Transcriptome Analysis Identifies Putative Multi-Gene Signature Distinguishing Benign and Malignant Pancreatic Head Mass

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Analysis Identifies Putative Multi-Gene Signature Distinguishing Benign and Malignant Pancreatic Head Mass Chhatriya et al. J Transl Med (2020) 18:420 https://doi.org/10.1186/s12967-020-02597-1 Journal of Translational Medicine RESEARCH Open Access Transcriptome analysis identifes putative multi-gene signature distinguishing benign and malignant pancreatic head mass Bishnupriya Chhatriya1, Moumita Mukherjee1, Sukanta Ray2, Barsha Saha1, Somdatta Lahiri3, Sandip Halder3, Indranil Ghosh4, Sujan Khamrui2, Kshaunish Das2, Samsiddhi Bhattacharjee1, Saroj Kant Mohapatra1 and Srikanta Goswami1* Abstract Background: Most often, the patients with pancreatic diseases are presented with a mass in pancreatic head region and existing methods of diagnosis fail to confrm whether the head mass is malignant or benign. As subsequent man- agement of the disease hugely depends on the correct diagnosis, we wanted to explore possible biomarkers which could distinguish benign and malignant pancreatic head masses. Methods: In order to address that gap, we performed a case–control study to identify genome-wide diferentially expressed coding and noncoding genes between pancreatic tissues collected from benign and malignant head masses. These genes were next shortlisted using stringent criteria followed by selection of top malignancy specifc genes. They subsequently got validated by quantitative RT-PCR and also in other patient cohorts. Survival analysis and ROC analysis were also performed. Results: We identifed 55 coding and 13 noncoding genes specifc for malignant pancreatic head masses. Further shortlisting and validation, however, resulted in 5 coding genes as part of malignancy specifc multi-gene signature, which was validated in three independent patient cohorts of 145 normal and 153 PDAC patients. We also found that overexpression of these genes resulted in survival disadvantage in the patients and ROC analysis identifed that com- bination of 5 coding genes had the AUROC of 0.94, making them potential biomarker. Conclusions: Our study identifed a multi-gene signature comprising of 5 coding genes (CDCA7, DLGAP5, FOXM1, TPX2 and OSBPL3) to distinguish malignant head masses from benign ones. Keywords: Pancreatic head mass, Transcriptome, Signature, Biomarker potential Background infammatory mass is formed in pancreatic head region Pancreatic cancer is one of the most aggressive forms of which is very much similar to malignant pancreatic head cancers, with 5-year survival as low as 7 per cent. Chronic mass which occurs in about 65–70% of PC [1]. Jaundice, pancreatitis (CP) is considered as a major risk factor for gastric outlet obstruction, weight loss, back-ache are pancreatic cancer. In about 30–75% of CP cases, a benign symptoms common to both. Diagnosis is difcult even during the surgery as features like hard mass, vascular invasion are present in both the cases. Distinguishing *Correspondence: [email protected] benign and malignant head mass based on their clinical 1 National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani 741251, and imaging features is very challenging but necessary West Bengal, India Full list of author information is available at the end of the article as they have very diferent treatment and management © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Chhatriya et al. J Transl Med (2020) 18:420 Page 2 of 15 strategies. Misdiagnosis of benign head mass as malig- condition i.e. chronic pancreatitis as well as for malig- nant head mass will result in unnecessary surgical treat- nant pancreatic disease condition i.e. pancreatic cancer. ment and misdiagnosis of malignant head mass as benign Additionally, adjacent normal pancreatic tissue samples head mass could result in unnecessary delay in required were also collected and all tissue samples were stored in treatment. In doubtful situations radical approach is used RNA-Later. All the tissues were collected while perform- and pancreaticoduodenectomy is performed. Te situ- ing the surgery after careful investigation of the head ation further worsens in regions where tropical calcifc mass. Histopathological examination by expert patholo- pancreatitis (TCP) is more common. Pancreaticoduo- gists confrmed whether they were malignant or benign denectomy in those patients is associated with very high in nature. For the present discovery set investigation, 9 post-operative morbidity as the patients are nutrition- normal, 6 CP and 11 PC samples were selected and 9 CP ally defcient due to exocrine and endocrine insufciency and 9 PC samples were selected for validation. Relevant [2, 3]. So, the need of distinction between benign and patient information has been given in Additional fle 1: malignant is even more pronounced in tropical country Table S1. like India. It has been shown that integration of dynamic contrast-enhanced CT scan, MRI and 18F-FDG-PET/CT RNA extraction imaging methods could be used for diferential diagno- About 20 mg of tissue sections were taken for each sis of benign and malignant head mass, but evidences samples and total RNA was extracted according to the are still not strong enough [4]. Platelet-Lymphocyte ratio instructions mentioned in the manual of All-Prep DNA/ (PLR) along with CA19-9 has been shown to address the RNA/ miRNA