Grid Engine Users's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Grid Engine Users's Guide Univa Corporation Grid Engine Documentation Grid Engine Users’s Guide Author: Version: Univa Engineering 8.5.3 July 19, 2017 Copyright ©2012–2017 Univa Corporation. All rights reserved. Contents Contents 1 Overview of Basic User Tasks1 2 A Simple Workflow Example1 3 Displaying Univa Grid Engine Status Information5 3.1 Cluster Overview....................................5 3.2 Hosts and Queues...................................5 3.3 Requestable Resources.................................8 3.4 User Access Permissions and Affiliations....................... 10 4 Submitting Batch Jobs 13 4.1 What is a Batch Job?................................. 13 4.2 How to Submit a Batch Job.............................. 13 4.2.1 Example 1: A Simple Batch Job....................... 13 4.2.2 Example 2: An Advanced Batch Job..................... 14 4.2.3 Example 3: Another Advanced Batch Job.................. 14 4.2.4 Example 4: A Simple Binary Job....................... 15 4.3 Specifying Requirements................................ 15 4.3.1 Request Files.................................. 16 4.3.2 Requests in the Job Script........................... 17 5 Using Job Classes to Prepare Templates for Jobs 17 5.1 Examples Motivating the Use of Job Classes..................... 18 5.2 Defining Job Classes.................................. 19 5.2.1 Attributes describing a Job Class....................... 20 5.2.2 Example 1: Job Classes - Identity, Ownership, Access........... 22 5.2.3 Attributes to Form a Job Template...................... 22 5.2.4 Example 2: Job Classes - Job Template................... 25 5.2.5 Access Specifiers to Allow Deviation..................... 26 5.2.6 Example 3: Job Classes - Access Specifiers................. 28 5.2.7 Different Variants of the same Job Class................... 29 5.2.8 Example 4: Job Classes - Multiple Variants................. 30 5.2.9 Enforcing Cluster Wide Requests with the Template Job Class...... 31 Grid Engine Users’s Guide v 8.5.3 i Contents 5.3 Relationship Between Job Classes and Other Objects................ 33 5.3.1 Resources Available for Job Classes...................... 33 5.3.2 Defining Job Class Limits........................... 34 5.3.3 JSV and Job Class Interaction........................ 34 5.4 Commands to Adjust Job Classes........................... 35 5.4.1 Creating, Modifying and Deleting Job Classes................ 35 5.4.2 States of Job Classes.............................. 36 5.5 Using Job Classes to Submit New Jobs........................ 37 5.6 Example: Submit a Job Class Job and Adjust Some Parameters......... 38 5.7 Status of Job Classes and Corresponding Jobs.................... 39 6 Monitoring and Controlling Jobs 40 6.1 Getting Status Information on Jobs......................... 40 6.2 Deleting a Job..................................... 41 6.3 Re-queuing a Job.................................... 42 6.4 Modifying a Waiting Job................................ 43 6.4.1 Altering Job Requirements.......................... 43 6.5 Changing Job Priority................................. 44 6.6 Obtaining the Job History............................... 45 7 Other Job Types 46 7.1 Array Jobs....................................... 46 7.2 Interactive Jobs..................................... 48 7.2.1 qrsh and qlogin................................. 49 7.2.2 qtcsh....................................... 49 7.2.3 qmake...................................... 50 7.2.4 qsh........................................ 51 7.3 Parallel Jobs...................................... 51 7.3.1 Parallel Environments............................. 51 7.3.2 Submitting Parallel Jobs............................ 53 7.3.3 Parallel Jobs and Core Binding........................ 54 7.4 Jobs with Core Binding................................ 55 7.4.1 Showing Execution Host Topology Related Information.......... 56 7.4.2 Requesting Execution Hosts Based on the Architecture.......... 57 Grid Engine Users’s Guide v 8.5.3 ii Contents 7.4.3 Requesting Specific Cores........................... 58 7.5 NUMA Aware Jobs: Jobs with Memory Binding and Enhanced Memory Management 58 7.5.1 Memory Allocation Strategy round_robin.................. 60 7.5.2 Memory Allocation Strategy cores and cores:strict............. 61 7.5.3 Memory Allocation Strategy nlocal...................... 63 7.6 Checkpointing Jobs................................... 64 7.6.1 User-Level Checkpointing........................... 