Methods for Extracting Data from the Internet Joel Willers Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Web Content Analysis
Web Content Analysis Workshop in Advanced Techniques for Political Communication Research: Web Content Analysis Session Professor Rachel Gibson, University of Manchester Aims of the Session • Defining and understanding the Web as on object of study & challenges to analysing web content • Defining the shift from Web 1.0 to Web 2.0 or ‘social media’ • Approaches to analysing web content, particularly in relation to election campaign research and party homepages. • Beyond websites? Examples of how web 2.0 campaigns are being studied – key research questions and methodologies. The Web as an object of study • Inter-linkage • Non-linearity • Interactivity • Multi-media • Global reach • Ephemerality Mitra, A and Cohen, E. ‘Analyzing the Web: Directions and Challenges’ in Jones, S. (ed) Doing Internet Research 1999 Sage From Web 1.0 to Web 2.0 Tim Berners-Lee “Web 1.0 was all about connecting people. It was an interactive space, and I think Web 2.0 is of course a piece of jargon, nobody even knows what it means. If Web 2.0 for you is blogs and wikis, then that is people to people. But that was what the Web was supposed to be all along. And in fact you know, this ‘Web 2.0’, it means using the standards which have been produced by all these people working on Web 1.0,” (from Anderson, 2007: 5) Web 1.0 The “read only” web Web 2.0 – ‘What is Web 2.0’ Tim O’Reilly (2005) “The “read/write” web Web 2.0 • Technological definition – Web as platform, supplanting desktop pc – Inter-operability , through browser access a wide range of programmes that fulfil a variety of online tasks – i.e. -
Corpora: Google Ngram Viewer and the Corpus of Historical American English
EuroAmerican Journal of Applied Linguistics and Languages E JournALL Volume 1, Issue 1, November 2014, pages 48 68 ISSN 2376 905X DOI - - www.e journall.org- http://dx.doi.org/10.21283/2376905X.1.4 - Exploring mega-corpora: Google Ngram Viewer and the Corpus of Historical American English ERIC FRIGINALa1, MARSHA WALKERb, JANET BETH RANDALLc aDepartment of Applied Linguistics and ESL, Georgia State University bLanguage Institute, Georgia Institute of Technology cAmerican Language Institute, New York University, Tokyo Received 10 December 2013; received in revised form 17 May 2014; accepted 8 August 2014 ABSTRACT EN The creation of internet-based mega-corpora such as the Corpus of Contemporary American English (COCA), the Corpus of Historical American English (COHA) (Davies, 2011a) and the Google Ngram Viewer (Cohen, 2010) signals a new phase in corpus-based research that provides both novice and expert researchers immediate access to a variety of online texts and time-coded data. This paper explores the applications of these corpora in the analysis of academic word lists, in particular, Coxhead’s (2000) Academic Word List (AWL). Coxhead (2011) has called for further research on the AWL with larger corpora, noting that learners’ use of academic vocabulary needs to address for the AWL to be useful in various contexts. Results show that words on the AWL are declining in overall frequency from 1990 to the present. Implications about the AWL and future directions in corpus-based research utilizing mega-corpora are discussed. Keywords: GOOGLE N-GRAM VIEWER, CORPUS OF HISTORICAL AMERICAN ENGLISH, MEGA-CORPORA, TREND STUDIES. ES La creación de megacorpus basados en Internet, tales como el Corpus of Contemporary American English (COCA), el Corpus of Historical American English (COHA) (Davies, 2011a) y el Visor de Ngramas de Google (Cohen, 2010), anuncian una nueva fase en la investigación basada en corpus, pues proporcionan, tanto a investigadores noveles como a expertos, un acceso inmediato a una gran diversidad de textos online y datos codificados con time-code. -
BEYOND JEWISH IDENTITY Rethinking Concepts and Imagining Alternatives
This book is subject to a CC-BY-NC license. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/ BEYOND JEWISH IDENTITY Rethinking Concepts and Imagining Alternatives This book is subject to a CC-BY-NC license. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/ This book is subject to a CC-BY-NC license. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/ BEYOND JEWISH IDENTITY rethinking concepts and imagining alternatives Edited by JON A. LEVISOHN and ARI Y. KELMAN BOSTON 2019 This book is subject to a CC-BY-NC license. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/ Library of Congress Control Number:2019943604 The research for this book and its publication were made possible by the generous support of the Jack, Joseph and Morton Mandel Center for Studies in Jewish Education, a partnership between Brandeis University and the Jack, Joseph and Morton Mandel Foundation of Cleveland, Ohio. © Academic Studies Press, 2019 ISBN 978-1-644691-16-8 (Hardcover) ISBN 978-1-644691-29-8 (Paperback) ISBN 978-1-644691-17-5 (Open Access PDF) Book design by Kryon Publishing Services (P) Ltd. www.kryonpublishing.com Cover design by Ivan Grave Published by Academic Studies Press 1577 Beacon Street Brookline, MA 02446, USA [email protected] www.academicstudiespress.com Effective May 26th 2020, this book is subject to a CC-BY-NC license. To view a copy of this license, visit https://creativecommons.org/licenses/ by-nc/4.0/. -
