Swarm-Enabling Technology for Multi-Robot Systems

Total Page:16

File Type:pdf, Size:1020Kb

Swarm-Enabling Technology for Multi-Robot Systems Swarm-Enabling Technology for Multi-Robot Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chamanbaz, Mohammadreza, David Mateo, Brandon M. Zoss, Grgur Tokić, Erik Wilhelm, Roland Bouffanais, and Dick K. P. Yue. “Swarm- Enabling Technology for Multi-Robot Systems.” Frontiers in Robotics and AI 4 (April 19, 2017). As Published http://dx.doi.org/10.3389/FROBT.2017.00012 Publisher Frontiers Media SA Version Final published version Citable link http://hdl.handle.net/1721.1/118127 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ TECHNOLOGY REPOrt published: 19 April 2017 doi: 10.3389/frobt.2017.00012 Swarm-Enabling Technology for Multi-Robot Systems Mohammadreza Chamanbaz 1, David Mateo 1, Brandon M. Zoss 2, Grgur Toki´c 2, Erik Wilhelm1, Roland Bouffanais1,2* and Dick K. P. Yue 2 1 Applied Complexity Group, Singapore University of Technology and Design, Singapore, Singapore, 2 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Swarm robotics has experienced a rapid expansion in recent years, primarily fueled by specialized multi-robot systems developed to achieve dedicated collective actions. These specialized platforms are, in general, designed with swarming considerations at the front and center. Key hardware and software elements required for swarming are often deeply embedded and integrated with the particular system. However, given the noticeable increase in the number of low-cost mobile robots readily available, practitioners and hobbyists may start considering to assemble full-fledged swarms by minimally retrofitting such mobile platforms with a swarm-enabling technology. Here, we report one possible embodiment of such a technology—an integrated combination of hardware and soft- ware—designed to enable the assembly and the study of swarming in a range of gener- al-purpose robotic systems. This is achieved by combining a modular and transferable software toolbox with a hardware suite composed of a collection of low-cost and off-the- Edited by: shelf components. The developed technology can be ported to a relatively vast range of Tansel Yucelen, robotic platforms—such as land and surface vehicles—with minimal changes and high University of South Florida, USA levels of scalability. This swarm-enabling technology has successfully been implemented Reviewed by: Heiko Hamann, on two distinct distributed multi-robot systems, a swarm of mobile marine buoys and a University of Paderborn, Germany team of commercial terrestrial robots. We have tested the effectiveness of both of these Jonathan M. Aitken, distributed robotic systems in performing collective exploration and search scenarios, University of Sheffield, UK as well as other classical cooperative behaviors. Experimental results on different swarm *Correspondence: Roland Bouffanais behaviors are reported for the two platforms in uncontrolled environments and without [email protected] any supporting infrastructure. The design of the associated software library allows for a seamless switch to other cooperative behaviors—e.g., leader–follower heading consen- Specialty section: This article was submitted sus and collision avoidance, and also offers the possibility to simulate newly designed to Multi-Robot Systems, collective behaviors prior to their implementation onto the platforms. This feature greatly a section of the journal facilitates behavior-based design, i.e., the design of new swarming behaviors, with the Frontiers in Robotics and AI possibility to simulate them prior to physically test them. Received: 13 January 2017 Accepted: 28 March 2017 Keywords: swarm robotics, distributed multi-robot systems, cooperative control, flocking, distributed communication Published: 19 April 2017 Citation: Chamanbaz M, Mateo D, Zoss BM, 1. INTRODUCTION Toki ´c G, Wilhelm E, Bouffanais R and Yue DKP (2017) Swarm-Enabling A swarm robotics system consists of autonomous robots with local sensing and communication Technology for Multi-Robot Systems. capabilities, lacking centralized control or access to global information, situated in a possibly unknown Front. Robot. AI 4:12. environment performing a collective action (Brambilla et al., 2013). Based on this definition, one can doi: 10.3389/frobt.2017.00012 easily distinguish swarm robotics systems from other multi-robot approaches (Iocchi et al., 2001). Frontiers in Robotics and AI | www.frontiersin.org 1 April 2017 | Volume 4 | Article 12 Chamanbaz et al. Swarm-Enabling Technology for Multi-Robot Systems It is not uncommon for multi-robot systems to lack some form original experiments. Our proposed technological solution aims of decentralization at the computation, communication, and/or at filling this gap by offering a platform-agnostic framework—an operation levels (Vásárhelyi et al., 2014). Swarm robotics systems integrated combination of a hardware suite with a software layer— are often inspired by natural systems in which large numbers easily portable to a host of hardware platforms and facilitating the of simple agents perform complex collective behaviors— implementation of various swarm algorithms, while reducing the e.g., schooling fish, flocking birds—through repeated local inter- burden associated with platform-dependent interfacing. actions between themselves and their environment (Bouffanais, Here, we report a unified platform-agnostic hardware/soft- 2016). The swarm robotics design paradigm allows a multi-robot ware tool capable of: (i) assembling and transforming a collection system to overcome the aforementioned limitations (local sens- of basic mobile robots into full-fledged swarms and (ii) achieving ing, lack of centralized control, etc.) and operate autonomously versatile swarming behaviors using an easily programmable soft- in a coordinated fashion. ware library. The modular nature of both the hardware suite and One main challenge in artificial swarming is the design of software layer allows for possible evolution, upgrade, and exten- systems that, while maintaining decentralized control, have sion of the technology independently from the specifications of agents capable of (i) acquiring local information through sens- the mobile platform. We present some preliminary results vali- ing, (ii) communicating with at least some subset of agents, and dating the technology on two vastly different swarming systems. (iii) making decisions based