65 7.6.2 Kernel-Level Checkpointing.......................... 65 7.6.3 Checkpointing Environments......................... 65 7.6.4 Submitting a Checkpointing Job....................... 66 7.7 Immediate Jobs..................................... 66 7.8 Reservations....................................... 67 7.8.1 Advance Reservations............................. 67 7.8.2 Standing Reservations............................. 69 7.9 Jobs using Docker Containers............................. 75 7.9.1 Running a sequential job in a Docker container............... 76 7.9.2 Running a parallel Job in Docker containers................. 79 7.9.3 Running an array Job in Docker containers................. 79 7.9.4 Running a Job in a Docker image that is not available locally....... 79 7.9.5 Using placeholders to dynamically define Docker options.......... 79 8 Getting a Consistent View onto the System by Using Sessions 80 8.1 Communication with Univa Grid Engine without using Sessions.......... 81 8.2 Using sessions to communicate with the system................... 81 9 Submission, Monitoring and Control via an API 83 9.1 The Distributed Resource Management Application API (DRMAA)....... 83 9.2 Basic DRMAA Concepts................................ 84 9.3 Supported DRMAA Versions and Language Bindings................ 84 9.4 When to Use DRMAA................................. 84 9.5 Examples........................................ 84 9.5.1 Building a DRMAA Application with C**.................. 84 9.5.2 Building a DRMAA Application with Java................. 87 9.6 Further Information.................................. 89 Grid Engine Users’s Guide v 8.5.3 iii Contents 10 Advanced Concepts 89 10.1 Job Dependencies.................................... 90 10.1.1 Examples.................................... 90 10.2 Using Environment Variables............................. 92 10.3 Using the Job Context................................. 95 10.4 Transferring Data.................................... 95 10.4.1 Transferring Data within the Job Script................... 96 10.4.2 Using Delegated File Staging in DRMAA Applications........... 96 10.5 Manual, Semi-Automatic and Automatic Preemption................ 97 10.5.1 Preemption Terms............................... 98 10.5.2 Preemption Trigger and Actions....................... 98 10.5.3 Manual Preemption.............................. 100 10.5.4 Preemption Configuration........................... 101 10.5.5 Preemption in Combination with License Orchestrator........... 102 10.5.6 Common Use Cases.............................. 102 11 Submitting Jobs from or to Windows hosts 104 11.1 Job submission from a Windows submit host to a Windows execution host.... 105 11.1.1 Running Jobs in the foreground........................ 106 11.2 Job submission from an UNIX submit host to a Windows execution host..... 107 11.3 Job submission from a Windows submit host to an UNIX execution host..... 107 Grid Engine Users’s Guide v 8.5.3 iv 2 A Simple Workflow Example 1 Overview of Basic User Tasks Univa Grid Engine offers the following basic commands, tools and activities to accomplish common user tasks in the cluster: Task Command submit jobs qsub, qresub, qrsh, qlogin, qsh, qmake, qtcsh check job status qstat modify jobs qalter, qhold, qrls delete jobs qdel check job accounting after job end qacct display cluster state qstat, qhost, qselect, qquota display cluster configuration qconf Table 1: Basic tasks and their corresponding commands Note qsh is not available on Microsoft Windows submit hosts and a qsh cannot be submitted to Windows execution hosts. The next sections provide detailed descriptions of how to use these commands in a Univa Grid Engine cluster. 2 A Simple Workflow Example Using Univa Grid Engine from the command line requires sourcing the settings file to set all nec- essary environment variables. The settings file is located in the <UGE installation path>/<UGE cell>/common directory. This directory contains two settings files for Unix: settings.sh for Bourne shell, bash and compatible shells, and settings.csh for csh and tcsh. If a Windows execution, submit or admin host is part of the Univa Grid Engine cluster, there is also a settings.bat for the Windows console (also known as cmd.exe window). For simplicity, this document refers to the <UGE installation path> as $SGE_ROOT and the <UGE_CELL> as $SGE_CELL. Both environment variables are set when the settings file is sourced. Source the settings file. Choose one of the following commands to execute based on the shell type in use. Bourne shell/bash: # . $SGE_ROOT/$SGE_CELL/common/settings.sh csh/tcsh: Grid Engine Users’s Guide v 8.5.3 1 2 A Simple Workflow Example # source $SGE_ROOT/$SGE_CELL/common/settings.csh Windows console: > %SGE_ROOT%\%SGE_CELL%\common\settings.bat Now that the shell is set up to work with Univa Grid Engine, it is possible to check which hosts are available in the cluster by running the qhost command. Sample qhost output: # qhost HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS --------------------------------------------------------------------- global - - - - - - - kailua
