Forward & Reverse Genetics in Zebrafish

Total Page:16

File Type:pdf, Size:1020Kb

Forward & Reverse Genetics in Zebrafish Forward & Reverse Genetics in Zebrafish Lila Solnica-Krezel Department of Developmental Biology 1 Mutant screens help identify the essential components of embryonic development • Saturation mutagenesis – production of as many mutations as possible with related phenotypes – Complementation analysis distinguishes alleles and genes – Mutagens used to increase mutation rates – Redundant genes – genes missed in a screen because function performed by two genes Genetic Screens in Zebrafish - A Practical Approach • How mutations are induced – Germ line versus mosaic – Mutagens (chemical, retroviral, transposon) • Testing mutagenesis efficiency • How to screen? – Haploid Screens – Diploid Zygotic Screens – Maternal Screens – Enhancer and Suppressor Screens – Phenotype - You find what you are looking for • Saturation issue • Limitations of forward genetic screen approaches • Reverse Genetics in zebrafish - TILLING Alkylating Agents are Effective Mutagens EMS ENU Somatic vs Germinal Mutations Specific Locus Test Mosaic versus non-mosaic mutations Genetics 136, 1401-1420; 1994 Results of specific-locus tests 141,311 genomes screened, over thousands of crosses Improving Efficiency of ENU Mutagenesis Wilm, Kim, LSK, unpublished Figure 11.2(1) Screening Protocol for • Strategy for Identifying Mutations of Zebrafish identification of Development recessive zygotic mutations in zebrafish. • Upon ENU mutagenesis F2 generation genetic screen is performed • Every F1 fish is heterozygous for mutations in different genes Figure 11.2(2) Screening Protocol for Identifying Mutations of Zebrafish Development Homeodomain wild type bozozok Nodal Signaling Fast1/ Cripto one-eyed pinhead FoxH1 schmalspur Smad5 Alk8 BMP Signaling somitabun lost a fin Sizzled kluska ogon Noncanonical Wnt Signaling Glypican knypek Strabismus trilobite Solnica-Krezel et al., Development, 1996 Haploid Screens • Advantages • Limitations Review: Patton and Zon, Nature Rev. Genetics 2: 956-966 (2001) Skipping generations… Gynogenetic Screens Using Insertional Mutagens Why saturation mutagenesis may miss some genes Fig. 19.11 Techniques to reveal additional genes missed by saturation mutagenesis • Overexpression or misexpression screens – Usually dominant phenotypes – Redundant protein expression does not prevent appearance of phenotype • Screens for suppressor mutations – Mutation in one gene that compensates for mutation in another gene active in same process – Phenotype more similar to wild-type than mutant Suppressor mutations Fig. 19.12 Screen Design vu66 mutation enhances knypek phenotype 24hpf (Chyunue Yin) vu66 is closely linked to ugly duckling (udu) o-dianisidine staining (Liu et al., 2007) udu mutant was originally isolated in the Tubingen screen (Hammerschmidt et al., 1996) Liu et al reported that udu encodes a novel nuclear factor essential for primitive erythroid cell development. (2007) Atsushi Sawada vu66 is a new allele of udu mutant locus Atsushi Sawada udu gene is expressed maternally (Liu et al., 2007) - maternal udu expression could account for mild gastrulation defects of Zudu mutants ugu+/-;kny+/- wild type intercross Ciruna et al. Nature 2006 24 Z udu-/- 25 Atsushi Sawada pax2a expression in the pronephric tubule is lost in MZudu sibling (udu+/-) MZudu-/- Majumdar et al., 2000 10-somite cmlc2 expression in the heart primordium is lost in MZudu Sibling (udu+/-) MZudu-/- 25-somite ! Many of the SANT-domain containing proteins