End-To-End Text Recognition with Convolutional Neural Networks an Honors Thesis Submitted to the Department of Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

End-To-End Text Recognition with Convolutional Neural Networks an Honors Thesis Submitted to the Department of Computer Science END-TO-END TEXT RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS AN HONORS THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE OF STANFORD UNIVERSITY David J. Wu Principal Adviser: Andrew Y. Ng May 2012 Abstract Full end-to-end text recognition in natural images is a challenging problem that has recently received much attention in computer vision and machine learning. Traditional systems in this area have relied on elaborate models that incorporate carefully hand-engineered features or large amounts of prior knowledge. In this thesis, I describe an alternative approach that combines the representational power of large, multilayer neural networks with recent developments in unsupervised feature learning. This particular approach enables us to train highly accurate text detection and character recognition modules. Because of the high degree of accuracy and robustness of these detection and recognition modules, it becomes possible to integrate them into a full end-to-end, lexicon-driven, scene text recognition system using only simple off-the-shelf techniques. In doing so, we demonstrate state-of-the- art performance on standard benchmarks in both cropped-word recognition as well as full end-to-end text recognition. ii Acknowledgements First and foremost, I would like to thank my adviser, Andrew Ng, for his advice and mentorship throughout the past two years. His class on machine learning first sparked my interest in the field of artificial intelligence and deep learning; his willingness to let me work in his lab has helped me refine my own research interests and convinced me to pursue graduate studies. Special thanks also to Adam Coates for the tremendous support and guidance he has provided me over these past two years. From him, I have learned an immense amount about the practical side of machine learning and how to get algorithms to work well in practice. I also want to thank him for giving me the opportunity to work on so many projects, even when I was just a freshman with absolutely no background in machine learning. I would also like to thank Tao Wang for the invaluable advice he provided through the course of this project. The work presented in this thesis is the joint work of our collaboration; none of it would have been possible without his input and ideas. Both Adam and Tao have contributed countless hours to bring this project to a successful completion. It has truly been both a pleasure and a privilege for me to have worked with them. For that, I thank them both. I would like to thank Hoon Cho for being a great source of insights and lively discussion, and most of all, for being a great friend. Without his input, I would probably not have pursued this thesis in the first place. I would also like to thank Will Zou for allowing me the opportunity to continue working in the lab after the completion of this project. Thanks also to Mary McDevitt for her insightful comments and proofreading of an early draft of this thesis. Finally, I would like to thank my family for their unconditional support both before and during my undergraduate career. To my grandparents, I thank you for sparking my curiosity and for instilling within me a passion for learning so early on in my childhood. To iii my parents, I thank you for your ever-present advice and encouragement. Without your support, this work would not have been possible. This thesis is for you. iv Contents Abstract ii Acknowledgements iii 1 Introduction 1 2 Background and Related Work 4 2.1 Scene Text Recognition . 4 2.1.1 Text Detection . 5 2.1.2 Text Segmentation and Recognition . 5 2.1.3 Lexicon-Driven Recognition . 6 2.2 Unsupervised Feature Learning . 7 2.3 Convolutional Neural Networks . 9 2.3.1 Feed-Forward Neural Networks . 9 2.3.2 Convolutional Neural Networks . 11 3 Methodology 15 3.1 Detection and Recognition Modules . 16 3.1.1 Unsupervised Pretraining . 16 3.1.2 Convolutional Neural Network Architecture . 19 3.1.3 Datasets . 21 3.2 Text Line Detection . 22 3.2.1 Multiscale Sliding Window . 23 3.2.2 Text Line Formation . 23 3.3 End-to-End Integration . 28 3.3.1 Space Estimation . 29 v 3.3.2 Cropped Word Recognition . 30 3.3.3 Full End-to-End Integration . 33 3.3.4 Recognition without a Specialized Lexicon . 34 4 Experiments 35 4.1 Text Detection . 36 4.2 Character and Word Recognition . 39 4.2.1 Cropped Character Recognition . 39 4.2.2 Cropped Word Recognition . 40 4.3 Full End-to-End Text Recognition . 42 4.3.1 Recognition without a Specialized Lexicon . 44 5 Conclusion 46 5.1 Summary . 46 5.2 Limitations of the Current System and Future Directions . 47 Bibliography 49 vi List of Tables 4.1 Text detector performance on the ICDAR 2003 dataset. 