Actions of Compact Groups on Spheres and on Generalized Quadrangles Von der Fakult¨at Mathematik der Universit¨at Stuttgart zur Erlangung der Wurde¨ eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Harald Biller aus Frankfurt am Main Hauptberichter: Privatdozent Dr. Markus Stroppel Mitberichter: Prof. Dr. Hermann H¨ahl Prof. Dr. Theo Grundh¨ofer (Universit¨at Wurzburg)¨ Tag der mundlichen¨ Prufung:¨ 8. Juni 1999 Mathematisches Institut B der Universit¨at Stuttgart 1999 ii Harald Biller Fachbereich Mathematik Technische Universit¨at Darmstadt Schloßgartenstraße 7 D-64289 Darmstadt Germany
[email protected] Mathematics Subject Classification (1991): 51H10 Topological linear incidence structures 51E12 Generalized quadrangles, generalized polygons 57S10 Compact groups of homeomorphisms 57S25 Groups acting on specific manifolds 57P99 Generalized manifolds Keywords: topological geometry, generalized quadrangle, compact transformation group, homology sphere, cohomology manifold This thesis is available online: http://elib.uni-stuttgart.de/opus Abstract The actions of sufficiently high-dimensional compact connected groups on spheres and on two types of compact Tits buildings are classified explicitly. The result for spheres may be summarized as follows: every effective continuous action of a compact connected group whose di- mension exceeds 1 + dim SOn−2R on an n-sphere is linear, i.e. it is equivalent to the natural action of a subgroup of SOn+1R . Under sim- ilar hypotheses, we study actions on finite-dimensional compact gener- alized quadrangles whose point rows have dimension either 1 or 4. We find that every effective action of a sufficiently high-dimensional com- pact group is equivalent to an action on a Moufang quadrangle, i.e.