Algal Taxonomy: a Road to Nowhere?1

Total Page:16

File Type:pdf, Size:1020Kb

Algal Taxonomy: a Road to Nowhere?1 J. Phycol. *, ***–*** (2012) © 2012 Phycological Society of America DOI: 10.1111/jpy.12020 M INIREVIEW ALGAL TAXONOMY: A ROAD TO NOWHERE?1 Olivier De Clerck2 Phycology Research Group, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium Michael D. Guiry AlgaeBase and Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway, Ireland Frederik Leliaert Phycology Research Group, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium Yves Samyn Belgian National Focal Point to the Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium and Heroen Verbruggen School of Botany, University of Melbourne, Melbourne, Victoria 3010 Australia The widespread view of taxonomy as an essentially species discovery and formal description, or an retrogressive and outmoded science unable to cope incipient alternative or parallel taxonomy, will be with the current biodiversity crisis stimulated us to largely determined by how well we manage to integrate analyze the current status of cataloguing global algal historical collections into modern taxonomic research. diversity. Contrary to this largely pessimistic belief, Additionally, there is a pressing need for a consensus species description rates of algae through time and about the organizational framework to manage the trends in the number of active taxonomists, as revealed information about algal species names. An eventual by the web resource AlgaeBase, show a much more strategy should preferably come out of an international positive picture. More species than ever before are working group that includes the various databases being described by a large community of algal as well as the various phycological societies. In this taxonomists. The lack of any decline in the rate at strategy, phycologists should link up to major which new species and genera are described, however, international initiatives that are currently being is indicative of the large proportion of undiscovered developed, such as the compulsory registration of diversity and bears heavily on any prediction of global taxonomic and nomenclatural acts and the algal species diversity and the time needed to catalogue introduction of Life Science Identifiers. it. The saturation of accumulation curves of higher Key index words: algae; AlgaeBase; barcoding; dark taxa (family, order, and classes) on the other hand species; DNA taxonomy; species discovery; taxon- suggest that at these taxonomic levels most diversity omy has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have … if our rates of discovery continue at the present resulted in a rampant uncertainty about the status of pace, we should have a definitive total for insects in many older species. As a consequence, there is a a little over fifteen thousand years. The rest … may tendency in phycology to move gradually away from take a little longer – B. Bryson (2003). traditional names to a more informal system whereby – clade-, specimen- or strain-based identifiers are used to Long before Carl von Linne (1707 1778), the communicate biological information. Whether these instigator and popularizer of modern nomenclature informal names for species-level clades represent a and taxonomy, mankind showed a propensity to temporary situation stimulated by the lag between document, describe, and catalogue all the living things on our planet (Godfray and Knapp 2004). 1Received 1 September 2012. Accepted 15 October 2012. The practice of giving names to organisms, probably 2Author for correspondence: e-mail [email protected]. born out of necessity among hunter-gatherer socie- 1 2 OLIVIERDECLERCKETAL. ties and later a privileged pastime of the rich, has ians, birds, and mammals), representing well stud- transformed itself over the years into a modern sci- ied and taxonomist-rich groups (Bacher 2012, ence embracing the principles of evolutionary biol- Samyn and De Clerck 2012). Applying a much ogy as well as revolutionary innovations on multiple broader taxon sampling, Costello et al. (2012) con- technological fronts (Goldstein and DeSalle 2011). firmed the existence of a greater taxonomic effort The importance of describing and naming species as reported by Joppa et al. (2011); however, the rate (alpha taxonomy) transcends the mere cataloguing of species description was shown to be virtually of diversity. Clearly, it is an enabling discipline, linear from the mid-19th century onward with no delivering basic and indispensable knowledge for evidence of decrease or, indeed, increase. many fields of human interest and underpinning a In this context, the questions of how we are doing host of scientific research, including biodiversity as algal taxonomists and what the status of descrip- conservation, understanding of ecosystem services, tive algal taxonomy is, are relevant to ask. Does a documenting climate change, and ecological model- daunting task await phycologists with the prospect ing. As a central tenet, and virtually unchallenged of several hundreds or even thousands of years of for over 250 years, taxonomy makes use of a rank- alpha taxonomy at the present pace or could the INIREVIEW based classification system whereby Linnaean bino- remaining algal diversity perhaps be described at M mials serve as anchors for biological information the current rate within the next century? Answering about a species, including its taxonomic affinities, this question requires accurate estimates of the total morphology, distribution, and ecological role. number of algal species, the number of species The