Automatic Retrieval of Updated Information Related to COVID-19 from Web Portals 1Prateek Raj, 2Chaman Kumar, 3Dr
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 3, 2020 Automatic Retrieval of Updated Information Related to COVID-19 from Web Portals 1Prateek Raj, 2Chaman Kumar, 3Dr. Mukesh Rawat 1,2,3 Department of Computer Science and Engineering, Meerut Institute of Engineering and Technology, Meerut 250005, U.P, India Abstract In the world of social media, we are subjected to a constant overload of information. Of all the information we get, not everything is correct. It is advisable to rely on only reliable sources. Even if we stick to only reliable sources, we are unable to understand or make head or tail of all the information we get. Data about the number of people infected, the number of active cases and the number of people dead vary from one source to another. People usually use up a lot of effort and time to navigate through different websites to get better and accurate results. However, it takes lots of time and still leaves people skeptical. This study is based on web- scraping & web-crawlingapproach to get better and accurate results from six COVID-19 data web sources.The scraping script is programmed with Python library & crawlers operate with HTML tags while application architecture is programmed using Cascading style sheet(CSS) &Hypertext markup language(HTML). The scraped data is stored in a PostgreSQL database on Heroku server and the processed data is provided on the dashboard. Keywords:Web-scraping, Web-crawling, HTML, Data collection. I. INTRODUCTION The internet is wildly loaded with data and contents that are informative as well as accessible to anyone around the globe in various shape, size and extension like video, audio, text and image and number etc. -
CS15-319 / 15-619 Cloud Computing
CS15-319 / 15-619 Cloud Computing Recitation 13 th th November 18 and 20 , 2014 Announcements • Encounter a general bug: – Post on Piazza • Encounter a grading bug: – Post Privately on Piazza • Don’t ask if my answer is correct • Don’t post code on Piazza • Search before posting • Post feedback on OLI Last Week’s Project Reflection • Provision your own Hadoop cluster • Write a MapReduce program to construct inverted lists for the Project Gutenberg data • Run your code from the master instance • Piazza Highlights – Different versions of Hadoop API: Both old and new should be fine as long as your program is consistent Module to Read • UNIT 5: Distributed Programming and Analytics Engines for the Cloud – Module 16: Introduction to Distributed Programming for the Cloud – Module 17: Distributed Analytics Engines for the Cloud: MapReduce – Module 18: Distributed Analytics Engines for the Cloud: Pregel – Module 19: Distributed Analytics Engines for the Cloud: GraphLab Project 4 • MapReduce – Hadoop MapReduce • Input Text Predictor: NGram Generation – NGram Generation • Input Text Predictor: Language Model and User Interface – Language Model Generation Input Text Predictor • Suggest words based on letters already typed n-gram • An n-gram is a phrase with n contiguous words Google-Ngram Viewer • The result seems logical: the singular “is” becomes the dominant verb after the American Civil War. Google-Ngram Viewer • “one nation under God” and “one nation indivisible.” • “under God” was signed into law by President Eisenhower in 1954. How to Construct an Input Text Predictor? 1. Given a language corpus – Project Gutenberg (2.5 GB) – English Language Wikipedia Articles (30 GB) 2. -
Deconstructing Large-Scale Distributed Scraping Attacks
September 2018 Radware Research Deconstructing Large-Scale Distributed Scraping Attacks A Stepwise Analysis of Real-time Sophisticated Attacks On E-commerce Businesses Deconstructing Large-Scale Distributed Scraping Attacks Table of Contents 02 Why Read This E-book 03 Key Findings 04 Real-world Case of A Large-Scale Scraping Attack On An E-tailer Snapshot Of The Scraping Attack Attack Overview Stages of Attack Stage 1: Fake Account Creation Stage 2: Scraping of Product Categories Stage 3: Price and Product Info. Scraping Topology of the Attack — How Three-stages Work in Unison 11 Recommendations: Action Plan for E-commerce Businesses to Combat Scraping 12 About Radware 02 Deconstructing Large-Scale Distributed Scraping Attacks Why Read This E-book Hypercompetitive online retail is a crucible of technical innovations to win today’s business wars. Tracking prices, deals, content and product listings of competitors is a well-known strategy, but the rapid pace at which the sophistication of such attacks is growing makes them difficult to keep up with. This e-book offers you an insider’s view of scrapers’ techniques and methodologies, with a few takeaways that will help you fortify your web security strategy. If you would like to learn more, email us at [email protected]. Business of Bots Companies like Amazon and Walmart have internal teams dedicated to scraping 03 Deconstructing Large-Scale Distributed Scraping Attacks Key Findings Scraping - A Tool Today, many online businesses either employ an in-house team or leverage the To Gain expertise of professional web scrapers to gain a competitive advantage over their competitors. -