37 4.2 Character recognition accuracy on the ICDAR 2003 character test set. 40 4.3 Word recognition accuracy on the ICDAR 2003 dataset. 41 4.4 F-scores from end-to-end evaluation on the ICDAR and SVT datasets. 44 4.5 Results from end-to-end evaluation on the ICDAR dataset in the general lexicon setting. 45 vii List of Figures 2.1 Illustration of end-to-end text recognition problem. 5 2.2 A simple feed-forward neural network. 9 2.3 Average pooling in a convolution neural network. 13 3.1 Operation of detection and recognition modules. 16 3.2 Visualization of dictionary elements learned from whitened grayscale image patches. 18 3.3 Convolutional neural network architecture used for detection. 19 3.4 Comparison of real and synthetic training examples. 22 3.5 Detector response maps at different scales. 24 3.6 Detector and NMS responses across lines in the image. 25 3.7 Estimated bounding boxes from text detector. 27 3.8 Negative responses across a line of text. 30 3.9 Character classifier responses. 31 4.1 Sample example from the Street View Text dataset. 36 4.2 Visualization of ICDAR ground truth bounding boxes and coalesced ground truth bounding boxes. 38 4.3 Sample images from the ICDAR 2003 Robust Word Recognition dataset. 41 4.4 Precision and recall curves for end-to-end evaluation on the ICDAR and SVT datasets. 43 4.5 Sample outputs from the full end-to-end system on the ICDAR and SVT datasets. 45 viii Chapter 1 Introduction A system that can automatically locate and recognize text in natural images has many practical applications. For instance, such a system can be instrumental in helping visually impaired users navigate in different environments, such as grocery stores [28] or city land- scapes [3], or in providing an additional source of information to an autonomous navigation system. More generally, text in natural images provides a rich source of information about the underlying image or scene. At the same time, however, text recognition in natural images has its own set of dif- ficulties. While state-of-the-art methods generally achieve nearly perfect performance on object character recognition (OCR) for scanned documents, the more general problem of recognizing text in unconstrained images is far from solved. Recognizing text in scene im- ages is much more challenging due to the many possible variations in backgrounds, textures, fonts, and lighting conditions that are present in such images. Consequently, building a full end-to-end text recognition system requires us to develop models and representations that are robust to these variations. Not surprisingly, current high-performing text detection and character recognition systems have employed cleverly hand-engineered features [10, 11] to both capture the details of and represent the underlying data. In many cases, sophisticated models such as conditional random fields (CRFs) [32] or pictorial-structure models [38] are also necessary to combine the raw detection or recognition responses into a complete system. In this thesis, I describe an alternative approach to this problem of text recognition based upon recent advances in machine learning, and more precisely, unsupervised feature learning. These feature-learning algorithms are designed to automatically learn low-level 1 CHAPTER 1. INTRODUCTION 2 representations from the underlying data [8, 15, 16, 19, 23, 33] and thus present one alterna- tive to hand-engineering the features used for representation. Such algorithms have already enjoyed numerous successes in many related fields, such as visual recognition [42] and action classification [20]. In the case of text recognition, the system in [7] has achieved solid re- sults in text detection and character recognition using a simple and scalable feature-learning architecture that relies very little on feature-engineering or prior knowledge. By leveraging these feature-learning algorithms, we were able to derive a set of special- ized features tuned particularly for the text recognition problem. These learned features were then integrated into a larger, discriminatively-trained convolutional neural network (CNN). CNNs are hierarchical neural networks that have immense representational capac- ity and have been successfully applied to many problems such as handwriting recognition [21], visual object recognition [4], and character recognition [35]. By tapping into the rep- resentational power of these architectures, we trained highly accurate text detection and character recognition modules. Despite the inherent differences between the text detection and character recognition tasks, we were able to use structurally identical network archi- tectures for both the text detector and character classifier. Then, as a direct consequence of the increased accuracy and robustness of these models, it was possible to construct a full end-to-end system using very simple and standard post-processing techniques such as non-maximal suppression (NMS) [29] and beam search [34].
