Fire Department Use of Pids

Total Page:16

File Type:pdf, Size:1020Kb

Fire Department Use of Pids The Connecticut Fire Academy Skill Sheet HM3.1.3 Recruit Firefighter Program Atmospheric Monitoring Practical Skill Training Instructor Reference Materials Fire Engineering.com Fire Department use of PIDs By Jeff Post on 11/01/2012 Each day across North America, a fire department responds to an incident requiring gas detection beyond the limits of a standard four-gas meter. These incidents include but are not limited to unknown odors, confined space and trench rescues, and chemical runs. In a large percentage of these calls, the first-due companies are not specialized hazardous materials units. With the development of regionalized hazardous response assets, although many fire departments now have access to photo ionization detectors (PIDs), they may overlook them as a valuable response tool. An emergency response organization will greatly increase its effectiveness and the level of protection it offers its employees (responders) by more frequently deploying a PID in response. Although some departments have these instruments, their use is shrouded in mystery and wordy user manuals. I offer below a user-friendly training tool to improve responder safety. WHAT IT DOES A PID measures volatile organic compounds (VOCs), a vast chemical family that includes common chemicals such as gasoline, epoxies and resins, paints, and almost all hydrocarbon chemicals (e.g., alkanes, ketones). A PID will also detect alcohols (e.g., ethanol, isopropanol, methanol) and the odorant mercaptan found in propane and natural gas. Typically, VOCs have a high vapor pressure at ambient temperatures, meaning the liquid is giving off vapor readily, which makes gas detection relatively easy. The main purpose of the PID in these types of spills and releases is to measure the toxicity of the atmosphere—i.e., its threat to responders' health. It is important to note that using a PID alone will not adequately protect the responder; it is crucial to combine a PID with other gas detection instruments—at a minimum, a four-gas meter (which detects combustible gases, oxygen enrichment and deficiency, carbon monoxide, and usually one toxic gas such as hydrogen sulfide) and pH papers. PIDs will detect some inorganic materials such as ammonia, hydrogen sulfide, phosphine, and nitrous oxides. Some of these gases are toxic by inhalation and are released from other compounds when they react with water; they can be found in the toxic-by-inhalation table in the green section of the Emergency Response Guidebook (ERG) (see page 345 in the 2012 edition). The PID is ineffective for measuring ambient air or oxygen levels, hydrogen cyanide, polychlorinated biphenyls (PCBs), radiation, freons, and acid/basic gases. When investigating releases, responders still need to rely on a multiresource approach to identify and qualify an environment. The PID uses light to ionize a sample. When the gas sample is drawn into the meter, a light source will cause an electron to break off while the remaining sample is put through a grid where the ion's current is measured. The current created is related to the gas concentration, and the value will be displayed as a readout in parts per million (ppm) on the digital display. Again, the meter is not capable of identifying the gas detected; it is just displaying its concentration in the atmosphere. One misconception with some meters is that the gas detected is identified on the display; many meters will display on the screen the PID calibration gas used, commonly isobutylene. There are two critical pieces of information you need to detect with reliable result: the strength of the PID lamp and the material's ionization potential (IP). The lamp strength is expressed in electron volts (eV) for all PIDs and indicates the amount of energy available to cause the neutral molecule to break off and give the material a charge (thus ionizing). The eV strength will vary from instrument to instrument. The most common three eV strengths available are 9.8, 10.2, and 10.6; there is also 11.7 eV (photos 1, 2). This information is important, since the lamp will produce reliable readings only on materials with an IP at or below the lamp's strength. Most instruments indicate the lamp's strength during the start-up procedure. The material's IP is the energy needed to cause the neutral ion to be removed and cause the ionization. Although one would think that selecting the lamp with the highest eV strength would be most appropriate, the 11.7 eV lamp is not as stable as the 10. 6 eV, and its lifespan is significantly shorter. 1 of 7 Revision: 101316 The Connecticut Fire Academy Skill Sheet HM3.1.3 Recruit Firefighter Program Atmospheric Monitoring Practical Skill Training Instructor Reference Materials (1) A typical photo ionization detector (PID) lamp. Always use gloves and the manufacturer's cleaning solution when changing out lamps. Contaminants from skin may cause interference and impair accuracy. (Photos by Firefighter Dave Grills.) (2) Common photo ionization detectors are available as a stand- alone unit (middle, silver) and in a five-gas combination meter (bottom, yellow). In the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards, the IP of chemicals is noted in the physical characteristics section. In addition to the NIOSH guide, the IP may be found on some material safety data sheets (MSDSs) as well as in databases such as the Wireless Information System for Emergency Responders (WISER) available from the National Library of Medicine. Again, it is important to match the IP against the lamp's eV to determine whether the meter will be able to produce a reliable result. It is important to research the IP of a