are involved in chromatin remodeling. (Boyer et al., 2004) Screens for Maternal Effect Mutations Mullins Pellegri Nusslein-Volhard Dev. Cell 6:771-80 (2004) TILLING (Targeting Induced Local Lesions in Genomes) PDZ-RhoGEF ~ 850bp ~670 TTTATGTTCCACT TGCAGACGCACCT T A ~540 500 450 400 350 300 250 200 150 100 Example of Tilling Gel (EP4) 64/69 confirmed (93%) 10 potential mutations: all confirmed, 1 nonsenseSeok-Hyung Kim Mutation Types Identified by TILLING Genome research, 2003 What fraction of mutations identified by forward genetic screens are nonsense mutations? Seok-Hyung Kim Efficiency of Mutagenesis Assayed by TILLING Vanderbilt Mutagenesis Regimen Mutation Rates Determined by TILLING 3.00 mM ENU x 4 1/516 kb 3.25 mM ENU x 4 1/441 kb 3.50 mM ENU x 4 1/209 kb 3.50 mM ENU x 6 1/210 kb Wienholds et al., Utrecht Laboratories 6 x 3 mM ENU 1 / 235 kb Draper and Moens, Fred Hatchinson Cancer Center, Seattle 4 x 3mM ENU 1 / 500 kb Seok-Hyung Kim http://www.fhcrc.org/tilling http://www.fhcrc.org/tilling ! Consortium results so far "#$! %&'(&)*)! ##!9&4/347! 01!%&2&-*&/! +"!,--&.*&/! ! ! 4874#5! !"#$% 487406! 34)5! 34)6! 34Z5"5! 783)$! W(*-M!J"#L! \54/@! ]_!J+L! ?V4&!J#$L! 9RV*&5)&=5-*3`5*&/! 9:;<%9=#! R&-&.*VR!"! 9:;<%9=>! ! J#1L! ! ! C"9"! ?@45-*34"5! B3-588#! ! CB@/"5! &'()*+,)% [8*"! A;(B! 4M)8"6! AWI! I88! -./*(0% a%,F! C6/)! FVH.$X"! _`V"! 1#234% D4..#! ?@45-*34"6! GMR55! EFG%!H#! FBR"! PF,GE"! 8&["! 567,!% GMR56! EH-8"#6! G;%#! F]C! GU3)*#! 8$1(9% G-5.5! I?="J;<K+L! 75*50! ?:E%K! 43*RY! :.#*);% *-5.6! ?/M/#! -V44&H34! 6<1% ?N="! .Z/#8"! ! /5b5."! B9%58.M5! >#XY! .R3-Z8&"6! =!3>+% 5R3/#! B9%6&*5! -V44&H34! 4R[#! (266.?$6,+% *4[R)["5! **45! >#XT! MVH5$5! @$'!1.AB% *4[R)["6! **46! Z3[>5! 57$#% 9OPQ"! ;78"! 93--V8V! ;3.M! %9:%O9"! B8-"! CDE8F=% C83*RZ"! 78R5>! %9:%O9";! %9"1>! E!#G6&."% IGI"! )8-+5>! CB@/"6! IGI%#! C@E,!% B@V+5! "K",! C@E,0% 8.5R$! ! 9,%;"! 434"! GB&B"0-! 9,%;#! 8!09% *[&6! ,G9OF"! ,^9"5! 6"'69% *[&-! ..."R"05S-.3="T! ;@-5*! 6"'6*0% )U5.=T1! 4(7>9*H*% ! 7584)! EV805"! 9RV*&34!C! EV805$! "#!39% OFP7"="! MVB&7&4! %CF@+% OFP7"=#! ! 12?)0% GBH$! 63I!*% C*563834!#! 4RH4"5! % )VH$! ! .RRH"5! ! 38 EVR/V4=68&(! ! ! ! SIX3 (sine oculis -related) • associated with hereditary and sporadic holoprosencephaly • usually dominant • incomplete penetrance • variable expressivity Monuki and Walsh, 2001 Six family of transcription factors Six domain Homeodomain Vertebrate Six3 is expressed early on in the anterior neuroectoderm, and subsequently in the developing forebrain and eyes. mouse chick Xenopus Medaka Oliver et al., 1995 Bovolenta et al., 1998 Zhou et al., 2000 Loosli et al., 1998 Zebrafish six3-related genes Six domain HD Six3a 94% identity 98% identity 97% similarity 98% similarity Six domain HD Six3b 74% identity 95% identity 89% similarity 98% similarity Six domain HD Six7 Homology alignments done against Six3a Fjose, A.; Kawakami, K., David, I. six3-related gene expression during gastrulation Anterior neuroectoderm Prechordal plate Anterior neuroectoderm Prechordal plate six3-related gene expression during segmentation six3 mutant mice lack forebrain Lagutin, Oliver et al., G&D, 2003 Progressive expansion of wnt1 expression domain In six3 +/- and six3 -/- mutants wnt1 1-2 somite stage FB Six3 MB wnt1 Lagutin, Oliver et al., G&D, 2003 Ectopic expression of the murine Six3 can repress wnt1 expression in zebrafish embryo msix3 RNA wnt1 FB Six3 MB wnt1 MZ hdl/tcf3 MZ hdl + msix3 Lagutin, Oliver et al., G&D, 2003 Testing activity of HPE- associated Six3 mutant proteins Christina Speirs in Geng et al., Dev Cell, 