150Th Anniversary of Gauss's First Absolute Magnetic Measurement

Total Page:16

File Type:pdf, Size:1020Kb

150Th Anniversary of Gauss's First Absolute Magnetic Measurement Nature Vol. 297 27 May 1982 285 and the age estimates based on com­ pared with star cluster ages which are both Mand H can readily be deduced. parative abundances of radioactive nuclei. estimated to be in excess of ten billion Because of secular change, it is difficult This would at least avoid the problems years. The lower value of 50 km s- 1 Mpc- 1 to assess the accuracy of Gauss's original created by the higher value of H0 of cannot be ruled out, although the age of observation but, from internal consistency 100 km s-1 Mpc-1 , which suggests a galaxies (following Osmer's result) would and backward extrapolation of the trend Universe age of nine billion years com- have to be at least 14.5 billion years. D from later observations, it seems likely that it was within one per cent of the true value. With only minor modifications, Gauss's method continued to be the standard way of measuring Hat magnetic observatories and in the field until the 1920s, and it is still 150th anniversary of Gauss's in use at some observatories. Nowadays, first absolute magnetic measurement absolute magnetic intensity measurements are usually made with a proton magneto­ from S.R.C. Malin and D.R. Barraclough meter. This gives the answer to an accuracy of about l part in 1()6 in a few seconds. ON 26 May 1832, the horizontal months later, after Gauss had slightly This was not Gauss's only contribution component of the Earth's magnetic field at revised his dimensional arguments. The to geomagnetism. He later applied yet Gottingen was 1.7820 mgY'mm-'10 s-1 apparatus required is very simple - two another of his inventions, the method of ( = 17,820 nT). Not particularly remark­ bar magnets (A and 8), one single-filament spherical harmonic analysis, to the Earth's able, you might think, except that this was suspension in which either magnet can be magnetic field to show that nearly all of it the first ever absolute measurement of the fitted, a ruler, a clock and two weights. The came from inside the Earth. He was also, geomagnetic field and its attainment had method is also simple, though a number of with Humboldt, largely responsible for the required much of the armoury of one of the refinements are required if its full accuracy 'Gottingen Magnetic Union', an inter­ world's greatest mathematicians. is to be realized. The first part is the national project for the simultaneous Carl Friedrich Gauss (1777-1855) was a vibration experiment in which magnet A is observation of the magnetic field on four gifted child. His early mathematical feats suspended horizontally, and its period of selected term-days each year at a number of led his father grudgingly to agree with his oscillation either side of magnetic north widespread sites. This scheme developed teachers that the boy should receive higher measured. The period T is related to the into the worldwide network of magnetic education rather than learn a trade, but magnet's moment of inertia, I, its magnetic observatories that exists today. D Gauss was also an exceptional linguist and moment, M, and the horizontal intensity of might equally easily have chosen to study the geomagnetic field, H, by philology. It was the satisfaction he derived in 1796 from demonstrating the con­ T=2TI r- struction of a regular 17-sided polygon :;;;; with ruler and compasses that finally Thus, if I is known, we can infer M H. decided him on a career in mathemtics. In Gauss deduced I by adding known his doctoral thesis, he proved the increments to it in the form of weights at 'fundamental theorem ofalgebra' (the first known distances from the suspension, and of his four independent proofs of this noting how this affected T. In calculating I theorem), and most of his work at this time from the several different values of T and (a) was similarly concerned with pure ~ I, Gauss used a powerful technique mathematics. Although this continued to which he had developed himself, the be his main interest, he gradually branched method of least squares. He also took care out into many other subjects, including to adjust Tto the value it would attain with applied mathematics, astronomy, geodesy, vibrations of infinitesimal amplitude, as optics, telegraphy and geomagnetism. the equation is strictly valid only for that Soon after 1830, Gauss became in­ case. terested in the adoption of a universal The second part is the deflection system of units for all physical quantities, experiment in which the ratio MIH is and came to the remarkable conclusion determined by suspending magnet B and that even magnetic intensity could be noting its angular deflection from measured in terms of mass, length and magnetic north when magnet A is placed at time. With the practical assistance of a known distance to the east or west. This Wilhelm Weber, professor of physics in the requires a knowledge of the way in which University of Gottingen, he set about the magnetic intensity due to a bar magnet devising an experiment to make this falls off with distance. Gauss deduced this measurement. He explains some of his from first principles, showing not only that Gauss's experiment. (a) The vibration ex­ ideas in a letter to the astronomer Olbers the intensity due to a dipole depends on the periment. The magnet, A, suspended by a written on 18 February 1832. inverse cube of the distance, but also that silk thread, F, oscillates in a horizontal one additional term is both necessary and "I occupy myself now with the Earth's plane. Its moment of inertia can be varied magnetism, particularly with an absolute sufficient to allow for the finite length of by hanging weights, W, from the rod, R. determination of its intensity. Friend Weber the bar magnet. He determined the The period of oscillation is obtained by conducts the experiments on my instructions. parameters by measuring the deflection observing the reflection of the scale, S, in As, for example, a clear concept of velocity can with magnet A at different distances, again mirror M, through the telescope, T, and be given only through statements on time and solving by the method of least squares. timing an integral number of swings with space, so in my opinion, the complete From a knowledge of M Hand MIH, the clock, C. (b) The deflection experi­ determination of the intensity of the Earth's ment. Magnet B is suspended and is magnetism requires to specify (I) a weight= p, deflected from magnetic north by placing (2) a length= r, and then the Earth's magnetism S.R.C. Malin and D.R. Barraclough are in the magnet A at a known distance. The deflec­ can be expressed by vp/r." Institute of Geological Sciences, Murchison tion is measured by observing the reflec­ House, West Mains Road, Edinburgh EH9 tion of the scale, S, in mirror M, through The experiment came to fruition three 3LA. the telescope, T. 0028-08]6!82! 210284-01$01 .00 © 1982 Macmillan Journals Ltd .