isolation kit from Qiagen (catalog number: issue to some extent but they have their own limitations 80224). Quantifcation was done using multi-channel [5–7]. spectrophotometer (Model number: ND 8000, Termo Hence, there is an urgent need for the identifcation Fisher Scientifc). Quality of RNA was checked by dena- of some other parameter or method which could distin- turing agarose gel electrophoresis for characteristic RNA guish between the two types of head masses confrma- bands. tively. Tere are also studies looking into the proteome profle of pancreatic cancer and pancreatitis but with not Microarray much success [8, 9]. Analysis of transcriptome has also Gene expression profling was done by microarray using been used to distinguish benign and malignant lesions in Afymetrix human transcriptome array 2.0 (HTA 2.0) other cancers [10, 11], but such studies directly address- platform, which consists of probes for both coding and ing issues with benign and malignant pancreatic head non-coding genes. cDNA was prepared from ~ 10 µg masses are lacking. Te importance of transcriptome of RNA, biotinylated according to standard Afymetrix analysis is that the investigation of identifed DEGs not protocol and then hybridized onto Afymetrix HTA 2.0 only helps us to derive and validate potential signatures Arrays for overnight in the hybridization oven and then specifc for diagnosis of a disease condition but also help the array chips were washed and stained in the Afym- to understand the biology as well. etrix Fluidics Station 450. GeneChips were scanned using In this study, we performed gene expression analysis the Afymetrix GeneChip® Scanner 3000 7G and raw between benign and malignant pancreatic head masses fles were obtained as CEL fles. and identifed diferentially expressed mRNAs and non- coding RNAs. In the next step, a small set of markers was Data acquisition and pre‑processing carefully shortlisted and validated by qRT-PCR. Addi- Raw data were obtained as CEL fles which were further tionally, their expression was checked in TCGA pancre- pre-processed before calculating diferential expression. atic cancer datasets and other publicly available datasets Te raw data were frst read into R as an afybatch object and our fndings were consistently replicated. Finally we and an expression set is created as an expression set performed ROC analysis and were able to propose a 5 object. An expression set object is created from afybatch gene signature that can efectively distinguish malignant object and then pre-processed for background correc- pancreatic head masses from benign. tion, normalization, probe summarization. Background correction and probe summarization was done by using Methods “Oligo” package of R Bioconductor [12]. Normalization Sample collection was done by ‘Invariant Set Method’ using “afyPLM” Tissue samples were collected from patients undergo- package of R [13]. In this method of normalization, a set ing surgery at IPGME&R, Kolkata, RG Kar Medical Col- of genes whose expression is consistent in all the samples lege and Hospital, Kolkata and Chittaranjan National were identifed and based on those expression values, the Cancer Institute, Kolkata for benign pancreatic disease expression values of other genes were adjusted in each Chhatriya et al. J Transl Med (2020) 18:420 Page 3 of 15 sample. Te raw and processed data have
Recommended publications
  • Bioinformatics Identi Cation of Prognostic Factors Associated With
    Bioinformatics Identication of Prognostic Factors Associated with Breast Cancer Ying Wei Sichuan University https://orcid.org/0000-0001-8178-4705 Shipeng Zhang College of Pharmacy, North Sichuan Medical College Li Xiao West China School of Basic Medical Sciences and Forensic Medicine Jing Zou West China School of Basic Medical Sciences and Forensic Medicine Yingqing Fu West China School of Basic Medical Sciences and Forensic Medicine Yi Ye West China School of Basic Medical Sciences and Forensic Medicine Linchuan Liao ( [email protected] ) West China School of Basic Medical Sciences and Forensic Medicine https://orcid.org/0000-0003-3700-8471 Research Keywords: Breast cancer, Differentially expressed genes, miRNAs, Transcription factors, Bioinformatic analysis Posted Date: December 2nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117477/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Breast cancer (BRCA) remains one of the most common forms of cancer and is the most prominent driver of cancer-related death among women. The mechanistic basis for BRCA, however, remains incompletely understood. In particular, the relationships between driver mutations and signaling pathways in BRCA are poorly characterized, making it dicult to identify reliable clinical biomarkers that can be employed in diagnostic, therapeutic, or prognostic contexts. Methods: First, we downloaded publically available BRCA datasets (GSE45827, GSE42568, and GSE61304) from the Gene Expression Omnibus (GEO) database. We then compared gene expression proles between tumor and control tissues in these datasets using Venn diagrams and the GEO2R analytical tool. We further explore the functional relevance of BRCA-associated differentially expressed genes (DEGs) via functional and pathway enrichment analyses using the DAVID tool, and we then constructed a protein-protein interaction network incorporating DEGs of interest using the Search Tool for the Retrieval of Interacting Genes (STRING) database.