2008 Testing activity of HPE-associated Six3 mutant proteins Christina Speirs & Adi Inbal Geng et al., Dev Cell, 2008 Six3b - 293 aa 49 167 168 227 W Six domain HD T E109 Six Stop TILLING: Seok-Hyung Kim Combined six3b/six7 loss-of-function results in reduced or no eyes 2 dpf Inbal et al., Neuron, 2007 Testing activity of HPE-associated Six3 mutant proteins six3b-/-; six7 Christina Speirs Geng et al., Dev Cell, 2008 Targeted gene disruption in zebrafish using designed zinc finger nucleases Amacher Lab University of California, Berkeley Zinc Finger Nucleases Carroll et al., 2006 • Individual fingers recognize DNA triplets • Fingers are modular and can be hooked together • When ZFNs dimerize, the FokI endonuclease makes a dsDNA break in the spacer region Two FokI endonuclease “flavors” “WT” “High-Fidelity” Miller et al. (2007) Nature Biotechnology [Szczepek et al. (2007) Nature Biotechnology] How are dsDNA breaks repaired? Strand invasion DNA synthesis Ligation Modified from Kandavelou and Chandrasegaran, 2007 Testing ZFNs in zebrafish: Finger design (Sangamo) Induce ZFN Assay gal No ZFN activity expression reporter activity Low ZFN activity Transform DSB repair High ZFN activity With ZFNs ZFN binding site MEL Target EL1 MEL1 Repair? DSB repair is very efficient in yeast with appropriate templates Testing ZFNs in zebrafish: Injection Strategy Inject ZFN mRNA in one-cell embryos Analyze gametes or phenotypes at appropriate developmental stage RNA! Test loci: golden no tail/Brachyury Testing ZFNs in zebrafish: Particulars… • ZFNs designed and made by Sangamo • All ZFNs used contain 4-finger ZF motifs • In vivo cleavage activity tested in yeast • Used high-fidelity, obligate heterodimer form for almost all experiments Target locus #1: the golden gene WT golb1 Lamason et al. (2005) Induced mutations are typical of NHEJ mutagenic repair ZFN mutations are transmitted through the germline WT ntl Complementation cross of Founder A with a ntlb195 heterozygote ZFN mutations are transmitted through the germline 11/18 founders screened to date show germline transmission Germline transmission of 1 - 55%, Avg = 20% Acknowledgements J Miller F Faraji C Ngo G Katibah R Amora L Zhang E Rebar P Gregory Jasmine McCammon Yannick Doyon John Young Fyodor Urnov Keith Cheng (Penn St) Dana Carroll (U. Utah) Maria Jasin (Sloan-Kettering) Judith Campisi (LBNL) Lawson lab Wolfe lab.
Recommended publications
  • Application of CRISPR Genetic Screens to Investigate Neurological Diseases
    Application of CRISPR genetic screens to investigate neurological diseases The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation So, Raphaella W.L., et al. "Application of CRISPR genetic screens to investigate neurological diseases." Molecular Neurodegeneration 14 (2019): 41. https://doi.org/10.1186/s13024-019-0343-3 As Published https://doi.org/10.1186/s13024-019-0343-3 Publisher BioMed Central Version Final published version Citable link https://hdl.handle.net/1721.1/126106 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ So et al. Molecular Neurodegeneration (2019) 14:41 https://doi.org/10.1186/s13024-019-0343-3 REVIEW Open Access Application of CRISPR genetic screens to investigate neurological diseases Raphaella W. L. So1,2, Sai Wai Chung1, Heather H. C. Lau1,2, Jeremy J. Watts3, Erin Gaudette1, Zaid A. M. Al-Azzawi1, Jossana Bishay1, Lilian Tsai-Wei Lin1,2, Julia Joung4,5, Xinzhu Wang1,2 and Gerold Schmitt-Ulms1,2* Abstract The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome- scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing.