Recommended publications
  • Permanent Magnet DC Motors Catalog
    Catalog DC05EN Permanent Magnet DC Motors Drives DirectPower Series DA-Series DirectPower Plus Series SC-Series PRO Series www.electrocraft.com www.electrocraft.com For over 60 years, ElectroCraft has been helping engineers translate innovative ideas into reality – one reliable motor at a time. As a global specialist in custom motor and motion technology, we provide the engineering capabilities and worldwide resources you need to succeed. This guide has been developed as a quick reference tool for ElectroCraft products. It is not intended to replace technical documentation or proper use of standards and codes in installation of product. Because of the variety of uses for the products described in this publication, those responsible for the application and use of this product must satisfy themselves that all necessary steps have been taken to ensure that each application and use meets all performance and safety requirements, including all applicable laws, regulations, codes and standards. Reproduction of the contents of this copyrighted publication, in whole or in part without written permission of ElectroCraft is prohibited. Designed by stilbruch · www.stilbruch.me ElectroCraft DirectPower™, DirectPower™ Plus, DA-Series, SC-Series & PRO Series Drives 2 Table of Contents Typical Applications . 3 Which PMDC Motor . 5 PMDC Drive Product Matrix . .6 DirectPower Series . 7 DP20 . 7 DP25 . 9 DP DP30 . 11 DirectPower Plus Series . 13 DPP240 . 13 DPP640 . 15 DPP DPP680 . 17 DPP700 . 19 DPP720 . 21 DA-Series. 23 DA43 . 23 DA DA47 . 25 SC-Series . .27 SCA-L . .27 SCA-S . .29 SC SCA-SS . 31 PRO Series . 33 PRO-A04V36 . 35 PRO-A08V48 . 37 PRO PRO-A10V80 .
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • GPS and the Search for Axions
    GPS and the Search for Axions A. Nicolaidis1 Theoretical Physics Department Aristotle University of Thessaloniki, Greece Abstract: GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon. 1 Email: [email protected] 1 Introduction Quantum Chromodynamics (QCD) describes the strong interactions among quarks and gluons and offers definite predictions at the high energy-perturbative domain. At low energies the non-linear nature of the theory introduces a non-trivial vacuum which violates the CP symmetry. The CP violating term is parameterized by θ and experimental bounds indicate that θ ≤ 10–10. The smallness of θ is known as the strong CP problem. An elegant solution has been offered by Peccei – Quinn [1]. A global U(1)PQ symmetry is introduced, the spontaneous breaking of which provides the cancellation of the θ – term. As a byproduct, we obtain the axion field, the Nambu-Goldstone boson of the broken U(1)PQ symmetry.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • Permanent Magnet Design Guidelines
    NOTE(2019): THIS ORGANIZATION (MMPA) IS OBSOLETE! MAGNET GUIDELINES Basic physics of magnet materials II. Design relationships, figures merit and optimizing techniques Ill. Measuring IV. Magnetizing Stabilizing and handling VI. Specifications, standards and communications VII. Bibliography INTRODUCTION This guide is a supplement to our MMPA Standard No. 0100. It relates the information in the Standard to permanent magnet circuit problems. The guide is a bridge between unit property data and a permanent magnet component having a specific size and geometry in order to establish a magnetic field in a given magnetic circuit environment. The MMPA 0100 defines magnetic, thermal, physical and mechanical properties. The properties given are descriptive in nature and not intended as a basis of acceptance or rejection. Magnetic measure- ments are difficult to make and less accurate than corresponding electrical mea- surements. A considerable amount of detailed information must be exchanged between producer and user if magnetic quantities are to be compared at two locations. MMPA member companies feel that this publication will be helpful in allowing both user and producer to arrive at a realistic and meaningful specifica- tion framework. Acknowledgment The Magnetic Materials Producers Association acknowledges the out- standing contribution of Parker to this and designers and manufacturers of products usingpermanent magnet materials. Parker the Technical Consultant to MMPA compiled and wrote this document. We also wish to thank the Standards and Engineering Com- mittee of MMPA which reviewed and edited this document. December 1987 3M July 1988 5M August 1996 December 1998 1 M CONTENTS The guide is divided into the following sections: Glossary of terms and conversion A very important starting point since the whole basis of communication in the magnetic material industry involves measurement of defined unit properties.