material even if you are familiar with its behavior. Some chemicals are difficult to ionize essentially because they are "built" better than others—i.e., they have strong bonds. One cannot make this assessment simply by knowing a chemical name or how it attaches to a hydrocarbon. Research materials will offer the most solid information and are more reliable than the chemistry courses of days long ago. Don't memorize the chemistry; memorize where to look it up! 2 of 7 Revision: 101316 The Connecticut Fire Academy Skill Sheet HM3.1.3 Recruit Firefighter Program Atmospheric Monitoring Practical Skill Training Instructor Reference Materials HOW TO USE IT Ethanol has an IP of 10.47 eV, with 59.3 mm/Hg vapor pressure (as defined by WISER). This material is relatively mobile and detection should be easy. A responder with a PID equipped with a 10.6 eV lamp will be able to detect ethanol. Carbon monoxide, however, has an IP of 14.01 eV. This is a common substance for which a direct-read sensor is available. Even the higher-strength 11.7 eV lamp will not effectively read this compound because the IP is greater than the eV of the lamp. Even as the response team selects the correct lamp for the material, there is still work to be done. If the material is known, the team needs correction factors to determine the actual concentration, which is obtained by multiplying the gas's correction factor by the PID meter reading. The IP for ammonia is 10.16. A responder using a 10.6eV lamp is monitoring a release at a former bulk ice and cold storage facility. A pungent ammonia odor is in the air and the PID is reading 100 ppm. According to the PID's manufacturer-supplied correction factor chart, the factor for ammonia is 9.7, so 9.7 × 100 yields an actual concentration of 970 ppm. Often, specialized hazardous material teams will do this later in an incident. Many first responders operating at the hazmat operations level using the PID are mainly concerned with identifying the presence of the VOC and implementing proper personal protective equipment (PPE) levels for the incident. Many response agencies use the PID as a leak detection tool as well as a PPE guidance tool. The PID's sensitivity and reliability, when used within its parameters, will enable teams to locate and define a spill's footprint. Such information, used in conjunction with the ERG recommendations, is valuable in more precisely determining protection zones, which may be increased or decreased as a result. MAINTENANCE Of course, proper maintenance is essential to accurate readings, since condensation on the lamp will possibly affect this accuracy. Hence, responders must ensure the meter is properly maintained and use dust/humidity filters when operating whenever possible, even in quarters during training. Most manufacturers make a four-gas meter with available PID. Since the PID will meter for VOCs, it tells us we are detecting materials that present a toxicity hazard to responders, primarily through inhalation. Many, if not most, of these materials are also combustible or flammable. The PID will detect the presence of the flammable material usually prior to the LEL sensor detecting or alarming. Again, this will prompt responders to don protective breathing equipment, identify a spill, and confirm or refine protective distances. For example, gasoline is flammable at 1.4 to 7.8 percent (as defined by WISER); however, it has a permissible exposure limit/time weighted average (PEL/TWA) of 300 ppm. The PID will detect the presence of gasoline as a toxic hazard at 300 ppm well before it detects the flammable levels (14,000 ppm). Manufacturers cite this example in their instrument specification sheets, which is valuable and relevant information to responders. This information is important to responders, since the initial zones established according to the ERG can be refined for such an incident involving a gasoline spill and the data will also offer more accurate exposure information for affected employees.
Recommended publications
  • Integrating Fire and Gas Safety with Process Control Systems: Why, What and How
    WHITE PAPER Integrating Fire and Gas Safety with Process Control Systems: Why, What and How If a fire, smoke or gas leak is detected in an industrial facility, prescriptive actions must be taken by the fire and gas safety system, as well as the process control system, to mitigate and control the hazard. Using a certified, documented fire and gas safety system that can communicate appropriate messages to the process control system during an event is vital to the safety of a facility and its occupants. But, specifying and integrating these two systems is no simple matter. Under certain conditions, the processes in industrial, defined risk reduction target. Methods to help define the high-hazard manufacturing or processing plants can be performance requirements are available in standards, a threat — to the safety of employees, operations and directives and recommended practices. the environment. In these settings, a fire and gas (F&G) safety system is the layer of protection responsible for But first, here is a simple overview of what makes up the mitigating the consequences of a hazardous event once it process control system and the safety systems, including has occurred. the subsystems of the F&G safety system. Consider a chemical plant where flammable materials Process Control continue to be pumped into an area where fire has 1. Process control system (PCS) been detected. In hazardous situations like this, it is 2. Process instrumentation imperative that an F&G safety system communicate with Safety the process control system (PCS). The performance 1. Process shutdown system (PSD) requirements of both of these systems require 2.