task of discovering and documenting biodi- already described and the rate at which species are versity has been given an increased sense of currently being described. Until recently, a lack of urgency now that anthropogenic impacts are dra- primary data on algal species descriptions, the num- matically altering the biota of the Earth (Cardinale ber of currently accepted names and synonyms lar- et al. 2012), with current extinction rates now as gely prevented any quantitative analysis of algal high as 27,000 of the known species per annum diversity and trends in descriptive taxonomy. Today, (Wilson 1992, Maddison et al. 2012). However, the information on algal diversity and taxonomy is avail- general perception persists that taxonomy is a sci- able in a number of online databases, each with ence in crisis, and a discipline that suffers from a their own focus and limitations. The Index Nominum lack of prestige and resources (Wheeler 2004, Bo- Algarum (INA; Silva and Moe 1999) is a nomencla- ero 2010). The magnitude of biological diversity tor, a high-quality compendium of all algal names, seems so overwhelming and the discovery and their original places of publication, and type informa- description of new species proceeds at such a slow tion; but INA generally offers no information on pace (6,000–18,000 species of eukaryotes per year; accepted names and taxonomic synonyms. AlgaTerra Mora et al. 2011) that millennia of basic descrip- (Jahn and Kusber 2012) and the on-line Catalogue of tive taxonomy seem to await us before alpha taxon- Diatom Names at the California Academy of Sciences omy reaches its goal. The inadequate pace of (Fourtanier and Kociolek 2012) integrate nomencla- taxonomy has resulted in several proposals (and tural information on terrestrial and freshwater microal- the inevitably accompanying contentious debates) gae, and diatoms, respectively, but are limited in aimed at making the process of describing species their taxonomic information. AlgaeBase (Guiry and more efficient (e.g., Tautz et al. 2003, Godfray Guiry 2012) databases taxonomic, nomenclatural, et al. 2007, Wheeler 2008, Clark et al. 2009, Smith bibliographic, and biogeographical information on et al. 2009, Patterson et al. 2010, Deans et al. 2012, micro-algae and macroalgae from marine as well as Maddison et al. 2012). freshwater and terrestrial environments on a worldwide Contrary to the widespread pessimistic view of tax- basis. Even though AlgaeBase is a work in progress onomy as an essentially retrogressive and outmoded (Guiry 2012), it does not have the taxonomic limita- science unable to cope with the current biodiversity tions of the other algal databases. We have therefore crisis (Goldstein and DeSalle 2011), a much more used AlgaeBase as a primary source of data to generate optimistic view was presented by Joppa et al. (2011). a set of metrics enabling us to evaluate the current state These authors analyzed rates of species descriptions of algal taxonomy. for a number of animal and plant taxa and con- Here, we analyze the rates of species description cluded that, contrary to the generally accepted view, through time as well as trends in the number of both the rates of species description and the num- algal taxonomists and evaluate the progress of algal ber of taxonomists have increased exponentially taxonomy in the light of recent estimates of global since the 1950s. Interestingly, they also noted a algal diversity (Appendix S1, see Supporting Infor- marked decline in the number of species described mation for technical details). In addition, we discuss per taxonomist, something that they attribute to the general trends in species discovery, contrast these increasing difficulty of finding new species in an with species
Recommended publications
  • Pediastrum Species (Hydrodictyaceae, Sphaeropleales) in Phytoplankton of Sumin Lake (£Êczna-W£Odawa Lakeland)
    Vol. 73, No. 1: 39-46, 2004 ACTA SOCIETATIS BOTANICORUM POLONIAE 39 PEDIASTRUM SPECIES (HYDRODICTYACEAE, SPHAEROPLEALES) IN PHYTOPLANKTON OF SUMIN LAKE (£ÊCZNA-W£ODAWA LAKELAND) AGNIESZKA PASZTALENIEC, MA£GORZATA PONIEWOZIK Department of Botany and Hydrobiology, Catholic University of Lublin C.K. Norwida 4, 20-061 Lublin, Poland e-mail: [email protected] (Received: April 7, 2003. Accepted: July 18, 2003) ABSTRACT During studies of phytoplankton in Sumin Lake (£êczna-W³odawa Lakeland), conducted from May till Sep- tember 2001 and 2002, 15 taxa of the genus Pediastrum (Hydrodictyaceae, Sphaeropleales) were found. Among them there were common species as Pediastrum boryanum, P. duplex, P. tetras and P. simplex, but also rare spe- cies as P. integrum or P. kawraiskyi. An especially interesting species was P. orientale, the taxon that until now has not been noted in phytoplankton of Polish water bodies. The paper gives descriptions of the genus Pediastrum coenobia and physico-chemical conditions of the habitat. The original documentation of Pediastrum taxa is added. KEY WORDS: Pediastrum taxa, Chlorophyta, phytoplankton, £êczna-W³odawa Lakeland. INRTODUCTION rved in palynological preparations (Jankovská and Komá- rek 2000, Komárek and Jankovská 2001; Nielsen and Lakes of £êczna-W³odawa Lakeland are the only group Sørensen 1992). in Poland located beyond the limits of a continental glacier The taxonomical research of the genus Pediastrum was of the last glaciation. The genesis of lakes is still disputa- not conducted in phytoplankton of £êczna-W³odawa Lake- ble, but the most of them have a termo-karst origin (Hara- land lakes. Only some information on occurrence of this simiuk and Wojtanowicz 1998).