    [Show full text]
  • An Inexpensive Hands-On Introduction to Permanent Magnet Direct Current Motors
    AC 2011-1082: AN INEXPENSIVE HANDS-ON INTRODUCTION TO PER- MANENT MAGNET DIRECT CURRENT MOTORS Garrett M. Clayton, Villanova University Dr. Garrett M. Clayton received his BSME from Seattle University and his MSME and PhD in Mechanical Engineering from the University of Washington (Seattle). He is an Assistant Professor in Mechanical Engineering at Villanova University. His research interests focus on mechatronics, specifically modeling and control of scanning probe microscopes and unmanned vehicles. Rebecca A Stein, University of Pennsylvania Rebecca Stein is the Associate Director of Research and Educational Outreach in the School of Engi- neering and Applied Science at the University of Pennsylvania. She received her B.S. in Mechanical Engineering and Masters in Technology Management from Villanova University. Her background and work experience is in K-12 engineering education initiatives. Rebecca has spent the past 5 years involved in STEM high school programs at Villanova University and The School District of Philadelphia. Ad- ditionally, she has helped coordinate numerous robotics competitions such as BEST Robotics, FIRST LEGO League and MATE. Page 22.177.1 Page c American Society for Engineering Education, 2011 An Inexpensive Hands-on Introduction to Permanent Magnet Direct Current Motors Abstract Motors are an important curricular component in freshman and sophomore introduction to mechanical engineering (ME) courses as well as in curricula developed for high school science and robotics clubs. In order to facilitate a hands-on introduction to motors, an inexpensive permanent magnet direct current (PMDC) motor experiment has been developed that gives students an opportunity to build a PMDC motor from common office supplies along with a few inexpensive laboratory components.
    [Show full text]
  • Coordinate Systems in Geodesy
    COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters .
    [Show full text]
  • Geodesy: Trends and Prospects
    Geodesy: Trends and Prospects Practktll and Scientific Values of Geodesy 25 clearly observable with the new long-baseline interferom­ We recommend that the United States support three long­ etry (LBI) and laser-ranging techniques. For example, the baseline-radio-interferometry stations and approximately 1960 Chilean earthquake (magnitude 8.3) has been calcu­ six laser ranging stations at fvced locations as part ofa new lated (Smith, 1977) to give a change in polar motion corre­ international service for determining UT and polar motion sponding to a 65-crn offset in the axis about which the pole on a continuing basis with suff~eient accuracy to meet cur­ moves, if the coseismic fault plane motion derived by Kana­ rent geodynamics needs. rnori and Cipar (1974) is used, and a possible additional 87 -ern offset due to the preseismic motion for which they The reasons for recommending support for these particu­ have presented evidence. lar numbers of stations are discussed in Section 4.2. It Seismologists generally believe that the "seismic mo­ should be noted that most of these stations also will fulfill ment" corresponding to the coseismic motion can be de­ other important scientific or applied objectives and that a rived accurately from observed long-period seismic-wave number of them are already available or will be soon. amplitudes. However, motions occurring over periods of minutes, days, or even several months before and after the quake are difficult to determine in other ways. Thus 3.3 OCEAN DYNAMICS changes in polar motion over a period of several months around the time of the quake can give a check on the total The geoid is considered to be the equipotential surface that fault displacement, which complements the information would enclose the ocean waters if all external forces were available from resurveys of the surface area surrounding the removed and the waters were to become still.