Recommended publications
  • Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann
    Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann To cite this version: Matthias Zimmermann. Sentence Boundary Detection for Handwritten Text Recognition. Tenth International Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1, Oct 2006, La Baule (France). inria-00103835 HAL Id: inria-00103835 https://hal.inria.fr/inria-00103835 Submitted on 5 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann International Computer Science Institute Berkeley, CA 94704, USA [email protected] Abstract 1) The summonses say they are ” likely to persevere in such In the larger context of handwritten text recognition sys- unlawful conduct . ” <s> They ... tems many natural language processing techniques can 2) ” It comes at a bad time , ” said Ormston . <s> ”A singularly bad time ... potentially be applied to the output of such systems. How- ever, these techniques often assume that the input is seg- mented into meaningful units, such as sentences. This pa- Figure 1. Typical ambiguity for the position of a sen- per investigates the use of hidden-event language mod- tence boundary token <s> in the context of a period els and a maximum entropy based method for sentence followed by quotes.
    [Show full text]
  • Multiple Segmentations of Thai Sentences for Neural Machine Translation
    Proceedings of the 1st Joint SLTU and CCURL Workshop (SLTU-CCURL 2020), pages 240–244 Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020 c European Language Resources Association (ELRA), licensed under CC-BY-NC Multiple Segmentations of Thai Sentences for Neural Machine Translation Alberto Poncelas1, Wichaya Pidchamook2, Chao-Hong Liu3, James Hadley4, Andy Way1 1ADAPT Centre, School of Computing, Dublin City University, Ireland 2SALIS, Dublin City University, Ireland 3Iconic Translation Machines 4Trinity Centre for Literary and Cultural Translation, Trinity College Dublin, Ireland {alberto.poncelas, andy.way}@adaptcentre.ie [email protected], [email protected], [email protected] Abstract Thai is a low-resource language, so it is often the case that data is not available in sufficient quantities to train an Neural Machine Translation (NMT) model which perform to a high level of quality. In addition, the Thai script does not use white spaces to delimit the boundaries between words, which adds more complexity when building sequence to sequence models. In this work, we explore how to augment a set of English–Thai parallel data by replicating sentence-pairs with different word segmentation methods on Thai, as training data for NMT model training. Using different merge operations of Byte Pair Encoding, different segmentations of Thai sentences can be obtained. The experiments show that combining these datasets, performance is improved for NMT models trained with a dataset that has been split using a supervised splitting tool. Keywords: Machine Translation, Word Segmentation, Thai Language In Machine Translation (MT), low-resource languages are 1. Combination of Segmented Texts especially challenging as the amount of parallel data avail- As the encoder-decoder framework deals with a sequence able to train models may not be enough to achieve high of tokens, a way to address the Thai language is to split the translation quality.
    [Show full text]
  • Getting Started with Machine Learning
    Getting Started with Machine Learning CSC131 The Beauty & Joy of Computing Cornell College 600 First Street SW Mount Vernon, Iowa 52314 September 2018 ii Contents 1 Applications: where machine learning is helping1 1.1 Sheldon Branch............................1 1.2 Bram Dedrick.............................4 1.3 Tony Ferenzi.............................5 1.3.1 Benefits of Machine Learning................5 1.4 William Golden............................7 1.4.1 Humans: The Teachers of Technology...........7 1.5 Yuan Hong..............................9 1.6 Easton Jensen............................. 11 1.7 Rodrigo Martinez........................... 13 1.7.1 Machine Learning in Medicine............... 13 1.8 Matt Morrical............................. 15 1.9 Ella Nelson.............................. 16 1.10 Koichi Okazaki............................ 17 1.11 Jakob Orel.............................. 19 1.12 Marcellus Parks............................ 20 1.13 Lydia Sanchez............................. 22 1.14 Tiff Serra-Pichardo.......................... 24 1.15 Austin Stala.............................. 25 1.16 Nicole Trenholm........................... 26 1.17 Maddy Weaver............................ 28 1.18 Peter Weber.............................. 29 iii iv CONTENTS 2 Recommendations: How to learn more about machine learning 31 2.1 Sheldon Branch............................ 31 2.1.1 Course 1: Machine Learning................. 31 2.1.2 Course 2: Robotics: Vision Intelligence and Machine Learn- ing............................... 33 2.1.3 Course
    [Show full text]
  • A Clustering-Based Algorithm for Automatic Document Separation
    A Clustering-Based Algorithm for Automatic Document Separation Kevyn Collins-Thompson Radoslav Nickolov School of Computer Science Microsoft Corporation Carnegie Mellon University 1 Microsoft Way 5000 Forbes Avenue Redmond, WA USA Pittsburgh, PA USA [email protected] [email protected] ABSTRACT For text, audio, video, and still images, a number of projects have addressed the problem of estimating inter-object similarity and the related problem of finding transition, or ‘segmentation’ points in a stream of objects of the same media type. There has been relatively little work in this area for document images, which are typically text-intensive and contain a mixture of layout, text-based, and image features. Beyond simple partitioning, the problem of clustering related page images is also important, especially for information retrieval problems such as document image searching and browsing. Motivated by this, we describe a model for estimating inter-page similarity in ordered collections of document images, based on a combination of text and layout features. The features are used as input to a discriminative classifier, whose output is used in a constrained clustering criterion. We do a task-based evaluation of our method by applying it the problem of automatic document separation during batch scanning. Using layout and page numbering features, our algorithm achieved a separation accuracy of 95.6% on the test collection. Keywords Document Separation, Image Similarity, Image Classification, Optical Character Recognition contiguous set of pages, but be scattered into several 1. INTRODUCTION disconnected, ordered subsets that we would like to recombine. Such scenarios are not uncommon when The problem of accurately determining similarity between scanning large volumes of paper: for example, one pages or documents arises in a number of settings when document may be accidentally inserted in the middle of building systems for managing document image another in the queue.