    [Show full text]
  • Perspectives
    Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.112938 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics The Impact of Whole Genome Sequencing on Model System Genetics: Get Ready for the Ride Oliver Hobert Columbia University Medical Center, Howard Hughes Medical Institute, New York, New York 10032 ABSTRACT Much of our understanding of how organisms develop and function is derived from the extraordinarily powerful, classic approach of screening for mutant organisms in which a specific biological process is disrupted. Reaping the fruits of such forward genetic screens in metazoan model systems like Drosophila, Caenorhabditis elegans, or zebrafish traditionally involves time-consuming positional cloning strategies that result in the identification of the mutant locus. Whole genome sequencing (WGS) has begun to provide an effective alternative to this approach through direct pinpointing of the molecular lesion in a mutated strain isolated from a genetic screen. Apart from significantly altering the pace and costs of genetic analysis, WGS also provides new perspectives on solving genetic problems that are difficult to tackle with conventional approaches, such as identifying the molecular basis of multigenic and complex traits. ENETIC model systems, from bacteria, yeast, regulatory elements) or chemical mutagens, such as G plants, worms, flies, and fish to mice allow the ethyl methane sulfonate (EMS) or N-ethyl N-nitroso dissection of the genetic basis of virtually any biological urea (ENU), that introduce point mutations or dele- process by isolating mutants obtained through random tions. Point mutation-inducing chemical mutagens are mutagenesis, in which the biological process under in many ways a superior mutagenic agent because their investigation is defective.
    [Show full text]
  • A Gene Expression Screen (Cdna Subtraction/Amphibian Metamorphosis/Tail Resorption/Gene Expression/Thyroid Hormone) ZHOU WANG and DONALD D
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 11505-11509, December 1991 Developmental Biology A gene expression screen (cDNA subtraction/amphibian metamorphosis/tail resorption/gene expression/thyroid hormone) ZHOU WANG AND DONALD D. BROWN Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210 Contributed by Donald D. Brown, September 30, 1991 ABSTRACT A gene expression screen identifies mRNAs tions and modifications of subtractive library methodology, that differ in abundance between two mRNA mixtures by a more recently incorporating PCR technology (9-13). subtractive hybridization method. The two mRNA populations This paper describes a subtractive library method that is are converted to double-stranded cDNAs, fragmented, and analogous to a genetic screen in the sense that it can estimate ligated to linkers for polymerase chain reaction (PCR) ampli- the number of, and therefore lead to the isolation of, virtually fication. The multiple cDNA fragments isolated from any given all up- and down-regulated genes. gene can be treated as alleles in a genetic screen. Probability The gene expression screen is applied here to thyroid analysis of the frequency with which multiple alleles are found hormone-induced tadpole tail regression, the final change in provides an estimation of the total number of up- and down- amphibian metamorphosis, which occurs at metamorphic regulated genes. We have applied this method to genes that are "climax" when the endogenous thyroid hormone is at its differentially expressed in amphibian tadpole tail tissue in the highest level (14). Tail resorption is genetically programmed first 24 hr after thyroid hormone treatment, which ultimately and cell-autonomous (15).
    [Show full text]
  • A Genetic Screen Identifies Cellular Factors Involved in Retroviral -1 Frameshifting (Translation/CUP1/IFSI/Paromomycin)
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6587-6591, July 1995 Biochemistry A genetic screen identifies cellular factors involved in retroviral -1 frameshifting (translation/CUP1/IFSI/paromomycin) SUSANNA I. LEE*, JAMES G. UMENt, AND HAROLD E. VARMUS*t# Departments of *Microbiology and Immunology and tBiochemistry and Biophysics, University of California, San Francisco, CA 94143 Contributed by Harold E. Varmus, February 17, 1995 ABSTRACT To identify cellular factors that function in gene causes increased frameshifting and a decrease in trans- -1 ribosomal frameshifting, we have developed assays in the lational fidelity in response to antibiotics that target the 40S yeast Saccharomyces cerevisiae to screen for host mutants in ribosomal subunit. which frameshifting is specifically affected. Expression vec- tors have been constructed in which the mouse mammary tumor virus gag-pro frameshift region is placed upstream of MATERIALS AND METHODS the lacZ gene or the CUPI gene so that the reporters are in the Yeast Strains and Genetic Methods. Saccharomyces cerevi- -1 frame relative to the initiation codon. These vectors have siae strains used in this study are listed in Table 1. been used to demonstrate that -1 frameshifting is recapitu- The numbering of the MMTV sequence is reported here lated in yeast in response to retroviral mRNA signals. Using with the first A residue of the heptanucleotide shifty site these reporters, we have isolated spontaneous host mutants in designated + 1. The CUP1 reporter plasmid contained nt -17 two complementation groups, ifsl and ifs2, in which frame- to +68 of MMTV inserted into the Kpn I site of pGM14 shifting is increased 2-fold.
