A Brief Overview of Software Testing Techniques and Metrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types of Software Testing
Types of Software Testing We would be glad to have feedback from you. Drop us a line, whether it is a comment, a question, a work proposition or just a hello. You can use either the form below or the contact details on the rightt. Contact details [email protected] +91 811 386 5000 1 Software testing is the way of assessing a software product to distinguish contrasts between given information and expected result. Additionally, to evaluate the characteristic of a product. The testing process evaluates the quality of the software. You know what testing does. No need to explain further. But, are you aware of types of testing. It’s indeed a sea. But before we get to the types, let’s have a look at the standards that needs to be maintained. Standards of Testing The entire test should meet the user prerequisites. Exhaustive testing isn’t conceivable. As we require the ideal quantity of testing in view of the risk evaluation of the application. The entire test to be directed ought to be arranged before executing it. It follows 80/20 rule which expresses that 80% of defects originates from 20% of program parts. Start testing with little parts and extend it to broad components. Software testers know about the different sorts of Software Testing. In this article, we have incorporated majorly all types of software testing which testers, developers, and QA reams more often use in their everyday testing life. Let’s understand them!!! Black box Testing The black box testing is a category of strategy that disregards the interior component of the framework and spotlights on the output created against any input and performance of the system. -
Comparison of GUI Testing Tools for Android Applications
Comparison of GUI testing tools for Android applications University of Oulu Department of Information Processing Science Master’s Thesis Tomi Lämsä Date 22.5.2017 2 Abstract Test automation is an intriguing area of software engineering, especially in Android development. This is since Android applications must be able to run in many different permutations of operating system versions and hardware choices. Comparison of different tools for automated UI testing of Android applications is done in this thesis. In a literature review several different tools available and their popularity is researched and the structure of the most popular tools is looked at. The two tools identified to be the most popular are Appium and Espresso. In an empirical study the two tools along with Robotium, UiAutomator and Tau are compared against each other in test execution speed, maintainability of the test code, reliability of the test tools and in general issues. An empirical study was carried out by selecting three Android applications for which an identical suite of tests was developed with each tool. The test suites were then run and the execution speed and reliability was analysed based on these results. The test code written is also analysed for maintainability by calculating the lines of code and the number of method calls needed to handle asynchrony related to UI updates. The issues faced by the test developer with the different tools are also analysed. This thesis aims to help industry users of these kinds of applications in two ways. First, it could be used as a source on what tools are over all available for UI testing of Android applications. -
A Framework for Evaluating Performance of Software Testing Tools
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616 A Framework For Evaluating Performance Of Software Testing Tools Pramod Mathew Jacob, Prasanna Mani Abstract: Software plays a pivotal role in this technology era. Due to its increased applicable domains, quality of the software being developed is to be monitored and controlled. Software organization follows many testing methodologies to perform quality management. Testing methodologies can be either manual or automated. Automated testing tools got massive acceptability among software professionals due to its enhanced features and functionalities than that of manual testing. There are hundreds of test automation tools available, among which some perform exceptionally well. Due to the availability of large set of tools, it is a herculean task for the project manager to choose the appropriate automation tool, which is suitable for their project domain. In this paper, we derive a software testing tool selection model which evaluates the performance aspects of a script-based testing tool. Experimental evaluation proves that, it can be used to compare and evaluate various performance characteristics of commercially accepted test automation tools based on user experience as well as system performance. Index Terms: Automated testing, Software testing, Test script, Testing Tool, Test bed, Verification and Validation. —————————— ◆ —————————— 1 INTRODUCTION S OFTWARE is advanced in recent days by enhancing its applicable domains. Software is embedded in almost all electronic gadgets and systems. In this scenario the quality of the software plays a significant role. The customer or end – user should be satisfied which is primarily depended on quality and capability of the software being developed. -
Michael Bolton in NZ Pinheads, from the Testtoolbox, Kiwi Test Teams & More!
