The Specter of Fire in the Air Is a Pilot's Recurrent Nightmare

Total Page:16

File Type:pdf, Size:1020Kb

The Specter of Fire in the Air Is a Pilot's Recurrent Nightmare SMOKE TOXICITY Th e specter of fi re in the air is a pilot’s recurrent nightmare... IRE is an integral part of our everyday life, and smoke is one of its products. There Fhave always been efforts to control fi re and use it for constructive purposes, but even then, accidental fi res do occur and fi re contin- ues to cause loss of lives and property. Uncontrolled fi res threaten homes, facto- ries, and transportation systems. The specter of fi re in the air is a pilot’s recurrent night- mare, carried over from the early days of fab- ric covered aircraft, when the time between ignition and loss of the aircraft could be mea- sured in relatively few minutes. Modern aircraft benefi t from fl ame retardant materials and improved fi re extinguishing sys- tems to such an extent that in-fl ight fi res are rare occurrences. However, survivable crashes followed by fi re happen, primarily from fuel spills around the downed aircraft. In the confi ned environ- ment of an aircraft cabin, the presence of smoke automatically indicates the existence of an emergency situation. Extinguishment of fi res obviously has fi rst priority, but smoke inhalation should be recognized as a very real danger while this is being accomplished. Inhalation of toxic gases in smoke is the primary cause of fatalities in most fi res—this is true whether the fi re is in an aircraft cabin, a residential bedroom, or a high-rise building. Smoke gases do not need to reach lethal levels to seriously impair pilot performance. Sublethal exposures can cause even experienced pilots to make potentially fatal mistakes. 1 In view of the seriousness of any aircraft nitrogen- containing synthetics will produce the fi re, let us examine the various aspects of fi re more toxic hydrogen cyanide gas. Irritant gases, and smoke. such as hydrogen chloride and acrolein, are generated from burning wiring insulation and FIRE some other cabin materials. Generally, carbon dioxide levels increase and oxygen concentra- Each fi re is diff erent... tions decrease during fi res. ire is a complex, dynamic, physico- SMOKE EFFECTS chemical event and is the result of a rapid Fchemical reaction generating smoke, heat, fl ame, and light. Each fi re is different. Smoke At high altitude, the effects are greatly composition and heat generated in a fi re de- enhanced... pend on types of burning materials and envi- isual smoke can delay escape from a ronmental conditions. fi re, while the irritant gases can induce tears, pain, and disorientation. The visu- SMOKE V al obscuration is obvious, but the subtle effects of carbon monoxide and hydrogen cyanide Its gases could be toxic... inhalation, although less readily detected, can moke is a complex of particulate matter, cause physical incapacitation and subsequent as well as a variety of invisible combus- death. Toxicologically, carbon monoxide com- tion gases and vapors suspended in the bines with the hemoglobin in blood and inter- S feres with the oxygen supply to tissues, while fi re atmosphere. Smoke may diminish light and obscure vision, and its gases could be toxic. hydrogen cyanide inhibits oxygen utilization at the cellular level. Carbon dioxide, a relatively innocuous fi re gas, increases the respiration SMOKE GASES rate causing an increase in the uptake of the other combustion gases. The decreased oxygen Carbon dioxide levels increase and oxygen level found in most fi re scenarios further en- concentrations decrease... hances the problem of getting enough oxygen arbon monoxide and hydrogen cyanide to the biological sites to maintain normal func- are the two principal toxic combustion tion. Continued inhalation of these gases can gases. Most cabin furnishings contain result in severe hypoxia. At high altitude where C oxygen levels are lower, the effects of carbon carbon and will generate both carbon monox- ide and carbon dioxide when burned; carbon monoxide and hydrogen cyanide are greatly monoxide can also be released from faulty enhanced. cabin heaters. Burning wool, silk, and many 2 SIGNS AND SYMPTOMS chances for survival in an aircraft fi re. A small, hand-held fi re extinguisher can be used to put Not all symptoms will necessarily be out small onboard fi res. Careful inspection and maintenance of cabin heaters will mini- experienced... mize the chance of carbon monoxide leakage arbon monoxide poisoning produces into the cabin air system. A carbon monoxide headache, weakness, nausea, dizzi- detector could also be installed in the cock- Cness, confusion, dimness of vision, pit to detect the presence of this colorless, disturbance of