    [Show full text]
  • DISCERN-Genetics: Quality Criteria for Information on Genetic Testing
    European Journal of Human Genetics (2006) 14, 1179–1188 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg ARTICLE DISCERN-Genetics: quality criteria for information on genetic testing Sasha Shepperd*,1, Peter Farndon2, Vivian Grainge3, Sandy Oliver4, Michael Parker5, Rafael Perera3, Helen Bedford6, David Elliman7, Alastair Kent8 and Peter Rose3 1Department of Public Health, University of Oxford, Headington, Oxford, UK; 2NHS National Genetics Education and Development Centre, Norton Court, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK; 3Department of Primary Care, University of Oxford, Headington, Oxford, UK; 4Institute of Education, University of London, London, UK; 5Department of Public Health, The Ethox Centre, University of Oxford, Oxford, UK; 6Centre for Epidemiology and Biostatistics, Institute of Child Health, London, UK; 7Great Ormond Street Hospital, London, UK; 8Genetic Interest Group, Unit 4D, London, UK Information currently available to the public is inadequate to support those deciding to consent to a genetic test. As genetic knowledge continues to evolve, more people will be forced to consider the complex issues raised by genetic testing. We developed and tested criteria to guide the production and appraisal of information resources produced for the public on genetic testing. Lay people with and without experience of a genetic condition, and providers and producers of health information appraised and listed the criteria they used to rate the quality of a sample of information on cystic fibrosis, Down’s syndrome, familial breast cancer, familial colon cancer, haemochromatosis, Huntington’s disease, sickle cell disease, and thalassaemia. These genetic conditions represent different populations, disease pathways, and treatment decisions.
    [Show full text]
  • A Genetic Screen Implicates a CWC16/Yju2/CCDC130 Protein and SMU1 in Alternative Splicing in Arabidopsis Thaliana
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 1 A genetic screen implicates a CWC16/Yju2/CCDC130 protein and SMU1 in alternative splicing in Arabidopsis thaliana Tatsuo Kanno, Wen-Dar Lin, Jason L. Fu, Antonius J.M. Matzke and Marjori Matzke Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nangang District, Taipei 115, Taiwan Running head: CWC16 and SMU1 in alternative splicing in plants Key words: alternative splicing, CWC16, SmF, SMU1, Yju2 Corresponding authors: Marjori Matzke Antonius Matzke Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nangang District, Taipei 115, Taiwan Tel: +886-2787-1135 Email: [email protected] [email protected] Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 2 Abstract (248 words) To identify regulators of pre-mRNA splicing in plants, we developed a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana. In wild-type plants, three major splice variants issue from the GFP gene but only one represents a translatable GFP mRNA. Compared to wild-type seedlings, which exhibit an intermediate level of GFP expression, mutants identified in the screen feature either a ‘GFP-weak’ or ‘Hyper-GFP’ phenotype depending on the ratio of the three splice variants. GFP-weak mutants, including previously identified prp8 and rtf2, contain a higher proportion of unspliced transcript or canonically-spliced transcript, neither of which is translatable into GFP protein. By contrast, the coilin-deficient hyper-gfp1 (hgf1) mutant displays a higher proportion of translatable GFP mRNA, which arises from enhanced splicing a U2-type intron with non-canonical AT-AC splice sites.