    [Show full text]
  • Refrigerant Gas Detector
    2. Safety Instructions (Continued) 5. Installation CODE COMPLIANCE: Comply with all local and national laws, particular industry / country. This document is only intended as IMPORTANT: The manufacturer of this product requires that a rules and regulations associated with this equipment. Operators a guide and the manufacturer bears no responsibility for the bump test or calibration be performed following installation to should be aware of the regulations and standards in their installation or operation of this unit. verify instrument functionality. industry / locality for the operation of the Hansen Gas Detector. Failure to install and operate the unit in accordance with these TECHNICIAN USE ONLY: The Hansen Gas Detector must be instructions and with industry guidelines may cause serious injury or STEP 1 | Mount Gas Detector & Remove Lid Refrigerant Gas Detector installed by a suitably qualified technician who will install this unit death and the manufacturer will not be held responsible in this regard. for Machinery Rooms, Cold Rooms & Freezers in accordance with these instructions and the standards in their WARNING: DO NOT allow the lid / sensor to hang from the ribbon cable. Failure to comply may result in damage to the product. 3. Component Overview 1. Mount the product according to the product dimensions, maximum wiring lengths and following considerations: # COMPONENT DESCRIPTION • Environment: the full range of environmental conditions when selecting a location. 1 M16 Cable Glands (×6) • Application: the specifics of the application (possible leaks, air movement / draft, etc.) when selecting a location. 2 Rubber Gasket (IP66 Version Only) • Accessibility: the degree of accessibility required for maintenance purposes when selecting a location.
    [Show full text]
  • Air Quality Monitoring: the Use of Arduino and Android
    Journal of Modern Science and Technology Vol. 4. No. 1. September 2016 Issue. Pp. 86 – 96 Air Quality Monitoring: The Use of Arduino and Android Ashish M. Husain 1, Tazrin Hassan Rini * 2, Mohammed Ikramul Haque 3 and Md. Rakibul Alam 4 In this paper a cost efficient, portable, easily manageable Arduino based device has been presented to monitor air quality. The device works by collecting data of quantity of specific harmful gases and the amount of dust present in the air. This device can be located at any place and the data can be transferred to an Android phone via Bluetooth or simply by connecting the device to a PC/laptop. Data collected by the device from different places can be later examined to make further decisions and analysis about the state of air quality; furthermore, it can also help concerned individuals to act upon it. Field of Research: Environmental Engineering 1. Introduction Air pollution can be defined as an atmospheric condition in which various substances are present at concentrations high enough, above their normal ambient levels to produce a measurable effect on people, animals, vegetation or materials (Bangladesh environment 2015). Air pollutants are dangerous to human health as well as environment too. If the concentrations of air pollutants increase, it can be fatal for this world and the living things on it. Air pollution contains quantum amounts of Carbon monoxide (CO), Sulfur dioxide (SO2), Nitrogen oxides (NOx), Ozone (O3), Hydrocarbons (HC), lead (Pb) and Suspended Particulate Matter (SPM). These are some of the pollutants that have given rise to diseases and environmental catastrophes.