judgment, and unconsciousness odorless gas. As always, planning your prob- followed by coma and death. Although carbon able actions before an emergency arises will monoxide causes deleterious effects on the increase your chances for acting quickly and central nervous system, death usually occurs correctly. from cardiotoxicity. Not all symptoms will necessarily be expe- Remember... rienced by every individual exposed to this • Fires are the main hazard for the occu- gas. Some have succumbed from inhaling low pants of a survivable crash carbon monoxide levels, while others have • A fi re generates smoke, heat, fl ame, and survived breathing higher concentrations. light • Inhalation of toxic gases in smoke Hydrogen cyanide poisoning signs and symp- is the primary cause of death in most toms are weakness, dizziness, headache, nau- fi res sea, vomiting, coma, convulsions, and death. • Carbon monoxide and hydrogen cyanide Death results from respiratory arrest. Hydro- are the main toxic gases in smoke gen cyanide gas acts very rapidly—symptoms • Exposure to carbon monoxide can also be and death can both occur quickly. the result of faulty heaters • A wet cloth held over the nose and SURVIVAL mouth provides some protection from smoke inhalation Knowledge of the less obvious hazards and a few • A small, hand-held fi re extinguisher simple preparations can increase one’s chances... should always be carried aboard general here is no universal best procedure to fol- aviation aircraft low in the event of an aircraft fi re because • Install a carbon monoxide detector in the Tno two fi res are likely to be the same. Ex- cockpit tinguishing the fi re, if possible, is the immediate priority. An equally obvious second priority is MEDICAL FACTS FOR PILOTS to breathe as little smoke for as short a duration Publication AM–400–95/1 as possible. Written by: Some larger aircraft are supplied with por- Arvind K. Chaturvedi, Ph.D. table, self-contained breathing masks for the Prepared by: crew, but small private aircraft usually are not. FAA Civil Aerospace Medical Institute Any cloth held over the nose and mouth will Aerospace Medical Education Division provide protection from smoke particulates; if the cloth is wet, it will also absorb most of the To order copies of this brochure, write: water-soluble gases (i.e., hydrogen cyanide Federal Aviation Administration and hydrogen chloride). Civil Aerospace Medical Institute Cabin venting will reduce the concentra- Shipping Clerk, AAM-400 tions of combustion gases, but is not usually a P.O. Box 25082 viable option while actually fi ghting the fi re. Oklahoma City, OK 73125 Knowledge of the less obvious hazards and a few simple preparations can increase one’s 3.
Recommended publications
  • Module III – Fire Analysis Fire Fundamentals: Definitions
    Module III – Fire Analysis Fire Fundamentals: Definitions Joint EPRI/NRC-RES Fire PRA Workshop August 21-25, 2017 A Collaboration of the Electric Power Research Institute (EPRI) & U.S. NRC Office of Nuclear Regulatory Research (RES) What is a Fire? .Fire: – destructive burning as manifested by any or all of the following: light, flame, heat, smoke (ASTM E176) – the rapid oxidation of a material in the chemical process of combustion, releasing heat, light, and various reaction products. (National Wildfire Coordinating Group) – the phenomenon of combustion manifested in light, flame, and heat (Merriam-Webster) – Combustion is an exothermic, self-sustaining reaction involving a solid, liquid, and/or gas-phase fuel (NFPA FP Handbook) 2 What is a Fire? . Fire Triangle – hasn’t change much… . Fire requires presence of: – Material that can burn (fuel) – Oxygen (generally from air) – Energy (initial ignition source and sustaining thermal feedback) . Ignition source can be a spark, short in an electrical device, welder’s torch, cutting slag, hot pipe, hot manifold, cigarette, … 3 Materials that May Burn .Materials that can burn are generally categorized by: – Ease of ignition (ignition temperature or flash point) . Flammable materials are relatively easy to ignite, lower flash point (e.g., gasoline) . Combustible materials burn but are more difficult to ignite, higher flash point, more energy needed(e.g., wood, diesel fuel) . Non-Combustible materials will not burn under normal conditions (e.g., granite, silica…) – State of the fuel . Solid (wood, electrical cable insulation) . Liquid (diesel fuel) . Gaseous (hydrogen) 4 Combustion Process .Combustion process involves . – An ignition source comes into contact and heats up the material – Material vaporizes and mixes up with the oxygen in the air and ignites – Exothermic reaction generates additional energy that heats the material, that vaporizes more, that reacts with the air, etc.