Legality and Ethics of Web Scraping
Murray State's Digital Commons Faculty & Staff Research and Creative Activity 12-15-2020 Tutorial: Legality and Ethics of Web Scraping Vlad Krotov Leigh Johnson Murray State University Leiser Silva University of Houston Follow this and additional works at: https://digitalcommons.murraystate.edu/faculty Recommended Citation Krotov, V., Johnson, L., & Silva, L. (2020). Tutorial: Legality and Ethics of Web Scraping. Communications of the Association for Information Systems, 47, pp-pp. https://doi.org/10.17705/1CAIS.04724 This Peer Reviewed/Refereed Publication is brought to you for free and open access by Murray State's Digital Commons. It has been accepted for inclusion in Faculty & Staff Research and Creative Activity by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343555462 Legality and Ethics of Web Scraping, Communications of the Association for Information Systems (forthcoming) Article in Communications of the Association for Information Systems · August 2020 CITATIONS READS 0 388 3 authors, including: Vlad Krotov Murray State University 42 PUBLICATIONS 374 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Addressing barriers to big data View project Web Scraping Framework: An Integrated Approach to Retrieving Big Qualitative Data from the Web View project All content following this -
Internet and Data
Internet and Data Internet and Data Resources and Risks and Power Kenneth W. Regan CSE199, Fall 2017 Internet and Data Outline Week 1 of 2: Data and the Internet What is data exactly? How much is there? How is it growing? Where data resides|in reality and virtuality. The Cloud. The Farm. How data may be accessed. Importance of structure and markup. Structures that help algorithms \crunch" data. Formats and protocols for enabling access to data. Protocols for controlling access and changes to data. SQL: Select. Insert. Update. Delete. Create. Drop. Dangers to privacy. Dangers of crime. (Dis-)Advantages of online data. [Week 1 Activity: Trying some SQL queries.] Internet and Data What Exactly Is \Data"? Several different aspects and definitions: 1 The entire track record of (your) online activity. Note that any \real data" put online was part of online usage. Exception could be burning CD/DVDs and other hard media onto a server, but nowadays dwarfed by uploads. So this is the most inclusive and expansive definition. Certainly what your carrier means by \data"|if you re-upload a file, it counts twice. 2 Structured information for a particular context or purpose. What most people mean by \data." Data repositories often specify the context and form. Structure embodied in formats and access protocols. 3 In-between is what's commonly called \Unstructured Information" Puts the M in Data Mining. Hottest focus of consent, rights, and privacy issues. Internet and Data How Much Data Is There? That is, How Big Is the Internet? Searchable Web Deep Web (I maintain several gigabytes of deep-web textual data. -
Introduction to Text Analysis: a Coursebook
Table of Contents 1. Preface 1.1 2. Acknowledgements 1.2 3. Introduction 1.3 1. For Instructors 1.3.1 2. For Students 1.3.2 3. Schedule 1.3.3 4. Issues in Digital Text Analysis 1.4 1. Why Read with a Computer? 1.4.1 2. Google NGram Viewer 1.4.2 3. Exercises 1.4.3 5. Close Reading 1.5 1. Close Reading and Sources 1.5.1 2. Prism Part One 1.5.2 3. Exercises 1.5.3 6. Crowdsourcing 1.6 1. Crowdsourcing 1.6.1 2. Prism Part Two 1.6.2 3. Exercises 1.6.3 7. Digital Archives 1.7 1. Text Encoding Initiative 1.7.1 2. NINES and Digital Archives 1.7.2 3. Exercises 1.7.3 8. Data Cleaning 1.8 1. Problems with Data 1.8.1 2. Zotero 1.8.2 3. Exercises 1.8.3 9. Cyborg Readers 1.9 1. How Computers Read Texts 1.9.1 2. Voyant Part One 1.9.2 3. Exercises 1.9.3 10. Reading at Scale 1.10 1. Distant Reading 1.10.1 2. Voyant Part Two 1.10.2 3. Exercises 1.10.3 11. Topic Modeling 1.11 1. Bags of Words 1.11.1 2. Topic Modeling Case Study 1.11.2 3. Exercises 1.11.3 12. Classifiers 1.12 1. Supervised Classifiers 1.12.1 2. Classifying Texts 1.12.2 3. Exercises 1.12.3 13. Sentiment Analysis 1.13 1. Sentiment Analysis 1.13.1 2. -
Google Ngram Viewer Turns Snippets Into Insight Computers Have