    [Show full text]
  • An Incremental Text Segmentation by Clustering Cohesion
    An Incremental Text Segmentation by Clustering Cohesion Raúl Abella Pérez and José Eladio Medina Pagola Advanced Technologies Application Centre (CENATAV), 7a #21812 e/ 218 y 222, Rpto. Siboney, Playa, C.P. 12200, Ciudad de la Habana, Cuba {rabella, jmedina} @cenatav.co.cu Abstract. This paper describes a new method, called IClustSeg, for linear text segmentation by topic using an incremental overlapped clustering algorithm. Incremental algorithms are able to process new objects as they are added to the collection and, according to the changes, to update the results using previous information. In our approach, we maintain a structure to get an incremental overlapped clustering. The results of the clustering algorithm, when processing a stream, are used any time text segmentation is required, using the clustering cohesion as the criteria for segmenting by topic. We compare our proposal against the best known methods, outperforming significantly these algorithms. 1 Introduction Topic segmentation intends to identify the boundaries in a document with goal of capturing the latent topical structure. The automatic detection of appropriate subtopic boundaries in a document is a very useful task in text processing. For example, in information retrieval and in passages retrieval, to return documents, segments or passages closer to the user’s queries. Another application of topic segmentation is in summarization, where it can be used to select segments of texts containing the main ideas for the summary requested [6]. Many text segmentation methods by topics have been proposed recently. Usually, they obtain linear segmentations, where the output is a document divided into sequences of adjacent segments [7], [9].
    [Show full text]
  • A Text Denormalization Algorithm Producing Training Data for Text Segmentation
    A Text Denormalization Algorithm Producing Training Data for Text Segmentation Kilian Evang Valerio Basile University of Groningen University of Groningen [email protected] [email protected] Johan Bos University of Groningen [email protected] As a first step of processing, text often has to be split into sentences and tokens. We call this process segmentation. It is often desirable to replace rule-based segmentation tools with statistical ones that can learn from examples provided by human annotators who fix the machine's mistakes. Such a statistical segmentation system is presented in Evang et al. (2013). As training data, the system requires the original raw text as well as information about the boundaries between tokens and sentences within this raw text. Although raw as well as segmented versions of text corpora are available for many languages, this required information is often not trivial to obtain because the segmented version differs from the raw one also in other respects. For example, punctuation marks and diacritics have been normalized to canonical forms by human annotators or by rule-based segmentation and normalization tools. This is the case with e.g. the Penn Treebank, the Dutch Twente News Corpus and the Italian PAISA` corpus. This problem of missing alignment between raw and segmented text is also noted by Dridan and Oepen (2012). We present a heuristic algorithm that recovers the alignment and thereby produces standoff annotations marking token and sentence boundaries in the raw test. The algorithm is based on the Levenshtein algorithm and is general in that it does not assume any language-specific normalization conventions.