    [Show full text]
  • Safety Data Sheet
    Coghlan’s Magnesium Fire Starter #7870 SAFETY DATA SHEET This Safety Data Sheet complies with the Canadian Hazardous Product Regulations, the United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR 1910 (OSHA HCS), and the European Union Directives. 1. Product and Supplier Identification 1.1 Product: Magnesium Fire Starter 1.2 Other Means of Identification: Coghlan’s #7870 1.3 Product Use: Fire starter 1.4 Restrictions on Use: None known 1.5 Producer: Coghlan’s Ltd., 121 Irene Street, Winnipeg, Manitoba Canada, R3T 4C7 Telephone: +1(204) 284-9550 Facsimile: +1(204) 475-4127 Email: [email protected] Supplier: As above 1.6 Emergencies: +1(877) 264-4526 2. Hazards Identification 2.1 Classification of product or mixture This product is an untested preparation. GHS classification for this preparation is based upon its use as a fire starter by making shavings and small particulate from the metal block. As shipped in mass form, this preparation is not considered to be a hazardous product and is not classifiable under the requirements of GHS. GHS Classification: Flammable Solids, Category 1 2.2 GHS Label Elements, including precautionary statements Pictogram: Signal Word: Danger Page 1 of 11 October 18, 2016 Coghlan’s Magnesium Fire Starter #7870 GHS Hazard Statements: H228: Flammable Solid GHS Precautionary Statements: Prevention: P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P280: Wear protective gloves, eye and face protection Response: P370+P378: In case of fire use water as first choice. Sand, earth, dry chemical, foam or CO2 may be used to extinguish.
    [Show full text]
  • Operating and Maintaining a Wood Heater
    OPERATING AND MAINTAINING A WOODHEATER FIREWOOD ASSOCIATION THE FIREWOODOF AUSTRALIA ASSOCIATION INC. OF AUSTRALIA INC. Building a wood fire Maintaining a wood heater For any fire to start and keep going three things are needed, Even in correctly operated wood heaters and fireplaces, some fuel, oxygen and heat. In wood fires the fuel is provided by the of the combustion gases will condense on the inside of the wood, the oxygen comes from the air, and the initial heat comes flue or chimney as a black tar-like substance called creosote. from burning paper or a fire lighter. In a going fire the heat is If this substance is allowed to build up it will restrict the air flow provided by the already burning wood. Without fuel, heat and in the heater or fireplace, reducing its efficiency. Eventually oxygen the fire will go out. When the important role of oxygen a build up of creosote can completely block the flue, making is understood, it is easy to see why you need plenty of air space around each piece of kindling when setting up the fire. the fire impossible to operate. One sign of a blocked flue is smoke coming into the room when you open the heater door. Kindling catches fire easily because it has a large surface Creosote appearing on the glass door is another indication area and small mass, which allows it to reach combustion that your heater is not working properly. Because creosote temperature quickly. The surface of a large piece of wood is flammable, if the chimney or flue gets hot enough the will not catch fire until it has been brought up to combustion creosote can catch alight, causing a dangerous chimney fire.