    [Show full text]
  • Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
    Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage).
    [Show full text]
  • Perspectives in Phycology Vol
    Perspectives in Phycology Vol. 3 (2016), Issue 3, p. 141–154 Article Published online June 2016 Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences Margot Tragin1, Adriana Lopes dos Santos1, Richard Christen2,3 and Daniel Vaulot1* 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France 2 CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France 3 Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France * Corresponding author: [email protected] With 5 figures in the text and an electronic supplement Abstract: Green algae (Chlorophyta) are an important group of microalgae whose diversity and ecological importance in marine systems has been little studied. In this review, we first present an overview of Chlorophyta taxonomy and detail the most important groups from the marine environment. Then, using public 18S rRNA Chlorophyta sequences from culture and natural samples retrieved from the annotated Protist Ribosomal Reference (PR²) database, we illustrate the distribution of different green algal lineages in the oceans. The largest group of sequences belongs to the class Mamiellophyceae and in particular to the three genera Micromonas, Bathycoccus and Ostreococcus. These sequences originate mostly from coastal regions. Other groups with a large number of sequences include the Trebouxiophyceae, Chlorophyceae, Chlorodendrophyceae and Pyramimonadales. Some groups, such as the undescribed prasinophytes clades VII and IX, are mostly composed of environmental sequences. The 18S rRNA sequence database we assembled and validated should be useful for the analysis of metabarcode datasets acquired using next generation sequencing.
    [Show full text]
  • Semi‐Automated Workflows for Acquiring Specimen Data from Label
    Granzow-de la Cerda & Beach • Acquiring specimen data from herbarium labels TAXON 59 (6) • December 2010: 1830–1842 METHODS AND TECHNIQUES Semi-automated workflows for acquiring specimen data from label images in herbarium collections Íñigo Granzow-de la Cerda1,3 & James H. Beach2 1 University of Michigan Herbarium, 3600 Varsity Dr., Ann Arbor, Michigan 48108, U.S.A. 2 Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas 66045, U.S.A. 3 Current address: Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain Author for correspondence: Íñigo Granzow-de la Cerda, [email protected] Abstract Computational workflow environments are an active area of computer science and informatics research; they promise to be effective for automating biological information processing for increasing research efficiency and impact. In this project, semi-automated data processing workflows were developed to test the efficiency of computerizing information contained in herbarium plant specimen labels. Our test sample consisted of mexican and Central American plant specimens held in the University of michigan Herbarium (mICH). The initial data acquisition process consisted of two parts: (1) the capture of digital images of specimen labels and of full-specimen herbarium sheets, and (2) creation of a minimal field database, or “pre-catalog”, of records that contain only information necessary to uniquely identify specimens. For entering “pre-catalog” data, two methods were tested: key-stroking the information (a) from the specimen labels directly, or (b) from digital images of specimen labels. In a second step, locality and latitude/longitude data fields were filled in if the values were present on the labels or images.
    [Show full text]
  • Seasonal and Interannual Changes in Ciliate and Dinoflagellate
    ORIGINAL RESEARCH published: 07 February 2017 doi: 10.3389/fmars.2017.00016 Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada) Edited by: Deo F. L. Onda 1, 2, 3, Emmanuelle Medrinal 1, 3, André M. Comeau 1, 3 †, Mary Thaler 1, 2, 3, George S. Bullerjahn, Marcel Babin 1, 2 and Connie Lovejoy 1, 2, 3* Bowling Green State University, USA Reviewed by: 1 Département de Biologie and Québec-Océan, Université Laval, Quebec, QC, Canada, 2 Takuvik, Joint International Rebecca Gast, Laboratory, UMI 3376, Centre National de la Recherche Scientifique (CNRS, France) and Université Laval, Québec, QC, Woods Hole Oceanographic Canada, 3 Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada Institution, USA Alison Clare Cleary, Independent Researcher, San Recent studies have focused on how climate change could drive changes in Francisco, United States phytoplankton communities in the Arctic. In contrast, ciliates and dinoflagellates that can *Correspondence: contribute substantially to the mortality of phytoplankton have received less attention. Connie Lovejoy Some dinoflagellate and ciliate species can also contribute to net photosynthesis, [email protected] which suggests that species composition could reflect food web complexity. To identify †Present Address: André M. Comeau, potential seasonal and annual species occurrence patterns and to link species with Centre for Comparative Genomics and environmental conditions, we first examined the seasonal pattern of microzooplankton Evolutionary Bioinformatics-Integrated Microbiome Resource, Department of and then performed an in-depth analysis of interannual species variability. We used Pharmacology, Dalhousie University, high-throughput amplicon sequencing to identify ciliates and dinoflagellates to the lowest Canada taxonomic level using a curated Arctic 18S rRNA gene database.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Croflora, a Database Application to Handle the Croatian Vascular Flora