Recommended publications
  • Univa Grid Engine 8.0 Superior Workload Management for an Optimized Data Center
    Univa Grid Engine 8.0 Superior Workload Management for an Optimized Data Center Why Univa Grid Engine? Overview Univa Grid Engine 8.0 is our initial Grid Engine is an industry-leading distributed resource release of Grid Engine and is quality management (DRM) system used by hundreds of companies controlled and fully supported by worldwide to build large compute cluster infrastructures for Univa. This release enhances the Grid processing massive volumes of workload. A highly scalable and Engine open source core platform with reliable DRM system, Grid Engine enables companies to produce higher-quality products, reduce advanced features and integrations time to market, and streamline and simplify the computing environment. into enterprise-ready systems as well as cloud management solutions that Univa Grid Engine 8.0 is our initial release of Grid Engine and is quality controlled and fully allow organizations to implement the supported by Univa. This release enhances the Grid Engine open source core platform with most scalable and high performing advanced features and integrations into enterprise-ready systems as well as cloud management distributed computing solution on solutions that allow organizations to implement the most scalable and high performing distributed the market. Univa Grid Engine 8.0 computing solution on the market. marks the start for a product evolution Protect Your Investment delivering critical functionality such Univa Grid Engine 8.0 makes it easy to create a as improved 3rd party application cluster of thousands of machines by harnessing the See why customers are integration, advanced capabilities combined computing power of desktops, servers and choosing Univa Grid Engine for license and policy management clouds in a simple, easy-to-administer environment.
    [Show full text]
  • DRMAA) Version 2
    Distributed Resource Management Application API (DRMAA) Version 2 Dr. Peter Tröger Hasso-Plattner-Institute, University of Potsdam [email protected] ! DRMAA-WG Co-Chair http://www.drmaa.org/ My Person • Senior Researcher at Hasso-Plattner-Institute, Potsdam • Research field: Dependable systems • New online failure prediction and recovery techniques (SAP ByDesign, TACC Ranger, IBM z196, Intel) • Fault injection on Firmware level (Fujitsu Technology Solutions) • New reliability modeling approaches (DSN paper pending ...) • Virtualization-based fault tolerance (VMWare, Xen, KVM) • Teaching • Dependable systems, parallel programming concepts, operating systems, middleware and distributed systems • Standardization in Open Grid Forum as side activity ... DRMAAv2 | OGF 35 $X PT 2012 Hasso-Plattner-Institute for Software Engineering (HPI) " Privately funded and independent research institute, founded in 1999! " Associated with the University of Potsdam, Germany! " B.Sc. and M.Sc. curriculum in IT-Systems Engineering! " Ph.D. programme! " Rich experience in research projects that are typically conducted with industrial partners, both on a national and international level! " Research school for PhDs with international departments (Cape Town, Haifa, China) DRMAAv2 | OGF 35 $X PT 2012 $X Open Grid Forum (OGF) Application Area End User Application / Portal Features SAGA API / OGSA / OCCI API Portabilit API Standards Proprietary Other OGF OGF Other DRMAA End User Application / Portal Meta Scheduler Features SAGA API + Backends API API Portabilit API API
    [Show full text]
  • Solaris-Cluster-Businesscontinuity-168285.Pdf