    [Show full text]
  • Learn the Facts: Fuel Consumption and CO2
    Auto$mart Learn the facts: Fuel consumption and CO2 What is the issue? For an internal combustion engine to move a vehicle down the road, it must convert the energy stored in the fuel into mechanical energy to drive the wheels. This process produces carbon dioxide (CO2). What do I need to know? Burning 1 L of gasoline produces approximately 2.3 kg of CO2. This means that the average Canadian vehicle, which burns 2 000 L of gasoline every year, releases about 4 600 kg of CO2 into the atmosphere. But how can 1 L of gasoline, which weighs only 0.75 kg, produce 2.3 kg of CO2? The answer lies in the chemistry! Î The short answer: Gasoline contains carbon and hydrogen atoms. During combustion, the carbon (C) from the fuel combines with oxygen (O2) from the air to produce carbon dioxide (CO2). The additional weight comes from the oxygen. The longer answer: Î So it’s the oxygen from the air that makes the exhaust Gasoline is composed of hydrocarbons, which are hydrogen products heavier. (H) and carbon (C) atoms that are bonded to form hydrocarbon molecules (C H ). Air is primarily composed of X Y Now let’s look specifically at the CO2 reaction. This reaction nitrogen (N) and oxygen (O2). may be expressed as follows: A simplified equation for the combustion of a hydrocarbon C + O2 g CO2 fuel may be expressed as follows: Carbon has an atomic weight of 12, oxygen has an atomic Fuel (C H ) + oxygen (O ) + spark g water (H O) + X Y 2 2 weight of 16 and CO2 has a molecular weight of 44 carbon dioxide (CO2) + heat (1 carbon atom [12] + 2 oxygen atoms [2 x 16 = 32]).
    [Show full text]
  • Combustion Chemistry William H
    Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs June 2014 Copyright ©2014 by William H. Green This material is not to be sold, reproduced or distributed without prior written permission of the owner, William H. Green. 1 Combustion Chemistry William H. Green Combustion Summer School June 2014 2 Acknowledgements • Thanks to the following people for allowing me to show some of their figures or slides: • Mike Pilling, Leeds University • Hai Wang, Stanford University • Tim Wallington, Ford Motor Company • Charlie Westbrook (formerly of LLNL) • Stephen J. Klippenstein (Argonne) …and many of my hard-working students and postdocs from MIT 3 Overview Part 1: Big picture & Motivation Part 2: Intro to Kinetics, Combustion Chem Part 3: Thermochemistry Part 4: Kinetics & Mechanism Part 5: Computational Kinetics Be Prepared: There will be some Quizzes and Homework 4 Part 1: The Big Picture on Fuels and Combustion Chemistry 5 What is a Fuel? • Fuel is a material that carries energy in chemical form. • When the fuel is reacted (e.g. through combustion), most of the energy is released as heat • Though sometimes e.g. in fuel cells or flow batteries it can be released as electric power • Fuels have much higher energy densities than other ways of carrying energy. Very convenient for transportation. • The energy is released via chemical reactions. Each fuel undergoes different reactions, with different rates. Chemical details matter. 6 Transportation Fuel: Big Issues •People want, economy depends on transportation • Cars (growing rapidly in Asia) • Trucks (critical for economy everywhere) • Airplanes (growing rapidly everywhere) • Demand for Fuel is “Inelastic”: once they have invested in a vehicle, people will pay to fuel it even if price is high •Liquid Fuels are Best • Liquids Flow (solids are hard to handle!) • High volumetric and mass energy density • Easy to store, distribute.
    [Show full text]
  • Fundamentals of Applied Smouldering Combustion
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-20-2018 10:00 AM Fundamentals of Applied Smouldering Combustion Marco Zanoni The University of Western Ontario Supervisor Gerhard, Jason I. The University of Western Ontario Co-Supervisor Torero, Jose L. The University of Western Ontario Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Marco Zanoni 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Environmental Engineering Commons, and the Heat Transfer, Combustion Commons Recommended Citation Zanoni, Marco, "Fundamentals of Applied Smouldering Combustion" (2018). Electronic Thesis and Dissertation Repository. 5410. https://ir.lib.uwo.ca/etd/5410 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Smouldering combustion is defined as a flameless oxidation reaction occurring on the surface of the condensed phase (i.e., solid or liquid). Traditional research on smouldering was related to economic damages, fire risk, and death, due to the release of toxic gases and slow propagation rates. Recently, smouldering has been applied as an intentional, engineering technology (e.g., waste and contaminant destruction). Smouldering involves the transport of heat, mass, and momentum in the solid and fluid phases along with different chemical reactions. Therefore, numerical models are essential for the fundamental understanding of the process. Smouldering models either neglected heat transfer between phases (i.e., assumed local thermal equilibrium) or employed heat transfer correlations (i.e., under local thermal non- equilibrium conditions) not appropriate for smouldering.