    [Show full text]
  • SEC Millenium Carbon Dioxide Gas Detector
    SEC Millenium Carbon Dioxide Gas Detector Instruction and Operation Manual Sensor Electronics Corporation 5500 Lincoln Drive Minneapolis, Minnesota 55436 USA (952) 938-9486 Fax (952) 938-9617 Email [email protected] Web site www.sensorelectronics.com Part Number 71-5000 Version 040109 Sensor Electronics Corporation Sensor Electronics Corporation (SEC) designs and manufactures innovative fixed system gas detection equipment, for combustible gases, oxygen, carbon dioxide and toxic gases. Commitment Our quality and service are uncompromising. We back each of our products with a two-year warranty on all materials and workmanship. We offer technical support, user training and on-site service and maintenance of equipment to meet the needs of our customers. Gas Detection Service Individually designed maintenance packages are available for specific customer needs. Service begins with verification of the system installation that includes an initial system check and calibration. We then offer customer training programs (on-site and at factory) to insure that technical personnel fully understand operation and maintenance procedures. When on-the-spot assistance is required, service representatives are available to handle any questions or problems immediately. Warranty Sensor Electronics Corporation (SEC) warrants products manufactured by SEC to be free from defects in workmanship and materials for a period of two (2) years from date of shipment from the factory. Any parts returned freight pre-paid to the factory and found defective within the warranty would be repaired or replaced, at SEC's option. SEC will return repaired or replaced equipment pre-paid lowest cost freight. This warranty does not apply to items, which by their nature are subject to deterioration or consumption in normal service.
    [Show full text]
  • NYSEARCH Study for Natural Gas Dispersion and Detection in Residential Environments Noah L
    NYSEARCH Study for Natural Gas Dispersion and Detection in Residential Environments Noah L. Ryder, PhD1, Stephen J. Jordan1, and Jagruti Mehta2 1Fire & Risk Alliance, LLC., Derwood, MD, USA 2NYSEARCH, NGA, Parsippany NJ, USA SUMMARY The natural gas industry, including members of NYSEARCH has been promoting the use of methane detectors to allay safety concerns of its customers and regulators. Methane detectors are presently mandated by some jurisdictions and more are anticipated to follow. The present study uses physical testing and computational fluid dynamics (CFD) to quantitatively evaluate gas detector performance as a function of placement in residential occupancies. NYSEARCH, an R&D consortium consisting of gas distribution companies across North America, has contracted Fire & Risk Alliance, LLC (FRA) to carry out experimental and modeling work to study the dispersion of natural gas in residential structures and use this data to aid in the development of a detector placement standard to improve the deployment of these detectors. Nearly 70 tests were conducted by FRA in which methane was released until a threshold of 60% of the Lower Explosive Limit (LEL) [3% methane in air] was observed within the structure. Leakage sources varied in flow rate, type, and location within the enclosure while the configuration of the test enclosure was varied between floor plan layouts, ceiling height, and the number of stories exposed to the leakage event. The time to alarm at gas concentration thresholds of 10% (0.5% methane in air) and 25% (1.25% methane in air) LEL were compared and reported for different scenarios at each sensor location. The results of this study highlight the importance of requiring a gas detector in the same room as permanently installed fuel-gas appliances.
    [Show full text]
  • Combustible Gas Detector
    383 Combustible Gas Detector CONTENT Page 1. GENERAL INFORMATION ------------------ 2 2. FEATURES ---------------------------------------- 2 3. SPECIFICATION --------------------------------- 3 4. OPERATION GUIDE --------------------------- 4 5. PART & CONTROL------------------------------ 5 6. GETTING STARTED---------------------------- 7 6-1 Installing Batteries---------------------------- 7 6-2 Automatic Circuit/Reset Feature--------- 8 6-3 Feature Sensitivity Adjustment---------- 9 7. OPERATING PROCEDURE----------------- 9 8. REPLACING NEW SENSOR-------------- 11 9. CLEANING --------------------------------------- 12 COMBUSTIBLE GAS DETECTOR 1. GENERAL INFORMATION Thank you for purchasing Combustible Leak Detector. Read though the instruction manual before operation for correct and safe usage. Please store and retain this instruction manual for future reference. 2. FEATURES Combustible Leakage Detector is extremely useful as a general purpose tool in any environment where gasoline, propane, natural gas or fuel oil is used. This unit uses a newly developed semi-conductor sensor which is extremely sensitive to variety of general used combustible. Microprocessor Control with advanced digital signal processing. Multi color visual display. High-Low leak sensitivity selector. Low battery indication. Semiconductor gas sensor. Detection of combustible gas. Carrying case included. 15.5” (40 CM) flexible stainless probe. Reference Leak source included. Ambient concentration reset. Application: . Detect leaks in automobile exhaust and fuel system.