    An Oracle White Paper September 2010 Oracle Solaris and Oracle Solaris Cluster: Extending Oracle Solaris for Business Continuity Oracle White Paper— Oracle Solaris and Oracle Solaris Cluster: Extending Oracle Solaris for Business Continuity Executive Summary.............................................................................1 Introduction..........................................................................................3 Traditional Solution Components ....................................................5 Oracle Solaris Cluster for Business Continuity....................................6 Oracle Solaris Cluster......................................................................6 Introduction—Basic Clustering ........................................................8 Data Availability .............................................................................10 Applications Availability .................................................................11 Network Availability .......................................................................12 Virtualization and Oracle Solaris Cluster .......................................13 Disaster Recovery—Campus and Beyond ....................................16 A Single HA and DR Solution for Multitier Oracle Applications and Databases ..........................................................17 Oracle Solaris ....................................................................................19 Resource Management .................................................................19
    [Show full text]
  • Sun Grid Engine Update Daniel Gruber Software Engineer Sun Microsystems Deutschland Gmbh Sun Is a Wholly-Owned Subsidiary of Oracle
    Sun Grid Engine Update Daniel Gruber Software Engineer Sun Microsystems Deutschland GmbH Sun is a wholly-owned subsidiary of Oracle 1 Content What's new in SGE? DRMAA Customer Feedback 2 Sun Grid Engine Releases Release Announcement Some Features... 6.2 major 23.09.2008 SDM, scalability (> 60000 cores), AR, IJS 6.2 update 1 18.12.2008 maintenance release GUI Installer, JSV, Per Job Resources, 6.2 update 2 31.03.2009 jemalloc SGE Inspect, SDM Cloud Adapter, 6.2 update 3 23.06.2009 Exclusive Host 6.2 update 4 23.10.2009 maintenance release Slotwise Preemption, Core Binding, 6.2 update 5 22.12.2009 enhanced Inspect, Java JSV, Array Job Throttling, Hadoop Support Sun Confidential: Internal Only 3 SDM – Service Domain Manager Grid Grid Grid Engine Engine Engine A B C Service Domain Manager Zzzzz Zzzzz Power Saving Spare Pool (via IPMI) Spare Pool CloudService Sun Confidential: Internal Only 4 JSV – Job Submission Verifier • Administrator (or users) can reformulate (insert, delete) job submission parameters based on a JSV scripts • Jobs can be rejected based on parameters • bash, csh, tcl, perl and JSV scripts are supported Sun Confidential: Internal Only 5 GUI Installer • Installs a complete SGE cluster Sun Confidential: Internal Only 6 Slot-wise preemption • Slot limit per host • Suspends jobs from subordinate queues in order to get high priority jobs to run • Suspends longest/shortest running jobs • Multiple layers (suspend trees) possible • Per layer: Order definable Sun Confidential: Internal Only 7 Core Binding • Job submission extension
    [Show full text]
  • Release Notes for IBM Spectrum LSF Performance Enhancements
    IBM Spectrum LSF Version 10 Release 1 Release Notes IBM IBM Spectrum LSF Version 10 Release 1 Release Notes IBM Note Before using this information and the product it supports, read the information in “Notices” on page 41. This edition applies to version 10, release 1 of IBM Spectrum LSF (product numbers 5725G82 and 5725L25) and to all subsequent releases and modifications until otherwise indicated in new editions. Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the change. If you find an error in any IBM Spectrum Computing documentation, or you have a suggestion for improving it, let us know. Log in to IBM Knowledge Center with your IBMid, and add your comments and feedback to any topic. © Copyright IBM Corporation 1992, 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Release Notes for IBM Spectrum LSF Performance enhancements ........ 14 Version 10.1 ............. 1 Pending job management......... 16 What's new in IBM Spectrum LSF Version 10.1 Fix Job scheduling and execution ....... 21 Pack 3 ................ 1 Host-related features .......... 27 Job scheduling and execution ........ 1 Other changes to LSF behavior ....... 30 Resource management .......... 1 Learn more about IBM Spectrum LSF...... 31 Container support ........... 5 Product notifications .......... 31 Command output formatting ........ 5 IBM Spectrum LSF documentation....... 32 Logging and troubleshooting ........ 5 Product compatibility ........... 32 Other changes to IBM Spectrum LSF ..... 6 Server host compatibility ......... 32 What's new in IBM Spectrum LSF Version 10.1 Fix LSF add-on compatibility ........