    [Show full text]
  • Topic Segmentation: Algorithms and Applications
    University of Pennsylvania ScholarlyCommons IRCS Technical Reports Series Institute for Research in Cognitive Science 8-1-1998 Topic Segmentation: Algorithms And Applications Jeffrey C. Reynar University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/ircs_reports Part of the Databases and Information Systems Commons Reynar, Jeffrey C., "Topic Segmentation: Algorithms And Applications" (1998). IRCS Technical Reports Series. 66. https://repository.upenn.edu/ircs_reports/66 University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-98-21. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ircs_reports/66 For more information, please contact [email protected]. Topic Segmentation: Algorithms And Applications Abstract Most documents are aboutmore than one subject, but the majority of natural language processing algorithms and information retrieval techniques implicitly assume that every document has just one topic. The work described herein is about clues which mark shifts to new topics, algorithms for identifying topic boundaries and the uses of such boundaries once identified. A number of topic shift indicators have been proposed in the literature. We review these features, suggest several new ones and test most of them in implemented topic segmentation algorithms. Hints about topic boundaries include repetitions of character sequences, patterns of word and word n-gram repetition, word frequency, the presence of cue words and phrases and the use of synonyms. The algorithms we present use cues singly or in combination to identify topic shifts in several kinds of documents. One algorithm tracks compression performance, which is an indicator of topic shift because self-similarity within topic segments should be greater than between-segment similarity.
    [Show full text]
  • A Generic Neural Text Segmentation Model with Pointer Network
    Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) SEGBOT: A Generic Neural Text Segmentation Model with Pointer Network Jing Li, Aixin Sun and Shafiq Joty School of Computer Science and Engineering, Nanyang Technological University, Singapore [email protected], {axsun,srjoty}@ntu.edu.sg Abstract [A person]EDU [who never made a mistake]EDU [never tried any- thing new]EDU Text segmentation is a fundamental task in natu- ral language processing that comes in two levels of Figure 1: A sentence with three elementary discourse units (EDUs). granularity: (i) segmenting a document into a se- and Thompson, 1988]. quence of topical segments (topic segmentation), Both topic and EDU segmentation tasks have received a and (ii) segmenting a sentence into a sequence of lot of attention in the past due to their utility in many NLP elementary discourse units (EDU segmentation). tasks. Although related, these two tasks have been addressed Traditional solutions to the two tasks heavily rely separately with different sets of approaches. Both supervised on carefully designed features. The recently propo- and unsupervised methods have been proposed for topic seg- sed neural models do not need manual feature en- mentation. Unsupervised topic segmentation models exploit gineering, but they either suffer from sparse boun- the strong correlation between topic and lexical usage, and dary tags or they cannot well handle the issue of can be broadly categorized into two classes: similarity-based variable size output vocabulary. We propose a ge- models and probabilistic generative models. The similarity- neric end-to-end segmentation model called SEG- based models are based on the key intuition that sentences BOT.SEGBOT uses a bidirectional recurrent neural in a segment are more similar to each other than to senten- network to encode input text sequence.
    [Show full text]
  • Text Segmentation Techniques: a Critical Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sunway Institutional Repository Text Segmentation Techniques: A Critical Review Irina Pak and Phoey Lee Teh Department of Computing and Information Systems, Sunway University, Bandar Sunway, Malaysia [email protected], [email protected] Abstract Text segmentation is widely used for processing text. It is a method of splitting a document into smaller parts, which is usually called segments. Each segment has its relevant meaning. Those segments categorized as word, sentence, topic, phrase or any information unit depending on the task of the text analysis. This study presents various reasons of usage of text segmentation for different analyzing approaches. We categorized the types of documents and languages used. The main contribution of this study includes a summarization of 50 research papers and an illustration of past decade (January 2007- January 2017)’s of research that applied text segmentation as their main approach for analysing text. Results revealed the popularity of using text segmentation in different languages. Besides that, the “word” seems to be the most practical and usable segment, as it is the smaller unit than the phrase, sentence or line. 1 Introduction Text segmentation is process of extracting coherent blocks of text [1]. The segment referred as “segment boundary” [2] or passage [3]. Another two studies referred segment as subtopic [4] and region of interest [5]. There are many reasons why the splitting document can be useful for text analysis. One of the main reasons is because they are smaller and more coherent than whole documents [3].