    [Show full text]
  • EMPLOYEE FIRE and LIFE SAFETY: Developing a Preparedness Plan and Conducting Emergency Evacuation Drills
    EMPLOYEE FIRE AND LIFE SAFETY: Developing a Preparedness Plan and Conducting Emergency Evacuation Drills The following excerpts are taken from the book Introduction to Employee Fire and Life Safety, edited by Guy Colonna, © 2001 National Fire Protection Association. EXCERPTS FROM CHAPTER 3: Quick Tip Developing a Preparedness Plan To protect employees from fire and other emergencies and to prevent Jerry L. Ball property loss, whether large or small, companies use preparedness plans Fire is only one type of emergency that happens at work. Large and (also called pre-fire plans or pre- small workplaces alike experience fires, explosions, medical emergen- incident plans). cies, chemical spills, toxic releases, and a variety of other incidents. To protect employees from fire and other emergencies and to prevent property loss, whether large or small, companies use preparedness plans (also called pre-fire plans or pre-incident plans). The two essential components of a fire preparedness plan are the following: 1. An emergency action plan, which details what to do when a fire occurs 2. A fire prevention plan, which describes what to do to prevent a fire from occurring Of course, these two components of an overall preparedness plan are inseparable and overlap each other. For the purposes of this discus- sion, however, this chapter subdivides these two components into even smaller, more manageable subtopics. OSHA REGULATIONS uick ip Emergency planning and training directly influence the outcome of an Q T emergency situation. Facilities with well-prepared employees and Emergency planning and training directly influence the outcome of an well-developed preparedness plans are likely to incur less structural emergency situation.
    [Show full text]
  • Oxygen-Enriched Combustion
    Energy Tips – Process Heating Process Heating Tip Sheet #3 • September 2005 Industrial Technologies Program Suggested Actions Oxygen-Enriched Combustion • Use current or projected energy costs with PHAST to estimate When a fuel is burned, oxygen in the combustion air chemically combines with energy savings from oxygen- the hydrogen and carbon in the fuel to form water and carbon dioxide, releasing enriched combustion. heat in the process. Air is made up of 21% oxygen, 78% nitrogen, and 1% other • Contact furnace or combustion gases. During air–fuel combustion, the chemically inert nitrogen in the air dilutes system suppliers to calculate the reactive oxygen and carries away some of the energy in the hot combustion payback or return on investment. exhaust gas. An increase in oxygen in the combustion air can reduce the energy • Include the cost of oxygen or loss in the exhaust gases and increase heating system efficiency. of the vacuum pressure swing adsorption unit in the calculations. Most industrial furnaces Figure 1. Oxygen-enriched burner that use oxygen or oxygen- Resources enriched air use either U.S. Department of Energy— liquid oxygen to increase For additional information on the oxygen concentration process heating system efficiency, in the combustion air or to obtain DOE’s publications and vacuum pressure swing Process Heating Assessment and adsorption units to remove Survey Tool (PHAST) software, some of the nitrogen and or learn more about training, Courtesy Air Products increase the oxygen visit the BestPractices Web site at www.eere.energy.gov/industry/ content. Some systems use almost 100% oxygen in the main combustion header; bestpractices.
    [Show full text]
  • Rule 4702 Draft Staff Report
    SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT DRAFT STAFF REPORT Proposed Amendments to Rule 4702 (Internal Combustion Engines) July 20, 2021 Prepared by: Madison Perkins, Air Quality Specialist Ramon Norman, Senior Air Quality Engineer Kevin M. Wing, Senior Air Quality Specialist Reviewed By: Jessica Coria, Planning Manager Nick Peirce, Permit Services Manager Jason Lawler, Air Quality Compliance Manager Jonathan Klassen, Director of Air Quality Science and Planning Brian Clements, Director of Permit Services Morgan Lambert, Deputy Air Pollution Control Officer Sheraz Gill, Deputy Air Pollution Control Officer SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT Draft Staff Report July 20, 2021 Table of Contents I. SUMMARY ............................................................................................................ 3 A. Reasons for Rule Development and Implementation ......................................... 3 B. Health Benefits of Implementing Plan Measures................................................ 4 C. Description of Project ......................................................................................... 5 D. Rule Development Process ................................................................................ 6 II. DISCUSSION ........................................................................................................ 7 A. Emissions Control Technologies ........................................................................ 8 Selective Catalytic Reduction Systems ...................................................................