    [Show full text]
  • Condor Via Developer Apis/Plugins
    Extend/alter Condor via developer APIs/plugins CERN Feb 14 2011 Todd Tannenbaum Condor Project Computer Sciences Department University of Wisconsin-Madison Some classifications Application Program Interfaces (APIs) › Job Control › Operational Monitoring Extensions 2 www.cs.wisc.edu/Condor Job Control APIs The biggies: › Command Line Tools › DRMAA › Condor DBQ › Web Service Interface (SOAP) http://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=SoapWisdom 3 www.cs.wisc.edu/Condor Command Line Tools › Don’t underestimate them! › Your program can create a submit file on disk and simply invoke condor_submit: system(“echo universe=VANILLA > /tmp/condor.sub”); system(“echo executable=myprog >> /tmp/condor.sub”); . system(“echo queue >> /tmp/condor.sub”); system(“condor_submit /tmp/condor.sub”); 4 www.cs.wisc.edu/Condor Command Line Tools › Your program can create a submit file and give it to condor_submit through stdin: PERL: fopen(SUBMIT, “|condor_submit”); print SUBMIT “universe=VANILLA\n”; . C/C++: int s = popen(“condor_submit”, “r+”); write(s, “universe=VANILLA\n”, 17/*len*/); . 5 www.cs.wisc.edu/Condor Command Line Tools › Using the +Attribute with condor_submit: universe = VANILLA executable = /bin/hostname output = job.out log = job.log +webuser = “zmiller” queue 6 www.cs.wisc.edu/Condor Command Line Tools › Use -constraint and –format with condor_q: % condor_q -constraint 'webuser=="zmiller"' -- Submitter: bio.cs.wisc.edu : <128.105.147.96:37866> : bio.cs.wisc.edu ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD 213503.0 zmiller 10/11 06:00 0+00:00:00
    [Show full text]
  • Sun Grid Engine Update
    Sun Grid Engine Update SGE Workshop 2007, Regensburg September 10-12, 2007 Andy Schwierskott Sun Microsystems Copyright Sun Microsystems What is Grid Computing? • The network is the computer™ > Distributed resources > Management infrastructure > Targeted service or workload • Utilization & performance ↑, costs & complexity ↓ • Examples: > Aggregating desktops for computation, aka cycle stealing > e.g. SETI@Home, use engineers' desktop at night > Managing an entire rack from a single interface > Rendering and simulation “farms” Copyright Sun Microsystems 2007 Page 2 What Sun Grid Engine does in Grid Computing • Helps solving problems horizontally > High Performance [Technical] Computing > Data center optimization • Examples: > EDA, modeling, transaction validation, MCAD • Increasing utilization, reduce turnaround times > 10%-25% is typical, go up to 90%++ > Cycle stealing • ==> Intelligently automate batch and interactive job distribution for jobs running from seconds to days and weeks Copyright Sun Microsystems 2007 Page 3 Target Industries & Typical Workloads Industries Computing Tasks Copyright Sun Microsystems 2007 Page 4 Sun Grid Engine Enterprise Allocation and Resource Prioritization Policies Selection Extensible Workload to Resource Matching Customizable System Load and Access Resource Regulation Control Definable Job Execution Contexts Web-based Reporting and Resource Analysis Accounting Open and Integratable Data Source Copyright Sun Microsystems 2007 Page 5 Sun Grid Engine Hierarchical Configuration Ease of Integration with N1 Administration Systems Management Products 3rd Party Standards-Compliant Software Full CLI Functionality Integration Heterogeneous Wide commercial Environments OS support Copyright Sun Microsystems 2007 Page 6 Sun Grid Engine Components qsub qrsh qlogin qmon qtcsh Shadow Master Copyright Sun Microsystems 2007 Page 7 Sun Grid Engine 6 • SGE 6.0 released in 2004 > Sites slowly adopt new functionality > ..
