Open Source GI Software in Education
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data. -
Assessmentof Open Source GIS Software for Water Resources
Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1. -
Gvsig a Real Tool for GIS Technicians
gvSIG a real tool for GIS technicians Jorge Gaspar Sanz Salinas [email protected] International Geodetic Students Meeting 05/05/08 · Valencia Agenda Origins of the project What is gvSIG? OK, but what can gvSIG do for me now? The near and mid-term future Conclusions IGSM · Valencia · 05/05/08 gvSIG a real tool for GIS technicians 2 Origins What is gvSIG? Capabilities Origins of the project Future Conclusions In 2003 CIT decides to migrate to Free Software (gvPONTIS), why? Better usage of incoming budget Promote local industry Technology independence At this time, no free CAD or GIS available Launch a brand new project From a local to a global project IGSM · Valencia · 05/05/08 gvSIG a real tool for GIS technicians 3 Origins What is gvSIG? Capabilities a desktop GIS Future Conclusions A classical geographical information tool Retrieve data Edit and analyse Output results IGSM · Valencia · 05/05/08 gvSIG a real tool for GIS technicians 4 Origins What is gvSIG? Capabilities a desktop GIS Future Conclusions IGSM · Valencia · 05/05/08 gvSIG a real tool for GIS technicians 5 Origins What is gvSIG? Capabilities a desktop GIS Future Conclusions Main characteristics: Developed in Java Runs in Windows, GNU/Linux and MacOS Modular and extensible Fast development Quite similar to ESRI ArcView 3.2 interface Uses the best Free Software components IGSM · Valencia · 05/05/08 gvSIG a real tool for GIS technicians 6 Origins What is gvSIG? Capabilities free software Future Conclusions It's Free Software (GPL), so you can Use it for whatever you want Study how it works (and adapt it) Redistribute it Improve it translating adding new features .. -
The State of Open Source GIS
The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16 -
Gvsos: a New Client for Ogc® Sos Interface Standard
GVSOS: A NEW CLIENT FOR OGC® SOS INTERFACE STANDARD Alain Tamayo Fong i GVSOS: A NEW CLIENT FOR OGC® SOS INTERFACE STANDARD Dissertation supervised by PhD Joaquín Huerta PhD Fernando Bacao Laura Díaz March, 2009 ii ACKNOWLEDGEMENTS I would like to thank to professors Joaquin Huerta and Michael Gould for their support during every step of the Master Degree Program. I would also like to thanks the Erasmus Mundus Scholarship program for giving me the chance to be part of this wonderful experience. Last, to all my colleagues and friends, thank you for making this time together so pleasant. iii GVSOS: A NEW CLIENT FOR OGC® SOS INTERFACE STANDARD ABSTRACT The popularity of sensor networks has increased very fast recently. A major problem with these networks is achieving interoperability between different networks which are potentially built using different platforms. OGC’s specifications allow clients to access geospatial data without knowing the details about how this data is gathered or stored. Currently OGC is working on an initiative called Sensor Web Enablement (SWE), for specifying interoperability interfaces and metadata encodings that enable real‐time integration of heterogeneous sensor webs into the information infrastructure. In this work we present the implementation of gvSOS, a new module for the GIS gvSIG to connect to Sensor Observation Services (SOS). The SOS client module allows gvSIG users to interact with SOS servers, displaying the information gathered by sensors in a layer composed by features. We present the detailed software engineering development process followed to build the module. For each step of the process we specify the main obstacles found during the development such as, restrictions of the gvSIG architecture, inaccuracies in the OGC’s specifications, and a set of common problems found in current SOS servers implementations available on the Internet. -
(Iso19107) of the Open Geospatial Consortium
Technical Report A Java Implementation of the OpenGIS™ Feature Geometry Abstract Specification (ISO 19107 Spatial Schema) Sanjay Dominik Jena, Jackson Roehrig {[email protected], [email protected]} University of Applied Sciences Cologne Institute for Technology in the Tropics Version 0.1 July 2007 ABSTRACT The Open Geospatial Consortium’s (OGC) Feature Geometry Abstract Specification (ISO/TC211 19107) describes a geometric and topological data structure for two and three dimensional representations of vector data. GeoAPI, an OGC working group, defines inter- face APIs derived from the ISO 19107. GeoTools provides an open source Java code library, which implements (OGC) specifications in close collaboration with GeoAPI projects. This work describes a partial but serviceable implementation of the ISO 19107 specifi- cation and its corresponding GeoAPI interfaces considering previous implementations and related specifications. It is intended to be a first impulse to the GeoTools project towards a full implementation of the Feature Geometry Abstract Specification. It focuses on aspects of spatial operations, such as robustness, precision, persistence and performance. A JUnit Test Suite was developed to verify the compliance of the implementation with the GeoAPI. The ISO 19107 is discussed and proposals for improvement of the GeoAPI are presented. II © Copyright by Sanjay Dominik Jena and Jackson Roehrig 2007 ACKNOWLEDGMENTS Our appreciation goes to the whole of the GeoTools and GeoAPI communities, in par- ticular to Martin Desruisseaux, Bryce Nordgren, Jody Garnett and Graham Davis for their extensive support and several discussions, and to the JTS developers, the JTS developer mail- ing list and to those, who will make use of and continue the implementation accomplished in this work. -