    [Show full text]
  • Mlops: from Model-Centric to Data-Centric AI
    MLOps: From Model-centric to Data-centric AI Andrew Ng AI system = Code + Data (model/algorithm) Andrew Ng Inspecting steel sheets for defects Examples of defects Baseline system: 76.2% accuracy Target: 90.0% accuracy Andrew Ng Audience poll: Should the team improve the code or the data? Poll results: Andrew Ng Improving the code vs. the data Steel defect Solar Surface detection panel inspection Baseline 76.2% 75.68% 85.05% Model-centric +0% +0.04% +0.00% (76.2%) (75.72%) (85.05%) Data-centric +16.9% +3.06% +0.4% (93.1%) (78.74%) (85.45%) Andrew Ng Data is Food for AI ~1% of AI research? ~99% of AI research? 80% 20% PREP ACTION Source and prepare high quality ingredients Cook a meal Source and prepare high quality data Train a model Andrew Ng Lifecycle of an ML Project Scope Collect Train Deploy in project data model production Define project Define and Training, error Deploy, monitor collect data analysis & iterative and maintain improvement system Andrew Ng Scoping: Speech Recognition Scope Collect Train Deploy in project data model production Define project Decide to work on speech recognition for voice search Andrew Ng Collect Data: Speech Recognition Scope Collect Train Deploy in project data model production Define and collect data “Um, today’s weather” Is the data labeled consistently? “Um… today’s weather” “Today’s weather” Andrew Ng Iguana Detection Example Labeling instruction: Use bounding boxes to indicate the position of iguanas Andrew Ng Making data quality systematic: MLOps • Ask two independent labelers to label a sample of images.
    [Show full text]
  • Text Segmentation Based on Semantic Word Embeddings
    Text Segmentation based on Semantic Word Embeddings Alexander A Alemi Paul Ginsparg Dept of Physics Depts of Physics and Information Science Cornell University Cornell University [email protected] [email protected] ABSTRACT early algorithm in this class was Choi's C99 algorithm [3] We explore the use of semantic word embeddings [14, 16, in 2000, which also introduced a benchmark segmentation 12] in text segmentation algorithms, including the C99 seg- dataset used by subsequent work. Instead of looking only at nearest neighbor coherence, the C99 algorithm computes mentation algorithm [3, 4] and new algorithms inspired by 1 the distributed word vector representation. By developing a coherence score between all pairs of elements of text, a general framework for discussing a class of segmentation and searches for a text segmentation that optimizes an ob- objectives, we study the effectiveness of greedy versus ex- jective based on that scoring by greedily making a succes- act optimization approaches and suggest a new iterative re- sion of best cuts. Later work by Choi and collaborators finement technique for improving the performance of greedy [4] used distributed representations of words rather than a strategies. We compare our results to known benchmarks bag of words approach, with the representations generated [18, 15, 3, 4], using known metrics [2, 17]. We demonstrate by LSA [8]. In 2001, Utiyama and Ishahara introduced a state-of-the-art performance for an untrained method with statistical model for segmentation and optimized a poste- our Content Vector Segmentation (CVS) on the Choi test rior for the segment boundaries. Moving beyond the greedy set.
    [Show full text]
  • Steps Involved in Text Recognition and Recent Research in OCR; a Study
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1, May 2019 Steps Involved in Text Recognition and Recent Research in OCR; A Study K.Karthick, K.B.Ravindrakumar, R.Francis, S.Ilankannan Abstract: The Optical Character Recognition (OCR) is one of Preprocessing the automatic identification techniques that fulfill the automation Feature Extraction needs in various applications. A machine can read the Recognition information present in natural scenes or other materials in any Post processing form with OCR. The typed and printed character recognition is uncomplicated due to its well-defined size and shape. The In addition to the above steps segmentation and handwriting of individuals differs in the above aspects. So, the morphological processing also involved in the recognition handwritten OCR system faces complexity to learn this difference process. These steps may be added before the feature to recognize a character. In this paper, we discussed the various extraction process. stages in text recognition, handwritten OCR systems classification according to the text type, study on Chinese and II. PREPROCESSING Arabic text recognition as well as application oriented recent research in OCR. The preprocessing is a fundamental stage that is proceeding Index Terms: Edge detection, Optical Character Recognition, OCR, Preprocessing stages, Text Recognition to the stage of feature extraction; it regulates the appropriateness of the outcomes for the consecutive stages. I. INTRODUCTION The OCR success rate is contingent on the success percentage of each stage. The technologyadventfoundan amazing and noble development curve for the last two centuries. For the last A. Factors Affecting the Text Recognition Quality few decades, it is easy in using mouse and keyboard to assist as interfacing device between us and computer.
    [Show full text]