    [Show full text]
  • At the Heart of Gas Detection Systems DRÄGERSENSOR® 02 |
    ST-13887-2007 At the heart of gas detection systems DRÄGERSENSOR® 02 | When there’s danger in the air ... ST-6053-2004 | 03 ... this can quickly pose a high risk to humans, the environment, and all types of property and systems. Recognize the threat before it is too late. 04 | Detecting hazards – quite simple in principle WHY IT IS WORTH KNOWING MORE ABOUT GAS MEASURING GASES IN ELECTRICAL UNITS DETECTION SENSORS The sensor is the most important component inside Our sensory organs are often unable to detect air- a gas detector. It converts the measured variable, borne hazards, or cannot do so early enough. Toxic e.g. a gas concentration, into an electrical signal. or flammable gases and vapors can build up, Depending on the sensor type, this is achieved by reaching hazardous concentrations, or there may either chemical or physical processes. To obtain a be insufficient oxygen in the air. Both of these sce- meaningful and informative measured value read- narios can have life-threatening consequences. out, many factors have to be taken into account. Response times must be short, susceptibility to The reliability with which harmful airborne sub- error low, and reliability high. The better the sensor, stances can be detected depends to a large extent gas detector and central unit are designed to work on the sensors that are used. It is essential for the together in accordance, the more reliable the gas detector and sensor to be adapted perfectly to measurement results will be. In industrial gas each other. Hazards must be identified in good detection applications, three sensor technologies time and dependably, and false alarms leading to in particular are used on account of their excellent production downtime and the like must be avoided.
    [Show full text]
  • Leak Monitors and Leak Detectors
    LEAK MONITORS AND LEAK DETECTORS 70 Leak MoNItorS HeatING ElectroNIc cHarGING HoSe aDaPterS, VacUUM aND SUPER eVAC RecoVery SySteM ToolS GaUGeS aND DetectorS INStrUMeNtS INStrUMeNtS SySteMS ValVeS aND PartS cHarGING HoSeS SySteMS MacHINeS With heated sensor and SmartAlarm A CCU you need for fast, easy and certain leak detection P ROBE YELLOW JACKET ™ Leak Detector ™ indicator, t indicator, ® his is the only tool M R EDITION 57 CATALOG eco ac HIN V ery e S The ACCU PROBE leak detectors feature heated sensor technology that is designed to detect the more current and difficult HFC refrigerants such as R-134a, R-404A, R-407 and R-410A, in addition to all HCFC (R-22) and CFC (R-12) refrigerants including SNAP approved hydrocarbon blends, all with minimal chance of false S S S alarms. The ACCU PROBE leak detectors do not require rechargeable batteries. S y y UPER UPER S S te te e e MS MS VAC VAC ACCU PROBE ™ Leak Detector Specifications: Sensitivity: 0.06 oz./yr. (1.7 g/yr.) HFCs R-134a CH Vac 0.03 oz./yr. (0.9 g/yr.) HCFCs R-22 ar GING H Heated electrochemical sensor: Over 300 UUM hours service life with minimal cleaning and no adjustments a o Maintenance required: None ND S Body length: 10" (25.4 cm) e S Probe length: 18" (46 cm) V al ™ Weight: 15 oz. (0.4 kg) H The SmartAlarm LED shows how The frequency of flashing from the o V 25 seconds or less S Warm up time: e e big or small a leak is on a scale of heated sensor tip increases as you S Power: 4 AA alkaline batteries, 8 hours a a D one to nine: get closer to a leak and refrigerant continuous life ND a Operating temperature range: 24° to 110°F P ter • 1 to 3 – less than 0.1 oz./yr.
    [Show full text]
  • Leak Detection Methods
    Leak Detection Methods: A Comparative Study of Technologies and Techniques Short version Table of Contents 1 Introduction .............................................................................................. 3 2 Leak testing methods ................................................................................. 3 2.1 Water immersion bubble test method .................................................... 4 2.2 Soap solution bubble test ..................................................................... 6 2.3 Pressure decay test ............................................................................. 6 2.4 Vacuum decay test or Pressure rise test ................................................ 8 2.5 Tracer gas leak testing ........................................................................ 9 2.5.1 Sniffing ..................................................................................... 10 2.5.2 Accumulation leak testing ............................................................ 10 2.5.3 Vacuum chamber inside-out leak testing ....................................... 11 2.5.4 Outside-in leak testing ................................................................ 11 2.6 Applications ..................................................................................... 12 2.6.1 Halogen leak detectors ............................................................... 12 2.6.2 Inside-out helium sniffer detectors ............................................... 13 2.6.3 Outside-in helium spraying .........................................................