    Acta Bot. Croat. 60 (1), 31-48,2001 CODEN: ABCRA25 ISSN 0365-0588 UDC 581.9 (497.5): 303.432 CROFlora, a database application to handle the Croatian vascular flora Toni Nikolic1*, Kresimir Fertalj2, Tomo Helman2, Vedran Mornar2, Damir Kalpic2 1 Department of Botany, Faculty of Science, University of Zagreb, Marulicev trg 20/2, HR-10000 Zagreb, Croatia 2 Chair of Computer Science, Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia CROFlora is a multi-user database application for species-oriented and specimen-ori­ ented systematic and taxonomic work on Croatian flora. It is designed for dealing with all kinds of data that are commonly used in systematic botany and floristic work. CROFlora comprises several main modules: (1) taxonomy, (2) herbarium, (3) literature, (4) choro- logy and (5) related data, such as ecology and multimedia. CROFlora was built over a re­ lational database. The database relies on the normalised data model, which is presented in the paper. Amongst other features, the client application provides the user with extended query by example (QBE) capabilities and with user-customised reports. The reports in­ clude taxon sheets, taxa checklists, herbarium labels, bibliography labels and other com­ plex reports. The database can be connected to a geographical information system (GIS), which empowers easy production of distribution maps and other spatial analysis. The Web interface enables Internet searches. Keywords: database, bioinformatics, taxonomy, flora, distribution, geographical data, Croatia, Internet Introduction Increasing concern for the Earth’s biological resources, their inventory, protection and use, has prompted efforts to modernise practices and procedures to manage all types of bo­ tanical data.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • The Identification of Functional, Sequestered, Symbiotic Chloroplasts
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2006 The identification of functional, sequestered, symbiotic chloroplasts in Elysia clarki: A crucial step in the study of horizontally transferred, nuclear algal genes Nicholas E. Curtis University of South Florida Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Curtis, Nicholas E., "The identification of functional, sequestered, symbiotic chloroplasts in Elysia clarki: A crucial step in the study of horizontally transferred, nuclear algal genes" (2006). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2496 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Identification of Functional, Sequestered, Symbiotic Chloroplasts in Elysia clarki: A Crucial Step in the Study of Horizontally Transferred, Nuclear Algal Genes by Nicholas E. Curtis A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology College of Arts and Sciences University of South Florida Major Professor: Sidney K. Pierce, Jr., Ph.D. Clinton J. Dawes, Ph.D. Kathleen M. Scott, Ph.D. Brian T. Livingston, Ph.D. Date of Approval: June 15, 2006 Keywords: Bryopsidales, kleptoplasty, sacoglossan, rbcL, chloroplast symbiosis Penicillus, Halimeda, Bryopsis, Derbesia © Copyright 2006, Nicholas E. Curtis Note to Reader The original of this document contains color that is necessary for understanding the data. The original dissertation is on file with the USF library in Tampa, Florida.
    [Show full text]
  • Epilithic Diatom Community Shows a Higher Vulnerability of the River Sava to Pollution During the Winter
    diversity Article Epilithic Diatom Community Shows a Higher Vulnerability of the River Sava to Pollution during the Winter Igor Zelnik * and Tjaša Sušin Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1-320-3339 Received: 12 November 2020; Accepted: 4 December 2020; Published: 5 December 2020 Abstract: The aim of the research was to investigate the influence of environmental factors on the structure of epilithic diatom communities in the Sava River from the source to the state border 220 km downstream. The river had numerous human influences along its course, such as municipal and industrial wastewater, agriculture, hydroelectric power plants, etc. The main objective of the research was to find out the influence of human pressure on the structure of the epilithic diatom community under winter and summer conditions. Winter and summer samples were taken at nine sites. At each sampling site, a set of abiotic factors was measured and another set of environmental parameters was evaluated. The analyses showed that nitrogen and phosphorus concentrations increased downstream. We identified 118 different species of diatoms. The most common taxa were Achnanthidium minutissimum and A. pyrenaicum. Planktonic species Cyclotella meneghiniana was only found in the samples of the lower part of the Sava, which is unusual for the epilithic community. The composition of the epilithic diatom community was significantly influenced by conductivity and water temperature, pH and distance from the source. The similarity between diatom communities closer to the source of the river was higher than between communities from the lower part of the Sava River.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]