WP4000 Database Report
EU FP 6 Project GOCE 037063 with DG Environment GEO-BENE Global Earth Observation -Benefit Estimation: Now, Next and Emerging STREP PRIORITY [1.1.6.3] [Global Change and Ecosystems] DELIVERABLE D6 (T14) GEO-BENE DATA BASE REPORT Due date of deliverable: 30 September 2007 Start date of project: 1 July 2006 Duration: 36 Months Organization name of lead contractor for this deliverable: International Institute for Applied Systems Analysis (IIASA) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) EU-Project No. 037063 GEO-BENE D6 Abstract The GEO-BENE Data Base Report (D6) is due by the end of September 2007 (T14). The main objective of this task is the analysis of current standards and geodata infrastructures worldwide as well as the definition of Geobene’s system architecture and high level data models for the work packages. Therefore, this deliverable covers the following topics: • OGC and ISO standards: Compilation of standards and recommendations in the field of geomatics, especially the ISO/TC211 family and the recommendations of the OpenGeospatial Consortium. • Woldwide geodata infrastructures: short review of global and regional initiatives like UN-SDI and INSPIRE • The Geobene database strategy and the global database for epic modelling 2 EU-Project No. 037063 GEO-BENE D6 Document history Version Status Date Author 0 Input for OGC standards 2007-09-14 FELIS 1 Detailed description of data strategy for high 2007-09-24 SSCRI, data-demanding application - global database BOKU for the EPIC modeling 2 Input for OGC standards 2007-09-24 FELIS 3 OGC Reference Model 2007-09-24 FELIS 4 Dublin Core and input for OGC included. -
Centre for Geo-Information Thesis Report GIRS-2018-06 Managing Big Geospatial Data with Apache Spark Msc Thesis Hector Muro Maur
Centre for Geo-Information Thesis Report GIRS-2018-06 Managing Big Geospatial Data with Apache Spark MSc Thesis Hector Muro Mauri March 2018 Managing Big Geospatial Data with Apache Spark MSc Thesis Hector Muro Mauri Registration number 920908592110 Supervisors: Dr Arend Ligtenberg Dr Ioannis Athanasiadis A thesis submitted in partial fulfillment of the degree of Master of Science at Wageningen University and Research Centre, The Netherlands. March 2018 Wageningen, The Netherlands Thesis code number: GRS80436 Thesis Report: GIRS 2018 06 Wageningen University and Research Centre Laboratory of Geo-Information Science and Remote Sensing Contents 1 Introduction 3 1.1 Introduction & Context.........................................3 1.2 Problem definition & Research questions................................5 1.3 Structure of the document........................................5 2 Methods & Tools 6 2.1 Methods..................................................6 2.2 Tools....................................................7 3 Tests Design & Definition 9 3.1 Functionality Test............................................9 3.2 Performance Benchmark Test...................................... 17 3.3 Use Case................................................. 19 4 Functionality Test Results 21 4.1 Magellan.................................................. 21 4.2 GeoPySpark................................................ 25 4.3 GeoSpark................................................. 28 4.4 GeoMesa................................................. 31 5 Results -
Client-Side Versus Server-Side Geoprocessing
CLIENT-SIDE VERSUS SERVER-SIDE GEOPROCESSING Benchmarking the performance of web browsers processing geospatial data using common GIS operations. by Erin L. Hamilton A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Cartography and Geographic Information Systems) at the UNIVERSITY OF WISCONSIN–MADISON 2014 i Acknowledgements The completion of this thesis could not have been accomplished without the help and support of many people. Thank you to Jim Burt for serving as my advisor. Your ability to see the big picture and ask hard questions made my work infinitely stronger. Your feedback on my drafts pushed me to produce my best work and I am thankful for that. Thank you to Qunying Huang and David Hart for serving on my committee. Your feedback on this thesis was much appreciated. More importantly, the support you provided me in improving my programming skills over the past three years enabled me to execute the technical pieces of this research. I am extremely grateful for that. Thank you to the members of the GIS group. The questions asked during my research progress presentations over the last year were significant in shaping and refining my work. Big thank you to the people in the Cartography Laboratory. Your guidance, support, and friendship were critical in keeping me moving forward. I especially want to thank Tanya Buckingham and Daniel Huffman for providing me with so much insightful perspective and advice along the way and Bill Buckingham for providing tremendously helpful recommendations on my writing. Thank you to my Mom and Dad for being my cheer team across the country. -