    [Show full text]
  • The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity in Vivo
    Research Article The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity In vivo Rebecca C. Osthus,1,2 Baktiar Karim,5 Julia E. Prescott,1 B. Douglas Smith,6 Michael McDevitt,2,6 David L. Huso,5 and Chi V. Dang1,2,3,4,6 1Program in Human Genetics and Molecular Biology, 2Division of Hematology, 3Departments of Medicine, Cell Biology, 4Pathology, and 5Comparative Medicine, 6The Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland Abstract metabolism, ribosome biogenesis as well as other cellular processes, how deregulated MYC expression contributes to MYC is frequently overexpressed in human cancers, but the downstream events contributing to tumorigenesis remain tumorigenesis through targets genes remains poorly understood. incompletely understood. MYC encodes an oncogenic tran- In particular, the contributions of large numbers of target genes scription factor, of which target genes presumably contribute with unknown functions to Myc-mediated tumorigenesis remain to cellular transformation. Although Myc regulates about 15% undelineated. Here, we sought to determine the expression pattern of genes and combinations of target genes are likely required of JPO1/CDCA7, which encodes a nuclear protein with unknown for tumorigenesis, we studied in depth the expression of the function, in human cancers and its transforming activity in Myc target gene, JPO1/CDCA7, in human cancers and its ability transgenic mice. to provoke tumorigenesis in transgenic mice. JPO1/CDCA7 is We identified JPO1 as a novel transcript that is differentially regulated in Myc-transformed fibroblasts in a representational frequently overexpressed in human cancers, and in particular, difference analysis screen (13).
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five Specific Mitosis-Associated Genes Correlate with Poor Prognosis for Non-Small Cell Lung Cancer Patients
    INTERNATIONAL JOURNAL OF ONCOLOGY 50: 365-372, 2017 AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five specific mitosis-associated genes correlate with poor prognosis for non-small cell lung cancer patients MARC A. SCHNEIDER1,8, PETROS CHristopoulos2,8, THOMAS MULEY1,8, ARNE WartH5,8, URSULA KLINGMUELLER6,8,9, MICHAEL THOMAS2,8, FELIX J.F. HertH3,8, HENDRIK DIENEMANN4,8, NIKOLA S. MUELLER7,9, FABIAN THEIS7,9 and MICHAEL MEISTER1,8,9 1Translational Research Unit, 2Department of Thoracic Oncology, 3Department of Pneumology and Critical Care Medicine, and 4Department of Surgery, Thoraxklinik at University Hospital Heidelberg, Heidelberg; 5Institute of Pathology, University of Heidelberg, Heidelberg; 6Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg; 7Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried; 8Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL) Heidelberg; 9CancerSys network ‘LungSysII’, Heidelberg, Germany Received October 26, 2016; Accepted December 5, 2016 DOI: 10.3892/ijo.2017.3834 Abstract. The growth of a tumor depends to a certain extent genes AURKA, DLGAP5, TPX2, KIF11 and CKAP5 is asso- on an increase in mitotic events. Key steps during mitosis are ciated with the prognosis of NSCLC patients. the regulated assembly of the spindle apparatus and the sepa- ration of the sister chromatids. The microtubule-associated Introduction protein Aurora kinase A phosphorylates DLGAP5 in order to correctly segregate the chromatids. Its activity and recruitment Lung cancer is globally the leading cause of cancer-related to the spindle apparatus is regulated by TPX2. KIF11 and deaths (1). Non-small cell lung cancer (NSCLC), which accounts CKAP5 control the correct arrangement of the microtubules for more than 80% of all cases, is divided in adenocarcinoma and prevent their degradation.