PART I Shredding the Great Books - or - Google Ngram Viewer Turns Snippets into Insight Computers have the ability to store enormous amounts of information. But while it may seem good to have as big a pile of information as possible, as the pile gets bigger, it becomes increasingly difficult to find any particular item. In the old days, helping people find information was the job of phone books, indexes in books, catalogs, card catalogs, and especially librarians. Goals for this Lecture 1. Investigate the history of digitizing text; 2. Understand the goal of Google Books; 3. Describe logistical, legal, and software problems of Google Books; 4. To see some of the problems that arise when old texts are used. Computers Are Reshaping Our World This class looks at ways in which computers have begun to change the way we live. Many recent discoveries and inventions can be attributed to the power of computer hardware (the machines), the development of computer programs (the instructions we give the machines), and more importantly to the ability to think about problems in new ways that make it possible to solve them with computers, something we call computational thinking. Issues in Computational Thinking What problems can computers help us with? What is different about how a computer seeks a solution? Why are computer solutions often not quite the same as what a human would have found? How do computer programmers write out instructions that tell a computer how to solve a problem, what problem to solve, and how to report the answer? How does a computer \think"? How does it receive instructions, store infor- mation in a memory, represent and manipulate the numbers and words and pictures and ideas that we refer to as we think about a problem? Computers are Part of a Complicated World We will see that making a computer carry out a task in a few seconds actually can take years of thinking, research, and experiment. -
CSCI 452 (Data Mining) Dr. Schwartz HTML Web Scraping 150 Pts
CSCI 452 (Data Mining) Dr. Schwartz HTML Web Scraping 150 pts Overview For this assignment, you'll be scraping the White House press briefings for President Obama's terms in the White House to see which countries have been mentioned and how often. We will use a mirrored image (originally so that we wouldn’t cause undue load on the White House servers, now because the data is historical). You will use Python 3 with the following libraries: • Beautiful Soup 4 (makes it easier to pull data out of HTML and XML documents) • Requests (for handling HTTP requests from python) • lxml (XML and HTML parser) We will use Wikipedia's list of sovereign states to identify the entities we will be counting, then we will download all of the press briefings and count how many times a country's name has been mentioned in the press briefings during President Obama's terms. Specification There will be a few distinct steps to this assignment. 1. Write a Python program to scrape the data from Wikipedia's list of sovereign states (link above). Note that there are some oddities in the table. In most cases, the title on the href (what comes up when you hover your mouse over the link) should work well. See "Korea, South" for example -- its title is "South Korea". In entries where there are arrows (see "Kosovo"), there is no title, and you will want to use the text from the link. These minor nuisances are very typical in data scraping, and you'll have to deal with them programmatically. -
Security Assessment Methodologies SENSEPOST SERVICES
Security Assessment Methodologies SENSEPOST SERVICES Security Assessment Methodologies 1. Introduction SensePost is an information security consultancy that provides security assessments, consulting, training and managed vulnerability scanning services to medium and large enterprises across the world. Through our labs we provide research and tools on emerging threats. As a result, strict methodologies exist to ensure that we remain at our peak and our reputation is protected. An information security assessment, as performed by anyone in our assessment team, is the process of determining how effective a company’s security posture is. This takes the form of a number of assessments and reviews, namely: - Extended Internet Footprint (ERP) Assessment - Infrastructure Assessment - Application Assessment - Source Code Review - Wi-Fi Assessment - SCADA Assessment 2. Security Testing Methodologies A number of security testing methodologies exist. These methodologies ensure that we are following a strict approach when testing. It prevents common vulnerabilities, or steps, from being overlooked and gives clients the confidence that we look at all aspects of their application/network during the assessment phase. Whilst we understand that new techniques do appear, and some approaches might be different amongst testers, they should form the basis of all assessments. 2.1 Extended Internet Footprint (ERP) Assessment The primary footprinting exercise is only as good as the data that is fed into it. For this purpose we have designed a comprehensive and