    [Show full text]
  • Design of an Accounting and Metric-Based Cloud-Shifting
    Design of an Accounting and Metric-based Cloud-shifting and Cloud-seeding framework for Federated Clouds and Bare-metal Environments Gregor von Laszewski1*, Hyungro Lee1, Javier Diaz1, Fugang Wang1, Koji Tanaka1, Shubhada Karavinkoppa1, Geoffrey C. Fox1, Tom Furlani2 1Indiana University 2Center for Computational Research 2719 East 10th Street University at Buffalo Bloomington, IN 47408. U.S.A. 701 Ellicott St [email protected] Buffalo, New York 14203 ABSTRACT and its predecessor meta-computing elevated this goal by not We present the design of a dynamic provisioning system that is only introducing the utilization of multiple queues accessible to able to manage the resources of a federated cloud environment the users, but by establishing virtual organizations that share by focusing on their utilization. With our framework, it is not resources among the organizational users. This includes storage only possible to allocate resources at a particular time to a and compute resources and exposes the functionality that users specific Infrastructure as a Service framework, but also to utilize need as services. Recently, it has been identified that these them as part of a typical HPC environment controlled by batch models are too restrictive, as many researchers and groups tend queuing systems. Through this interplay between virtualized and to develop and deploy their own software stacks on non-virtualized resources, we provide a flexible resource computational resources to build the specific environment management framework that can be adapted based on users' required for their experiments. Cloud computing provides here a demands. The need for such a framework is motivated by real good solution as it introduces a level of abstraction that lets the user data gathered during our operation of FutureGrid (FG).
    [Show full text]
  • Beginner's Guide to Oracle Grid Engine 6.2 Oracle White Paper—Beginner's Guide to Oracle Grid Engine 6.2
    An Oracle White Paper August 2010 Beginner's Guide to Oracle Grid Engine 6.2 Oracle White Paper—Beginner's Guide to Oracle Grid Engine 6.2 Executive Overview ..................................................................................... 1 Introduction .................................................................................................. 1 Chapter 1: Introduction to Oracle Grid Engine ............................................ 3 Oracle Grid Engine Jobs ......................................................................... 3 Oracle Grid Engine Component Architecture .......................................... 3 Oracle Grid Engine Basics ...................................................................... 5 Chapter 2: Oracle Grid Engine Scheduler ................................................... 10 Job Selection ........................................................................................... 10 Job Scheduling ........................................................................................ 17 Other Scheduling Features ...................................................................... 18 Additional Information on Job Scheduling ............................................... 20 Chapter 3: Planning an Oracle Grid Engine Installation .............................. 21 Installation Layout .................................................................................... 21 QMaster Data Spooling ........................................................................... 22 Execution Daemon Data
    [Show full text]
  • 7.1 Task Computing 7.2 Task-Based Application Models 7