    [Show full text]
  • AURKA Mrna Expression Is an Independent Predictor of Poor Prognosis in Patients with Non-Small Cell Lung Cancer
    ONCOLOGY LETTERS 13: 4463-4468, 2017 AURKA mRNA expression is an independent predictor of poor prognosis in patients with non-small cell lung cancer AHMED S.K. AL‑KHAFAJI1,2, MICHAEL W. MARCUS1, MICHAEL P.A. DAVIES1, JANET M. RISK1, RICHARD J. SHAW1, JOHN K. FIELD1 and TRIANTAFILLOS LILOGLOU1 1Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L7 8TX, UK; 2Department of Biology, College of Science, University of Baghdad, Al‑Jadriya, Baghdad 10070, Iraq Received September 12, 2016; Accepted January 17, 2017 DOI: 10.3892/ol.2017.6012 Abstract. Deregulation of mitotic spindle genes has been Introduction reported to contribute to the development and progression of malignant tumours. The aim of the present study was to Lung cancer is the most common cause of cancer-associated explore the association between the expression profiles of mortality in the UK for both males and females (1), and Aurora kinases (AURKA, AURKB and AURKC), cytoskel- >1/5 patients with cancer succumb to this malignancy world- eton-associated protein 5 (CKAP5), discs large-associated wide (2). Non-small cell lung carcinoma (NSCLC) accounts protein 5 (DLGAP5), kinesin-like protein 11 (KIF11), micro- for 80-85% of all cases of lung cancer, and develops through tubule nucleation factor (TPX2), monopolar spindle 1 kinase the accumulation of molecular alterations, which may serve as (TTK), and β-tubulins (TUBB) and (TUBB3) genes and clini- prognostic biomarkers for NSCLC outcome (3). copathological characteristics in human non-small cell lung Mitotic spindle formation and the spindle checkpoint are carcinoma (NSCLC). Reverse transcription-quantitative poly- critical for the maintenance of cell division and chromosome merase chain reaction‑based RNA gene expression profiles of segregation (4).
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Investigation into the role of LSH ATPase in chromatin remodelling Alina Gukova Doctor of Philosophy – University of Edinburgh – 2020 ABSTRACT Chromatin remodelling is a crucial nuclear process affecting replication, transcription and repair. Global reduction of DNA methylation is observed in Immunodeficiency-Centromeric Instability-Facial Anomaly (ICF) syndrome. Several proteins were found to be mutated in patients diagnosed with ICF, among them are LSH and CDCA7. LSH is a chromatin remodeller bearing homology to the members of Sf2 remodelling family. A point mutation in its ATPase lobe was identified in ICF. CDCA7 is a zinc finger protein that was recently found to be crucial for nucleosome remodelling activity of LSH. Several point mutations in its zinc finger domain were described in ICF patients. In vitro and in vivo studies have shown that LSH-/- phenotype demonstrates reduction of global DNA methylation, implying that chromatin remodelling LSH functions may be required for the efficient methyltransferase activity, linking this finding to ICF phenotype.
    [Show full text]
  • A Set of Regulatory Genes Co-Expressed in Embryonic Human Brain Is Implicated in Disrupted Speech Development
    Molecular Psychiatry https://doi.org/10.1038/s41380-018-0020-x ARTICLE A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development 1 1 1 2 3 Else Eising ● Amaia Carrion-Castillo ● Arianna Vino ● Edythe A. Strand ● Kathy J. Jakielski ● 4,5 6 7 8 9 Thomas S. Scerri ● Michael S. Hildebrand ● Richard Webster ● Alan Ma ● Bernard Mazoyer ● 1,10 4,5 6,11 6,12 13 Clyde Francks ● Melanie Bahlo ● Ingrid E. Scheffer ● Angela T. Morgan ● Lawrence D. Shriberg ● Simon E. Fisher 1,10 Received: 22 September 2017 / Revised: 3 December 2017 / Accepted: 2 January 2018 © The Author(s) 2018. This article is published with open access Abstract Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, CHD3 SETD1A WDR5 fi 1234567890();,: we discovered de novo mutations, implicating genes, including , and . In other probands, we identi ed novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
    [Show full text]
  • Structural Basis of Specific DNA Binding by the Transcription Factor
    8388–8398 Nucleic Acids Research, 2019, Vol. 47, No. 16 Published online 21 June 2019 doi: 10.1093/nar/gkz557 Structural basis of specific DNA binding by the transcription factor ZBTB24 Ren Ren1,†, Swanand Hardikar1,†, John R. Horton1, Yue Lu1, Yang Zeng1,2,AnupK.Singh1, Kevin Lin1, Luis Della Coletta1, Jianjun Shen1,2, Celine Shuet Lin Kong3, Hideharu Hashimoto4, Xing Zhang1, Taiping Chen1,2,* and Xiaodong Cheng 1,2,* 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 2 Houston, TX 77030, USA, Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Downloaded from https://academic.oup.com/nar/article/47/16/8388/5521786 by guest on 23 September 2021 Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA, 3Program in Cancer Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA and 4Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Received October 13, 2018; Revised June 07, 2019; Editorial Decision June 11, 2019; Accepted June 13, 2019 ABSTRACT INTRODUCTION ZBTB24, encoding a protein of the ZBTB family ZBTB (zinc-finger- and BTB domain-containing) proteins, of transcriptional regulators, is one of four known characterized by the presence of an N-terminal BTB genes––the other three being DNMT3B, CDCA7 and (broad-complex, tram-track, and bric-a-brac)` domain [also HELLS––that are mutated in immunodeficiency, cen- known as POZ (poxvirus and zinc finger) domain] and a tromeric instability and facial anomalies (ICF) syn- C-terminal domain with tandem C2H2 Kr¨uppel-type zinc fingers (ZFs), are a large family of evolutionarily con- drome, a genetic disorder characterized by DNA hy- served transcriptional regulators (1).