NZTester The Quarterly Magazine for the New Zealand Software Testing Community and Supporters ISSUE 4 JUL - SEP 2013 FREE In this issue: Interview with Bryce Day of Catch Testing at ikeGPS Five Behaviours of a Highly Effective Time Lord Tester On the Road Again Hiring Testers Michael Bolton in NZ Pinheads, From the TestToolbox, Kiwi Test Teams & more! NZTester Magazine Editor: Geoff Horne [email protected] [email protected] ph. 021 634 900 P O Box 48-018 Blockhouse Bay Auckland 0600 New Zealand www.nztester.co.nz Advertising Enquiries: [email protected] Disclaimer: Articles and advertisements contained in NZTester Magazine are published in good faith and although provided by people who are experts in their fields, NZTester make no guarantees or representations of any kind concerning the accuracy or suitability of the information contained within or the suitability of products and services advertised for any and all specific applications and uses. All such information is provided “as is” and with specific disclaimer of any warranties of merchantability, fitness for purpose, title and/or non-infringement. The opinions and writings of all authors and contributors to NZTester are merely an expression of the author’s own thoughts, knowledge or information that they have gathered for publication. NZTester does not endorse such authors, necessarily agree with opinions and views expressed nor represents that writings are accurate or suitable for any purpose whatsoever. As a reader of this magazine you disclaim and hold NZTester, its employees and agents and Geoff Horne, its owner, editor and publisher, harmless of all content contained in this magazine as to its warranty of merchantability, fitness for purpose, title and/or non-infringement. -
Exploring Languages with Interpreters and Functional Programming Chapter 11
Exploring Languages with Interpreters and Functional Programming Chapter 11 H. Conrad Cunningham 24 January 2019 Contents 11 Software Testing Concepts 2 11.1 Chapter Introduction . .2 11.2 Software Requirements Specification . .2 11.3 What is Software Testing? . .3 11.4 Goals of Testing . .3 11.5 Dimensions of Testing . .3 11.5.1 Testing levels . .4 11.5.2 Testing methods . .6 11.5.2.1 Black-box testing . .6 11.5.2.2 White-box testing . .8 11.5.2.3 Gray-box testing . .9 11.5.2.4 Ad hoc testing . .9 11.5.3 Testing types . .9 11.5.4 Combining levels, methods, and types . 10 11.6 Aside: Test-Driven Development . 10 11.7 Principles for Test Automation . 12 11.8 What Next? . 15 11.9 Exercises . 15 11.10Acknowledgements . 15 11.11References . 16 11.12Terms and Concepts . 17 Copyright (C) 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 1 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires a browser that supports the display of MathML. A good choice as of October 2018 is a recent version of Firefox from Mozilla. 2 11 Software Testing Concepts 11.1 Chapter Introduction The goal of this chapter is to survey the important concepts, terminology, and techniques of software testing in general. The next chapter illustrates these techniques by manually constructing test scripts for Haskell functions and modules. 11.2 Software Requirements Specification The purpose of a software development project is to meet particular needs and expectations of the project’s stakeholders. -
Software Testing: Essential Phase of SDLC and a Comparative Study Of
International Journal of System and Software Engineering Volume 5 Issue 2, December 2017 ISSN.: 2321-6107 Software Testing: Essential Phase of SDLC and a Comparative Study of Software Testing Techniques Sushma Malik Assistant Professor, Institute of Innovation in Technology and Management, Janak Puri, New Delhi, India. Email: [email protected] Abstract: Software Development Life-Cycle (SDLC) follows In the software development process, the problem (Software) the different activities that are used in the development of a can be dividing in the following activities [3]: software product. SDLC is also called the software process ∑ Understanding the problem and it is the lifeline of any Software Development Model. ∑ Decide a plan for the solution Software Processes decide the survival of a particular software development model in the market as well as in ∑ Coding for the designed solution software organization and Software testing is a process of ∑ Testing the definite program finding software bugs while executing a program so that we get the zero defect software. The main objective of software These activities may be very complex for large systems. So, testing is to evaluating the competence and usability of a each of the activity has to be broken into smaller sub-activities software. Software testing is an important part of the SDLC or steps. These steps are then handled effectively to produce a because through software testing getting the quality of the software project or system. The basic steps involved in software software. Lots of advancements have been done through project development are: various verification techniques, but still we need software to 1) Requirement Analysis and Specification: The goal of be fully tested before handed to the customer. -
Experience and Exploring in Software Testing