    15CS565 CLOUD COMPUTING MODULE – III High-Throughput Computing – Task Programming (Chapter 7) Task computing is a wide area of distributed system programming encompassing several different models of architecting distributed applications, A task represents a program, which require input files and produce output files as a result of its execution. Applications are then constituted of a collection of tasks. These are submitted for execution and their output data are collected at the end of their execution. This chapter characterizes the abstraction of a task and provides a brief overview of the distrib- uted application models that are based on the task abstraction. The Aneka Task Programming Model is taken as a reference implementation to illustrate the execution of bag-of-tasks (BoT) applications on a distributed infrastructure. 7.1 Task computing 7.1.1 Characterizing a task 7.1.2 Computing categories 1 High-performance computing 2 High-throughput computing 3 Many-task computing 7.1.3 Frameworks for task computing 1. Condor 2. Globus Toolkit 3. Sun Grid Engine (SGE) 4. BOINC 5. Nimrod/G 7.2 Task-based application models 7.2.1 Embarrassingly parallel applications 7.2.2 Parameter sweep applications 7.2.3 MPI applications 7.2.4 Workflow applications with task dependencies 1 What is a workflow? 2 Workflow technologies 1. Kepler, 2. DAGMan, 3. Cloudbus Workflow Management System, and 4. Offspring. 7.3 Aneka task-based programming 7.3.1 Task programming model 7.3.2 Developing applications with the task model 7.3.3 Developing a parameter sweep application 7.3.4 Managing workflows 7.1 Task computing A task identifies one or more operations that produce a distinct output and that can be isolated as a single logical unit.
    [Show full text]
  • Hepix Report
    HEPiX Report Helge Meinhard, Pawel Grzywaczewski, Romain Wartel / CERN-IT Post-C5/Computing Seminar 03 December 2010 CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it Outline • Meeting organisation, site reports, (benchmarking,) infrastructure (Helge Meinhard) • Storage, OS and applications, miscellaneous (Pawel Grzywaczewski) • Virtualisation, security and networking, grid and cloud (Romain Wartel) HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX • Global organisation of service managers and support staff providing computing facilities for HEP • Covering all platforms of interest (Unix/Linux, Windows, Grid, …) • Aim: Present recent work and future plans, share experience, advise managers • Meetings ~ 2 / y (spring in Europe, autumn typically in North America) HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX Autumn 2010 (1) • Held 01 – 05 November at Cornell University, Ithaca NY – CESR: Electron-positron storage ring; CLEO: experiment doing a lot of interesting b physics – New player in the HEPiX field at as site… but a well-known face: Chuck Boeheim, the previous north-American co-chair of HEPiX – Good local organisation – Nice auditorium in conference hotel, basically unlimited coffee supply – First face-to-face meeting in 2010 for most participants HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX Autumn 2010 (2) • Format: Pre-defined tracks with conveners and invited speakers per track – Still room for spontaneous talks – either fit into one of the tracks, or classified as ‘miscellaneous’
    [Show full text]
  • Bright Cluster Manager 9.0 User Manual
    Bright Cluster Manager 9.0 User Manual Revision: 406b1b9 Date: Fri Oct 1 2021 ©2020 Bright Computing, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Bright Computing, Inc. Trademarks Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. SUSE is a registered trademark of Novell, Inc. PGI is a registered trademark of NVIDIA Corporation. FLEXlm is a registered trademark of Flexera Software, Inc. PBS Professional, PBS Pro, and Green Provisioning are trademarks of Altair Engineering, Inc. All other trademarks are the property of their respective owners. Rights and Restrictions All statements, specifications, recommendations, and technical information contained herein are current or planned as of the date of publication of this document. They are reliable as of the time of this writing and are presented without warranty of any kind, expressed or implied. Bright Computing, Inc. shall not be liable for technical or editorial errors or omissions which may occur in this document. Bright Computing, Inc. shall not be liable for any damages resulting from the use of this document. Limitation of Liability and Damages Pertaining to Bright Computing, Inc. The Bright Cluster Manager product principally consists of free software that is licensed by the Linux authors free of charge. Bright Computing, Inc. shall have no liability nor will Bright Computing, Inc. provide any warranty for the Bright Cluster Manager to the extent that is permitted by law.
    [Show full text]