    [Show full text]
  • Dräger Gas Detection Catalog
    8 0 0 2 - 4 9 0 1 - T S Dräger Gas Detection Dräger: Technology for Life ® Inside front cover BLANK DRÄGER GAS DETECTION | 02 Dräger Gas Detection TABLE OF CONTENTS X-am 1700/2000 03 X-am 5000 05 X-am 3000 07 X-am 7000 09 MiniWarn 11 Pac 3000/5000/7000 13 Pac 3500/5500 15 Pac III 17 Dräger-Sensors ®, XXS and PID Sensors 19 E-Cal Systems 23 Calibration Gases 25 Dräger Software 26 Support Material 27 Training Software 28 Multi-PID 2+ 29 Dräger CMS Analyzer 31 Dräger CMS Chips 33 accuro ® Pump 35 Short Term Dräger-Tubes ® 37 Emergency Response Kits 39 Biological Agent Detection Breathing Air Quality 41 TWA Measurements 42 Air Current Measurements 43 DrägerService 44 Breathing Gas Systems 45 Respiratory Protection 47 3 0 0 2 - 1 3 8 - T S 03 | DRÄGER GAS DETECTION The Dräger X-am 1700/2000 are a new generation of personal gas detectors. DRÄGER X-AM 1700/2000 The Dräger X-am 1700/2000 are a new generation of personal gas detectors which have been specially designed for personal monitoring. These gas detectors reliably measure combustible gases and vapors, as well as O 2, CO and H 2S. Their ergonomic design, mobile phone dimensions and light weight make them the perfect companion in your daily work. Reliable measurement technology, long sensor life and easy operation guarantee maximum safety at an extremely low cost of ownership. The instrument’s light weight and mobile The Dräger E-Cal automatic test, calibration, phone size — unique in today’s market — and documentation system is also an ideal guarantees users a high level of comfort and complement to the instrument, saving time convenience.
    [Show full text]
  • Gas Leak Detection by Dilution of Atmospheric Oxygen
    sensors Article Gas Leak Detection by Dilution of Atmospheric Oxygen Armin Lambrecht *, Eric Maier, Hans-Fridtjof Pernau ID , Thomas Strahl and Johannes Herbst Fraunhofer Institute for Physical Measurement Techniques IPM, Heidenhofstr. 8, D-79110 Freiburg, Germany; [email protected] (E.M.); [email protected] (H.-F.P.); [email protected] (T.S.); [email protected] (J.H.) * Correspondence: [email protected]; Tel.: +49-7665-41904 Received: 31 August 2017; Accepted: 30 November 2017; Published: 5 December 2017 Abstract: Gas leak detection is an important issue in infrastructure monitoring and industrial production. In this context, infrared (IR) absorption spectroscopy is a major measurement method. It can be applied in an extractive or remote detection scheme. Tunable laser spectroscopy (TLS) instruments are able to detect CH4 leaks with column densities below 10 ppm·m from a distance of 30 m in less than a second. However, leak detection of non-IR absorbing gases such as N2 is not possible in this manner. Due to the fact that any leaking gas displaces or dilutes the surrounding background gas, an indirect detection is still possible. It is shown by sensitive TLS measurements of the ambient background concentration of O2 that N2 leaks can be localized with extractive and standoff methods for distances below 1 m. Minimum leak rates of 0.1 mbar·L/s were determined. Flow simulations confirm that the leakage gas typically effuses in a narrow jet. The sensitivity is mainly determined by ambient flow conditions. Compared to TLS detection of CH4 at 1651 nm, the indirect method using O2 at 761 nm is experimentally found to be less sensitive by a factor of 100.
    [Show full text]
  • Review of Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds
    Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds Spinelle L., Gerboles M., Kok G. and Sauerwald T. 2015 EUR 27713 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC98368 EUR 27713 PDF ISBN 978-92-79-54644-0 ISSN 1831-9424 doi: 10.2788/05768 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: L. Spinelle, M. Gerboles, G. Kok and T. Sauerwald; Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds; EUR 27713; doi: 10.2788/05768 All images © European Union 2015 Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds ENV56 KEY-VOCs Metrology for VOC indicators in air pollution and climate change Literature and market review of low-cost sensors for the monitoring of benzene and other volatile organic compounds in ambient air for regulatory purposes Deliverable number: 4.1.1 Version: Final Date: September 2015 Task 4.1: Review of the state of the art of sensor based air quality monitoring L.
    [Show full text]