Ohjelmistotestauksen Teemapäivä, TTY, 8.6.2010 How Do Testers Do It? Exploratory and Experience Based Testing Juha Itkonen Software Business and Engineering Institute (SoberIT) [email protected] +358 50 5771688 Contents • Introduction to experience based and exploratory testing – Intelligent manual testing • Overall strategies and detailed techniques • Selection of exploratory tester’s pitfalls Juha Itkonen - SoberIT 2010 2 Manual Testing • Testing that is performed by human testers Research has shown: 1. Individual differences in • Stereotype of manual testing testing are high 2. Test case design – Executing detailed pre-designed test cases techniques alone do not – Mechanical step-by-step following the explain the results instructions – Treated as work that anybody can do In practice, it’s clear that some testers are better than others in manual testing and more effective at revealing defects... Juha Itkonen - SoberIT 2010 3 My viewpoint: Experience Based – Intelligent – Manual Testing • Manual testing that builds on the tester’s experience – knowledge and skills • Some aspects of testing rely on tester’s skills – during testing – e.g., input values, expected results, or interactions • Testers are assumed to know what they are doing – Testing does not mean executing detailed scripts • Focus on the actual testing work in practice – What happens during testing activities? – How are defects actually found? – Experience-based and exploratory aspects of software testing Juha Itkonen - SoberIT 2010 4 Exploratory Testing is creative testing without predefined test cases Based on knowledge and skills of the tester 1. Tests are not defined in advance – Exploring with a general mission – without specific step-by-step instructions on how to accomplish the mission 2. -
Software Testing Training Module
MAST MARKET ALIGNED SKILLS TRAINING SOFTWARE TESTING TRAINING MODULE In partnership with Supported by: INDIA: 1003-1005,DLF City Court, MG Road, Gurgaon 122002 Tel (91) 124 4551850 Fax (91) 124 4551888 NEW YORK: 216 E.45th Street, 7th Floor, New York, NY 10017 www.aif.org SOFTWARE TESTING TRAINING MODULE About the American India Foundation The American India Foundation is committed to catalyzing social and economic change in India, andbuilding a lasting bridge between the United States and India through high impact interventions ineducation, livelihoods, public health, and leadership development. Working closely with localcommunities, AIF partners with NGOs to develop and test innovative solutions and withgovernments to create and scale sustainable impact. Founded in 2001 at the initiative of PresidentBill Clinton following a suggestion from Indian Prime Minister Vajpayee, AIF has impacted the lives of 4.6million of India’s poor. Learn more at www.AIF.org About the Market Aligned Skills Training (MAST) program Market Aligned Skills Training (MAST) provides unemployed young people with a comprehensive skillstraining that equips them with the knowledge and skills needed to secure employment and succeed on thejob. MAST not only meets the growing demands of the diversifying local industries across the country, itharnesses India's youth population to become powerful engines of the economy. AIF Team: Hanumant Rawat, Aamir Aijaz & Rowena Kay Mascarenhas American India Foundation 10th Floor, DLF City Court, MG Road, Near Sikanderpur Metro Station, Gurgaon 122002 216 E. 45th Street, 7th Floor New York, NY 10017 530 Lytton Avenue, Palo Alto, CA 9430 This document is created for the use of underprivileged youth under American India Foundation’s Market Aligned Skills Training (MAST) Program. -
Information Systems Project Management
SUBJECT INFORMATION SYSTEMS PROJECT MANAGEMENT TOPIC: SESSION 10: CASE STUDY My Hands-On Experience Software Testing CASE STUDY:My Hands-On Experience Software Testing SESSION 10 CASE STUDY My Hands-On Experience Software Testing Well-versed with formal and exploratory software testing approaches in traditional and iterative software development models. Formal and exploratory testing of web applications, local desktop applications, SDK packages Used various software test design techniques which are traditionally called as black-box/white-box, static/dynamic testing techniques Known in the testing industry for challenging some well established thoughts from the renowned experts like Schools of Testing, Testing vs Checking, Formal vs Exploratory testing etc. Developed an improved parser-friendly text session report format for exploratory testing using Session based test management. Developed Python code to parse all session reports periodically to generate consolidated PDF reports for the team. Introduced Test Doubles concept to system testing to increase test coverage Employed All-pairs technique to API testing and event capturing testing Worked on Database migration testing from hierarchial (IMSDB) to RDBMS ( DB2 ). Was chosen by management to take up training for the complete development team on testing of the integrated system. White box testing using code coverage tools Security Testing His experiments with Python and fuzzing made him the first to present on the subject of fuzzing at any software testing conference, voted as the Best Innovative Paper Award by audience. He moved on to present extended tutorials on the subject with demonstrations of exploits using Python. Conducted web security testing for multiple clients and reported critical security bugs not found by automated scanners. -