    [Show full text]
  • Smoke Production in Fires
    VTT RESEARCH NOTES 1708 VTT-T\EX)--ro8 Leena Sarvaranta & Matti Kokkala Smoke production in fires DECEIVED NOV 2 5 1396 OS Tt MASTER DISTRIBUTION OF THIS DOCUMENT 18 UNLMfTH) VTT TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1995 V'lT TltiDOlTElTA - MtiUDtiLAJNUtiM - KfcSfcAKVH INUlto 1/U6 Smoke production in fires Leena Sarvaranta & Matti Kokkala VTT Building Technology ■tyTT TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 1995 ISSN 1235-0605 Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1995 JULKAISIJA - UTGIVARE - PUBLISHER Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT puh. vaihde (90) 4561, telekopio (90) 456 4374 Statens tekniska forskningscentral (VTT), Bergsmansvagen 5, PB 2000, 02044 VTT tel. vaxel (90) 4561, telefax (90) 456 4374 Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland phone internal. + 358 0 4561, telefax + 358 0 456 4374 VTT Rakennustekniikka, Rakennusfysiikka, talo-ja palotekniikka, Kivimiehentie 4, PL 1803, 02044 VTT puh. vaihde (90) 4561, telekopio (90) 456 4815 VTT Byggnadsteknik, Byggnadsfysik, hus- och brandteknik, Stenkarlsvagen 4, PB 1803, 02044 VTT tel. vaxel (90) 4561, telefax (90) 456 4815 VTT Building Technology, Building Physics, Building Services and Fire Technology, Kivimiehentie 4, P.O.Box 1803, FIN-02044 VTT, Finland phone internal. + 358 0 4561, telefax + 358 0 456 4815 Technical editing Kerttu Tirronen VTT OFFSETPAINO, ESPOO 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Sarvaranta, Leena & Kokkala, Matti. Smoke production in fires. Espoo 1995, Technical Research Centre of Finland, VTT Tiedotteita - Meddelanden - Research Notes 1708. 32 p.
    [Show full text]
  • Module 3 Site Safety
    MODULE 3 SITE SAFETY Residential Director Core Training Site Safety Module 3 Table of Contents PROMOTING SAFETY ...................................................................................................... 4 ACCIDENTS .......................................................................................................................... 4 PREVENTING POISONING OR CHEMICAL ACCIDENTS ....................................................................... 5 POISONING .......................................................................................................................... 6 SAFETY DATA SHEETS ............................................................................................................. 9 PREVENTING BURNS AND SCALDS ............................................................................................ 10 HOW TO TEST YOUR WATER TEMPERATURES ............................................................................. 11 HOW TO PREVENT SCALD BURNS ............................................................................................. 11 TRANSPORT SAFETY ............................................................................................................. 12 EMERGENCY PREPAREDNESS ...................................................................................... 13 EMERGENCY PREPAREDNESS PLAN ........................................................................................... 13 EVACUATION......................................................................................................................
    [Show full text]
  • 1.3 Fuel Oil Combustion 1.3.1 General
    1.3 Fuel Oil Combustion 1.3.1 General1-3 Two major categories of fuel oil are burned by combustion sources: distillate oils and residual oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils; Nos. 5 and 6 being residual oils; and No. 4 being either distillate oil or a mixture of distillate and residual oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial applications, and include kerosene and diesel fuels. Being more viscous and less volatile than distillate oils, the heavier residual oils (Nos. 5 and 6) may need to be heated for ease of handling and to facilitate proper atomization. Because residual oils are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications. 1.3.2 Firing Practices4 The major boiler configurations for fuel oil-fired combustors are watertube, firetube, cast iron, and tubeless design. Boilers are classified according to design and orientation of heat transfer surfaces, burner configuration, and size. These factors can all strongly influence emissions as well as the potential for controlling emissions. Watertube boilers are used in a variety of applications ranging from supplying large amounts of process steam to providing space heat for industrial facilities.
    [Show full text]