    [Show full text]
  • Transcriptome Analysis of Sézary Syndrome and Lymphocytic- Variant Hypereosinophilic Syndrome T Cells Reveals Common and Divergent Genes
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 49), pp: 5052-5069 Research Paper Transcriptome analysis of Sézary syndrome and lymphocytic- variant hypereosinophilic syndrome T cells reveals common and divergent genes Andrea M. Moerman-Herzog1, Daniel A. Acheampong1,2, Amanda G. Brooks1, Suzan M. Blair1, Ping-Ching Hsu3 and Henry K. Wong1 1Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA 2Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA 3Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA Correspondence to: Henry K. Wong, email: [email protected] Keywords: Sézary syndrome; lymphocytic-variant hypereosinophilic syndrome; biomarkers; microarrays; progression Received: May 24, 2019 Accepted: July 15, 2019 Published: August 20, 2019 Copyright: Moerman-Herzog et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with pruritic skin inflammation and immune dysfunction, driven by neoplastic, clonal memory T cells in both peripheral blood and skin. To gain insight into abnormal gene expression promoting T cell dysfunction, lymphoproliferation and transformation in SS, we first compared functional transcriptomic profiles of both resting and activated CD4+CD45RO+ T cells from SS patients and normal donors to identified differential expressed genes. Next, a meta-analysis was performed to compare our SS data to public microarray data from a novel benign disease control, lymphocytic-variant hypereosinophilic syndrome (L-HES).
    [Show full text]
  • Mechanisms of Aryl Hydrocarbon Receptor-Mediated Regulation of Gene Expression and the Cell Cycle
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Mechanisms of Aryl Hydrocarbon Receptor-Mediated Regulation of Gene Expression and the Cell Cycle A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Department of Environmental Health of the College of Medicine November 28, 2006 by Jennifer L. Marlowe B.S., Miami University, 1999 Committee Chair: Alvaro Puga, Ph.D. Professor Department of Environmental Health University of Cincinnati Committee: Dr. Timothy Dalton Dr. Mary Beth Genter Dr. Erik Knudsen Dr. Ying Xia The focus of this dissertation is the discovery of novel mechanisms and pathways of gene regulation by the aryl hydrocarbon receptor (AHR), primarily regarding the role of this protein in modulating cell cycle progression. The AHR is a member of the PAS (Per-Arnt-Sim) superfamily of receptors, which mediate responses to environmental stresses such as hypoxia and circadian rhythm, and control basic physiologic processes like vascular development, learning, and neurogenesis. The AHR protein was discovered by virtue of its high affinity interaction with the persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and is now known as the primary mediator of the toxic effects of this and hundreds of other HAH and PAH ligands. The mechanisms by which the AHR acts to mediate toxicity of these compounds include the activity of the AHR as a potent transcriptional activator.
    [Show full text]
  • The MER41 Family of Hervs Is Uniquely Involved in the Immune-Mediated Regulation of Cognition/Behavior-Related Genes
    bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The MER41 family of HERVs is uniquely involved in the immune-mediated regulation of cognition/behavior-related genes: pathophysiological implications for autism spectrum disorders Serge Nataf*1, 2, 3, Juan Uriagereka4 and Antonio Benitez-Burraco 5 1CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France. 2 University of Lyon 1, Lyon, France. 3Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France. 4Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, USA. 5Department of Spanish, Linguistics, and Theory of Literature (Linguistics). Faculty of Philology. University of Seville, Seville, Spain * Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Interferon-gamma (IFNa prototypical T lymphocyte-derived pro-inflammatory cytokine, was recently shown to shape social behavior and neuronal connectivity in rodents. STAT1 (Signal Transducer And Activator Of Transcription 1) is a transcription factor (TF) crucially involved in the IFN pathway.
    [Show full text]