Stress Testing Embedded Software Applications
Embedded Systems Conference / Boston, MA September 20, 2007 ESC-302 Stress Testing Embedded Software Applications T. Adrian Hill Johns Hopkins University Applied Physics Laboratory [email protected] ABSTRACT This paper describes techniques to design stress tests, classifies the types of problems found during these types of tests, and analyzes why these problems are not discovered with traditional unit testing or acceptance testing. The findings are supported by citing examples from three recent embedded software development programs performed by the Johns Hopkins University Applied Physics Laboratory where formal stress testing was employed. It also defines what is meant by the robustness and elasticity of a software system. These findings will encourage software professionals to incorporate stress testing into their formal software development process. OUTLINE 1. INTRODUCTON 1.1 What can be learned by “breaking” the software 2. DESIGNING A STRESS TEST 2.1 What is a reasonable target CPU load? 2.2 Other ways to stress the system 2.3 Characteristics of a Stress Test 3. REAL WORLD RESULTS 3.1 Case #1: Software Missed Receiving Some Commands When CPU Was Heavily Loaded 3.2 Case #2: Processor Reset when Available Memory Buffers Were Exhausted 3.3 Case #3: Unexpected Command Rejection When CPU Was Heavily Loaded 3.4 Case #4: Processor Reset When RAM Disk Was Nearly Full 3.5 Synopsis of All Problems Found During Stress Testing 4. SUMMARY 1. INTRODUCTON Traditional Software Acceptance Testing is a standard phase in nearly every software development methodology. Test engineers develop and execute tests that are defined to validate software requirements. -
Testing Techniques Selection Based on SWOT Analysis
International Journal of Knowledge, Innovation and Entrepreneurship Volume 2 No. 1, 2014, pp. 56—68 Testing Techniques Selection Based on SWOT Analysis MUNAZZA JANNISAR, RUQIA BIBI & MUHAMMAD FAHAD KHAN University of Engineering and Technology, Pakistan Received 02 March 2014; received in revised form 15 April 2014; approved 22 April 2014 ABSTRACT Quality is easy to claim but hard to achieve. Testing is a most essential phase in software development life cycle not only to ensure a project’s success but also customer satisfaction. This paper presents SWOT Analysis of three testing tech- niques—White-Box, Black-Box and Grey Box. The testing techniques are evaluated on the basis of their strengths, weaknesses, opportunities and threats. The analysis in this paper shows that selection of the techniques should be based on a set of defined attrib- utes, context and objective. The findings in this paper might be helpful in highlighting and addressing issues related to testing techniques selection based on SWOT analysis. Keywords: Black Box Testing, White Box Testing, Grey Box, SWOT Introduction Software plays a substantial role in every sphere of life. It is a key reason why software engineering continually introducing new methodologies and improvement to software development. The capacity of organisations to achieve customer satisfaction or to cor- rectly identify the needs of customers can be misplaced, leading to ambiguities and un- wanted results 1. Researchers have suggested many testing techniques to deal with fault identification and removal subjects, before the product [software] is shipped to cus- tomer. Despite many verification and validation approaches to assuring product quality, defect-free software goal is not very often achieved. -
Putting the Right Stress Into WMS Volume Testing Eliminate Unwelcome Surprises
v i e w p o i n t Putting the Right Stress into WMS Volume Testing Eliminate unwelcome surprises. When implementing or upgrading a Warehouse Management System (WMS) in a high volume environment, it should be a given that a significant amount of effort needs to be dedicated to various phases of testing. However, a common mistake is to ignore or improperly plan for volume testing. So what types of processes should be tested? There is unit testing that validates segments of functionality, RF Floor Transactions - This should involve the more interface testing that checks the flow of data between systems, commonly used RF transactions such as putaway and picking. user acceptance testing that involves the end user group It is not a good idea to include every type of RF activity. That working through scripted functional flows, and field testing that means you probably will not be paying too much attention to executes an augmented version of the user acceptance testing cycle counts as a part of your stress test. on the distribution center floor. Wave Processing - It is absolutely necessary to know how Volume testing, also known as stress testing, is an assessment long it will take to process each day’s orders. In addition, it is that may be ignored. This is a mistake, because this puts a strain important to validate if there are any important processes that on the processes within the WMS, as well as its interfaces in cannot be executed during wave processing. For example, the order to identify conditions that would result in a slow-down testing may reveal that RF unit picking is an activity that cannot or catastrophic crash of the system.