Handling Data Consistency Through Spatial Data Integrity Rules in Constraint Decision Tables
Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables Fei Wang Vollständiger Abdruck von der Fakultät für Bauingenieur- und Vermessungswesen der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines Doktor- Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Wilhelm Caspary 1.Berichterstatter: Univ.-Prof. Dr.-Ing. Wolfgang Reinhardt 2.Berichterstatter: Univ.-Prof. Dr.-Ing. Anders Östman Diese Dissertation wurde am 31. Jan. 2008 bei der Universität der Bundeswehr münchen eingereicht. Tag der Mündlichen Prüfung: 13. Mai 2008 2 3 Abstract With the rapid development of the GIS world, spatial data are being increasingly shared, transformed, used and re-used. The quality of spatial data is put in a high priority because spatial data of inadequate quality is of little value to the GIS community. Several main components of spatial data quality were indentified by international standardization bodies such as ISO/TC 211, OGC and FGDC, which consists of seven usual quality elements: lineage, positional accuracy, attribute accuracy, semantic accuracy, temporal accuracy, logical consistency and completeness (two different names for similar aspects of quality are grouped in the same category). In this dissertation our work focuses on the data consistency issue of the spatial data quality components, which involves the logical consistency as well as semantic and temporal aspects. Due to complex geographic data characteristics, various data capture workflows and different data sources, the final large datasets often result in inconsistency, incompleteness and inaccuracy. To reduce spatial data inconsistency and provide users the data of adequate quality, the specification of spatial data consistency requirements should be explicitly described. -
The Decision Table Template for Geospatial Business Rules
The Decision Table Template For Geospatial Business Rules Alex Karman CTO and Co-Founder Revolutionary Machines, Inc. www.rev-mac.com San Jose, Oct 13-15, 2014 1 OpenRules Now Supports Spatial Rules • Leverages the popular JTS Topology Suite (“JTS”) • Supports the Egenhofer Relationships (“DE9-IM”) for 2D points, polygons and line strings – Contains, touches, crosses, overlaps, disjoint, etc. • Supports distance and area calculations; and ranking by distance or area • Supports aggregates (max/min) of spatial rules • Supports non-spatial mereological rules – Part of/comprises • Loads Geographic Markup Language (GML) from text files with a GeometryDatabaseBuilder utility Motivation • Last year, we used OpenRules to handle business rules related to security constraints and service level agreements in a data center management project. • This year, the customer asked us if OpenRules could manage fraud detection and privacy rules in a healthcare project in the same data center. • We looked at the problem domain and saw a large number of spatial rules. Spatial Business Rules Are Everywhere • Healthcare – Hospital Referral Region, Hospital Service Area, Hospital, Patient, Emergency Routes • Sales – Supplier and buyer territories, census block demographics • Utilities – Markets are usually defined geographically • Local government – Cadasters, zones, counties, municipalities Most Spatial Business Rules Only Require a Simple Vocabulary • Describe how simple points, polygons and lines interact • Describe distances between them • Describe “at least” or “no more than” rules (aggregate spatial rules) Most Spatial Business Rules Never Use Most GIS Features • Continuous field data – Weather, climate, netCDF, raster • Slope and aspect – Digital elevation model, bathymetry, viewshed • Topology – The shoreline borders the shore • Spatial statistics – Autocorrelation, Moran’s I, Geary’s C, etc. -
Gvsig 1.0 User Guide Version 1
gvSIG ± User guide ggvSvSIIGG 11..00 UUsseerr gguuididee VVeerrssioionn 11 © 2006 Conselleria de Infraestructuras y Transporte e IVER Tecnologías de la Información S.A Page 1 of 356 gvSIG ± User guide IVER - OFICINAS CENTRALES EN Conselleria de Infraestructuras y VALENCIA Transporte C/ Salamanca në 50-52 , 46005- C/ Blasco Ibáñez Në 50 , 46010 VALENCIA VALENCIA Telf: 902 25 25 40 - Fax: 96 316 27 16 E-Mail [email protected] www.iver.es E-Mail [email protected] Project web: http://www.gvsig.gva.es All names of programs, operative systems, hardware and etc in this document are registered trademarks of their respective companies and organizations © 2006 Consellería de Infraestructuras y Transporte e IVER Tecnologías de la Información S.A Este manual se distribuye con la licencia GNU GPL2. november 2006 Page 2 of 356 gvSIG ± User guide Índice de contenido 1 Introduction................................................................................................................11 1.1 What is gvSIG?...................................................................................................11 1.2 What can we do with gvSIG?.............................................................................11 1.2.1 The gvSIG interface.....................................................................................12 2 gvSIG Projects and documents...............................................................................13 2.1 Saving a project .................................................................................................14 2.2