    [Show full text]
  • Forward and Reverse Genetic Approaches for the Analysis of Vertebrate Development in the Zebrafish
    Developmental Cell Perspective Forward and Reverse Genetic Approaches for the Analysis of Vertebrate Development in the Zebrafish Nathan D. Lawson1,* and Scot A. Wolfe1,2,* 1Program in Gene Function and Expression 2Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, MA 01605, USA *Correspondence: [email protected] (N.D.L.), [email protected] (S.A.W.) DOI 10.1016/j.devcel.2011.06.007 The development of facile forward and reverse genetic approaches has propelled the deconvolution of gene function in biology. While the origins of these techniques reside in the study of single-cell or invertebrate organisms, in many cases these approaches have been applied to vertebrate model systems to gain powerful insights into gene function during embryonic development. This perspective provides a summary of the major forward and reverse genetic approaches that have contributed to the study of vertebrate gene function in zebrafish, which has become an established model for the study of animal development. Introduction et al., 1996; Haffter et al., 1996). Subsequently, the recent explo- Historically, geneticists have relied on the identification of sion of genomic resources has precipitated the need for com- mutant phenotypes to define and dissect a particular pathway plementary reverse genetic approaches to directly interrogate or process without a priori knowledge of the genes involved. genes and pathways of interest. As with other models founded Indeed, early application of this forward genetic approach in largely on their amenability to forward genetics (e.g., C. elegans, bacteriophage, bacteria, and other microorganisms established Drosophila), developing reverse genetic approaches for zebra- the relationship between genes and enzymes, defined gene fish initially proved challenging.
    [Show full text]
  • A Genetic Screen to Identify New Molecular Players Involved in Photoprotection Qh in Arabidopsis Thaliana
    plants Article A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in Arabidopsis thaliana Pierrick Bru , Sanchali Nanda and Alizée Malnoë * Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden; [email protected] (P.B.); [email protected] (S.N.) * Correspondence: [email protected] Received: 1 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Photosynthesis is a biological process which converts light energy into chemical energy that is used in the Calvin–Benson cycle to produce organic compounds. An excess of light can induce damage to the photosynthetic machinery. Therefore, plants have evolved photoprotective mechanisms such as non-photochemical quenching (NPQ). To focus molecular insights on slowly relaxing NPQ processes in Arabidopsis thaliana, previously, a qE-deficient line—the PsbS mutant—was mutagenized and a mutant with high and slowly relaxing NPQ was isolated. The mutated gene was named suppressor of quenching 1, or SOQ1, to describe its function. Indeed, when present, SOQ1 negatively regulates or suppresses a form of antenna NPQ that is slow to relax and is photoprotective. We have now termed this component qH and identified the plastid lipocalin, LCNP, as the effector for this energy dissipation mode to occur. Recently, we found that the relaxation of qH1, ROQH1, protein is required to turn off qH. The aim of this study is to identify new molecular players involved in photoprotection qH by a whole genome sequencing approach of chemically mutagenized Arabidopsis thaliana. We conducted an EMS-mutagenesis on the soq1 npq4 double mutant and used chlorophyll fluorescence imaging to screen for suppressors and enhancers of qH.
    [Show full text]
  • A Genetic Screen for Mutations That Disrupt an Auditory Response in Drosophila Melanogaster
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 14837–14842, December 1997 Neurobiology A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster DANIEL F. EBERL*, GEOFFREY M. DUYK†‡, AND NORBERT PERRIMON† Department of Genetics and †Howard Hughes Medical Institute, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 Communicated by Anthony P. Mahowald, University of Chicago, Chicago, IL, November 3, 1997 (received for review March 9, 1997) ABSTRACT Hearing is one of the last sensory modalities useful to the organism, the information from the sensory cells to be subjected to genetic analysis in Drosophila melanogaster. and other relevant information is assimilated in the central We describe a behavioral assay for auditory function involving nervous system, where an appropriate response is initiated. courtship among groups of males triggered by the pulse Our understanding of the Drosophila auditory system comes component of the courtship song. In a mutagenesis screen for from several decades of work on courtship. Wing-generated mutations that disrupt the auditory response, we have recov- auditory cues are involved in courtship, along with visual, ered 15 mutations that either reduce or abolish this response. olfactory, gustatory, and tactile signals (see ref. 5 for review). Mutant audiograms indicate that seven mutants reduced the Three components of auditory communication have been amplitude of the response at all intensities. Another seven identified. The main component, the pulse song (6–8) that the abolished the response altogether. The other mutant, 5L3, male produces with his outstretched wing, consists of bursts of responded only at high sound intensities, indicating that the pulses with a mean interpulse interval of '34 ms (Fig.
