathic behaviors towards humans, and, therefore, under- The present article proposes “affective developmental robot- stand that capabilities regarding empathic interaction seem ics (hereafter, ADR),” which provides more authentic artifi- limited and difficult to extend (generalize) to different con- cial empathy based on the concept of cognitive developmen- texts. tal robotics (hereafter, CDR). First, the evolution and devel- Based on views from developmental robotics [4,29], opment of empathy as revealed in neuroscience and biobe- empathic behaviors are expected to be learned through social havioral studies are reviewed, moving from emotional conta- interactions with humans. Asada et al. [6] discussed the gion to envy and schadenfreude. These terms are then recon- importance of “artificial sympathy” from a viewpoint of CDR sidered from the ADR/CDR viewpoint, particularly along the [4].
    [Show full text]
  • Artificial Empathy: an Interdisciplinary Investigation
    Artificial Empathy: An Interdisciplinary Investigation IJSR special issue Luisa Damiano1, Paul Dumouchel2 and Hagen Lehmann3 1 Epistemology of the Sciences of the Artificial Research Group, Department of Human Sciences, University of Bergamo, Bergamo, Italy 2 Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan 3 Adaptive Systems Research Group, School of Computer Science and STCA, University of Hertfordshire, Hatfield, United Kingdom Summary. One central issue of Social Robotics research is This special session issue aims at offering an interdisciplinary the question of the affective (emotional) involvement of users. context in which the different dimensions of Artificial The problem of creating a robot able to establish and to Empathy can be explored and connected. Our goal is to participate competently in dynamic affective exchanges with stimulate the interaction between applied research and human partners has been recognized as fundamental, theoretical and epistemological reflections, and to promote a especially for the success of projects involving Assistive or front line in Social Robotics research that takes all its aspects Educational Robotics. This locates Social Robotics at the (epistemological, theoretical, technical, social and ethical) into crossroad of many interconnected issues related to various consideration, without losing sight of its fundamental disciplines, such as Epistemology, Cognitive Science, question: Under which conditions can a robot become a social Sociology and Ethics. partner for humans? Among these issues are, for example, the epistemological and theoretical problems of defining how emotions could be represented in a robot and under which conditions robots 1. GENERAL INFORMATION could be able to participate competently in emotional and Special Issue proposed title empathic dynamics with human beings.
    [Show full text]
  • Increasing Empathy Through Conversation Joy Harlynking [email protected]
    Rollins College Rollins Scholarship Online Honors Program Theses Spring 2019 The Art of Caring: Increasing Empathy Through Conversation Joy Harlynking [email protected] Follow this and additional works at: https://scholarship.rollins.edu/honors Part of the Human Factors Psychology Commons, Personality and Social Contexts Commons, and the Social Psychology Commons Recommended Citation Harlynking, Joy, "The Art of Caring: Increasing Empathy Through Conversation" (2019). Honors Program Theses. 87. https://scholarship.rollins.edu/honors/87 This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. Running head: INCREASING EMPATHY 1 The Art of Caring: Increasing Empathy Through Conversation Joy Harlynking Psychology Department Rollins College INCREASING EMPATHY 2 Abstract In our every day lives we use empathy more than we would assume, however a current empathy deficit has led us to wonder how we can increase our empathy. The present study aimed to find a way to increase one’s empathy, specifically through an emotional conversation with another individual. There were 61 participants who were separated into either an emotional or factual conversation group. They first took surveys including the IRI, closeness questions, and the pre Revised Eyes Test and then engaged in conversation with another participant. They then took a post Revised Eyes Test after their conversation. The results showed that while the emotional conversation group did not increase in empathy more than the factual group, all the participants in both groups significantly increased in empathy after their conversation.
    [Show full text]