    [Show full text]
  • Journal of Geodynamics the Interdisciplinary Role of Space
    Journal of Geodynamics 49 (2010) 112–115 Contents lists available at ScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog The interdisciplinary role of space geodesy—Revisited Reiner Rummel Institute of Astronomical and Physical Geodesy (IAPG), Technische Universität München, Arcisstr. 21, 80290 München, Germany article info abstract Article history: In 1988 the interdisciplinary role of space geodesy has been discussed by a prominent group of leaders in Received 26 January 2009 the fields of geodesy and geophysics at an international workshop in Erice (Mueller and Zerbini, 1989). Received in revised form 4 August 2009 The workshop may be viewed as the starting point of a new era of geodesy as a discipline of Earth Accepted 6 October 2009 sciences. Since then enormous progress has been made in geodesy in terms of satellite and sensor systems, observation techniques, data processing, modelling and interpretation. The establishment of a Global Geodetic Observing System (GGOS) which is currently underway is a milestone in this respect. Wegener Keywords: served as an important role model for the definition of GGOS. In turn, Wegener will benefit from becoming Geodesy Satellite geodesy a regional entity of GGOS. −9 Global observing system What are the great challenges of the realisation of a 10 global integrated observing system? Geodesy Global Geodetic Observing System is potentially able to provide – in the narrow sense of the words – “metric and weight” to global studies of geo-processes. It certainly can meet this expectation if a number of fundamental challenges, related to issues such as the international embedding of GGOS, the realisation of further satellite missions and some open scientific questions can be solved.
    [Show full text]
  • The History of Geodesy Told Through Maps
    The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe.
    [Show full text]
  • How Geodesy Contributes to Strengthen the Study of Our
    UN-GGIM – Global Geodetic Reference Frame Working Group UN RESOLUTION The UN Committee of Experts on Global Geospatial Information Management (UN- Newsletter GGIM) decided in July 2013 to formulate and facilitate a draft resolution for a global geodetic reference frame. March / April 2014 UN-GGIM recognises the growing demand for more precise positioning services, the economic importance of a global geodetic reference frame and the need to improve the global cooperation within geodesy. The resolution will be tabled at the 2013-14 Session 01 of the UN General Assembly. How geodesy contributes to strengthen the study of our changing planet Measuring the planet Through geodesy, we measure and define the Geodesy is fundamental for monitoring changes to the Earth’s shape, rotation and gravitational field Earth including the continents, ice caps, oceans and the atmosphere. Geodesy is also fundamental for mapping, and changes to these. navigation and universal timing. THE EARTH TIDE THE EARTH ROTATION PLATE TECTONICS GLOBAL MASS TRANSPORT EARTH IS A DYNAMIC PLANET and is in constant motion. We monitor the different processes which cause these motions. Where places and people are Because the Earth is in constant motion, an A GLOBAL GEODETIC accurate point of reference is needed for REFERENCE FRAME which making measurements. Geodesy provides a allows us to know where people and places are on very accurate and stable coordinate refer- the Earth. ence frame for the whole planet: A global geodetic reference frame. This coordinate system allows us to relate measurements taken anywhere on the Earth with similar measurements taken at a different time or location.
    [Show full text]
  • Exploring the Earth's Magnetic Field
    ([SORULQJWKH(DUWK·V0DJQHWLF)LHOG $Q,0$*(6DWHOOLWH*XLGHWRWKH0DJQHWRVSKHUH An IMAGE Satellite Guide to Exploring the Earth’s Magnetic Field 1 $FNQRZOHGJPHQWV Dr. James Burch IMAGE Principal Investigator Dr. William Taylor IMAGE Education and Public Outreach Raytheon ITS and NASA Goddard SFC Dr. Sten Odenwald IMAGE Education and Public Outreach Raytheon ITS and NASA Goddard SFC Ms. Annie DiMarco This resource was developed by Greenwood Elementary School the NASA Imager for Brookville, Maryland Magnetopause-to-Auroral Global Exploration (IMAGE) Ms. Susan Higley Cherry Hill Middle School Information about the IMAGE Elkton, Maryland Mission is available at: http://image.gsfc.nasa.gov Mr. Bill Pine http://pluto.space.swri.edu/IMAGE Chaffey High School Resources for teachers and Ontario, California students are available at: Mr. Tom Smith http://image.gsfc.nasa.gov/poetry Briggs-Chaney Middle School Silver Spring, Maryland Cover Artwork: Image of the Earth’s ring current observed by the IMAGE, HENA instrument. Some representative magnetic field lines are shown in white. An IMAGE Satellite Guide to Exploring the Earth’s Magnetic Field 2 &RQWHQWV Chapter 1: What is a Magnet? , *UDGH 3OD\LQJ:LWK0DJQHWLVP ,, *UDGH ([SORULQJ0DJQHWLF)LHOGV ,,, *UDGH ([SORULQJWKH(DUWKDVD0DJQHW ,9 *UDGH (OHFWULFLW\DQG0DJQHWLVP Chapter 2: Investigating Earth’s Magnetism 9 *UDGH *UDGH7KH:DQGHULQJ0DJQHWLF3ROH 9, *UDGH 3ORWWLQJ3RLQWVLQ3RODU&RRUGLQDWHV 9,, *UDGH 0HDVXULQJ'LVWDQFHVRQWKH3RODU0DS 9,,, *UDGH :DQGHULQJ3ROHVLQWKH/DVW<HDUV ,; *UDGH 7KH0DJQHWRVSKHUHDQG8V
    [Show full text]