    [Show full text]
  • Genetics on the Fly: a Primer on the Drosophila Model System
    GENETICS | PRIMER Genetics on the Fly: A Primer on the Drosophila Model System Karen G. Hales,*,1 Christopher A. Korey,† Amanda M. Larracuente,‡ and David M. Roberts§ *Department of Biology, Davidson College, Davidson North Carolina 28035, †Biology Department, College of Charleston, Charleston, South Carolina 29424, ‡Department of Biology, University of Rochester, Rochester, New York 14627, and §Biology Department, Franklin and Marshall College, Lancaster, Pennsylvania 17604 ABSTRACT Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. KEYWORDS Drosophila; development; comparative genomics; model organism; TABLE OF CONTENTS
    [Show full text]
  • Essential Genetic and Genomic Competencies for Nurses with Graduate Degrees
    Essential Genetic and Genomic Competencies Established by Consensus Panel September 2011 for Nurses with Graduate Degrees for Nurses ESSENTIAL GENETIC AND GENOMIC COMPETENCIES FOR NURSES WITH GRADUATE DEGREES Karen E. Greco, PhD, RN, ANP-BC, FAAN Susan Tinley, PhD, RN, CGC Diane Seibert, PhD, CRNP, FAANP Established by Consensus Panel September 2011 Library of Congress Cataloging-in-Publication Data Greco, Karen E. Essential genetic and genomic competencies for nurses with graduate degrees / Karen E. Greco, Susan Tinley, Diane Seibert. p. ; cm. Includes bibliographical references. Summary: “Describes and delineates the thirty-eight essential genetic and genomic competencies that inform the practice of all nurses functioning at the graduate level in nursing, summarizes the key documents and processes used to identify these competencies, and identifies the members of the Steering, Advisory, and Consensus Panel committees involved”--Provided by publisher. ISBN 978-1-55810-437-2 -- ISBN 1-55810-437-2 I. Tinley, Susan. II. Seibert, Diane. III. American Nurses Association. IV. International Society of Nurses in Genetics. V. Title. [DNLM: 1. Genetics, Medical--standards--United States. 2. Clinical Competence- -United States. 3. Education, Nursing, Graduate--standards--United States. 4. Genomics--standards--United States. QZ 50] 616’.042--dc23 2011049764 This publication — Essential Genetic and Genomic Competencies for Nurses with Graduate Degrees — reflects the thinking of the nursing profession on various issues and should be reviewed in conjunction with state board of nursing policies and practices. State law, rules, and regulations govern the practice of nursing, while Essential Genetic and Genomic Competencies for Nurses with Graduate Degrees guides nurses in the application of their professional skills and responsibilities.
    [Show full text]
  • Forward and Reverse Genetic Approaches to the Analysis of Eye Development in Zebrafish
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 42 (2002) 527–533 www.elsevier.com/locate/visres Forward and reverse genetic approaches to the analysis of eye development in zebrafish Jarema J. Malicki a,*, Zac Pujic a, Christine Thisse b, Bernard Thisse b, Xiangyun Wei a a Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02110, USA b IGBMC/CNRS/INSERM/ULP, 1rue Laurent Fries, CU de Strasbourg, Cedex Illkirch 67404, France Received 14 May 2001; received in revised form 25 May 2001 Abstract The zebrafish has been established as a mainstream research system, largely due to the immense success of genetic screens. Over 2000 mutant alleles affecting zebrafish’s early development have been isolated in two large-scale morphological screens and several smaller efforts. So far, over 50 mutant strains display retinal defects and many more have been shown to affect the retinotectal projection. More recently, mutant isolation and characterization have been successfully followed by candidate and positional cloning of underlying genes. To supplement forward genetic mutational analysis, several reverse genetic techniques have also been developed. These recent advances, combined with the genome project, have established the zebrafish as one of the leading models for studies of visual system development. Ó 2002 Elsevier Science Ltd. All rights reserved. Keywords: Zebrafish; Mutagenesis; Screen; Positional cloning; Antisense; Knockdown 1. Forward genetic analysis embryos (Baier et al., 1996; Malicki et al., 1996; Li & Dowling, 1997). A rich repertoire of techniques is The hallmark of forward genetic analysis is a muta- currently available to search for mutant phenotypes genesis screen (Fig.
    [Show full text]