on the dynamically gathered sensed This swarm-enabling technology is a combination of hardware/ data. While decentralization denies the agents the benefits of a software that allows a wide range of multi-robot platforms to large central computation and/or communication hub, it affords perform versatile and responsive swarming. This is achieved the system robustness. The system is thus capable of perform- by providing each agent with an additional interface hardware ing global collective actions under a wide range of group sizes built from low-cost and off-the-shelf components, which are (scalability), despite the possible sudden loss of multiple agents integrated with a specifically developed general purpose software (robustness), and under unknown and dynamic circumstances library. We believe that this technology that decouples swarming (flexibility) (Brambilla et al., 2013). considerations from robotics ones could be of interest to both There have been a number of notable efforts to design robotic researchers and educators primarily interested in the study of swarms. The kilobit (Rubenstein et al., 2012), e-puck (Mondada artificial swarming. et al., 2009), Swarm-bots (Dorigo et al., 2004), marXbot (Bonani The software—written in Python, but also tested in++ C —is et al., 2010), Alice (Caprari and Siegwart, 2005), iAnt (Hecker et al., designed in a modular way so as to make the technology portable 2012), Scarab (Michael et al., 2008), I-Swarm (Woern et al., between platforms as seamlessly as possible, i.e., with minimal 2006), r-one (McLurkin et al., 2013), and Pi Swarm (Hilder hardware/software changes. To assess the effectiveness of the et al., 2014) are only a few examples of different swarm/distributed proposed technology, we used it on two different platforms oper- multi-robot platforms that have been developed. Each platform ating in uncontrolled environments: a differential drive robot and explores the potential and feasibility of a few aspects of swarming a water surface platform (sensing mobile buoy). Furthermore, and not all of them fulfill all requirements of a robotic swarm a number of collective behaviors such as heading consensus, system—according to the definition above—or are capable of perimeter defense, and collective marching are tested on these operating in real and uncontrolled environments without any platforms, thereby confirming the versatility of our swarm- supporting infrastructure. The technological advances imple- enabling technology. mented on each platform make it challenging to port to others due to the specificities of each robot. Indeed, these platforms have 2. MATERIALS AND METHODS been conceived with swarming considerations at the core of their design. As a consequence, the central components necessary to To enable swarming, it is essential to achieve distributed com- enable swarming are fully integrated inside the robots. Moreover, munication and decentralized decision-making (Hamann et al., the software layer is often highly dependent
Recommended publications
  • Relatedness, Parentage, and Philopatry Within a Natterer's Bat
    Population Ecology (2018) 60:361–370 https://doi.org/10.1007/s10144-018-0632-7 ORIGINAL ARTICLE Relatedness, parentage, and philopatry within a Natterer’s bat (Myotis nattereri) maternity colony David Daniel Scott1 · Emma S. M. Boston2 · Mathieu G. Lundy1 · Daniel J. Buckley2 · Yann Gager1 · Callum J. Chaplain1 · Emma C. Teeling2 · William Ian Montgomery1 · Paulo A. Prodöhl1 Received: 20 April 2017 / Accepted: 26 September 2018 / Published online: 10 October 2018 © The Author(s) 2018 Abstract Given their cryptic behaviour, it is often difficult to establish kinship within microchiropteran maternity colonies. This limits understanding of group formation within this highly social group. Following a concerted effort to comprehensively sample a Natterer’s bat (Myotis nattereri) maternity colony over two consecutive summers, we employed microsatellite DNA profiling to examine genetic relatedness among individuals. Resulting data were used to ascertain female kinship, parentage, mating strategies, and philopatry. Overall, despite evidence of female philopatry, relatedness was low both for adult females and juveniles of both sexes. The majority of individuals within the colony were found to be unrelated or distantly related. How- ever, parentage analysis indicates the existence of a number of maternal lineages (e.g., grandmother, mother, or daughter). There was no evidence suggesting that males born within the colony are mating with females of the same colony. Thus, in this species, males appear to be the dispersive sex. In the Natterer’s bat, colony formation is likely to be based on the benefits of group living, rather than kin selection. Keywords Chiroptera · Kinship · Natal philopatry · Parentage assignment Introduction of the environment (Schober 1984).
    [Show full text]
  • Swarming (Bulletin #404) (PDF)
    Swarming Apiculture Bulletin #404 Updated: 10/15 Swarming is a natural method of honeybee colonies to reproduce, resulting in the creation of a new honeybee colony in addition to the established colony. Contributing factors to swarming • Crowding - too many bees, food stores and no cell space for the queen to lay eggs in. • Poor air circulation • April-May is swarming season and healthy colonies develop strong swarm impulse. • Inclement weather - crowded bees confined by cold, wet weather will build queen cells and swarm out on the first sunny, warm day. All colonies in similar condition will swarm as soon as weather becomes favorable. • Large amount of drone brood in early spring is a precursor to strong swarm impulse. Catching the swarm A swarm generally emerges from the hive between 11:00AM and 1:00PM and settles close to the apiary for several hours. Allow the swarm to cluster for at least 30 minutes before placing the swarm in a single super with frames, bottom board and hive cover. Leave the hive for the remainder of the day to allow all the bees to enter, before moving to a permanent location. Examine the new colony after a week and then every two weeks from mid May to late June. Look for disease, brood abundance, brood pattern and overall condition of the colony. Add room where necessary, cut queen cells, or divide, to prevent other swarms to develop. Hived swarms have no stored food reserves and may go hungry when there is little forage. When feeding sugar syrup, add antibiotics as a precautionary measure.
    [Show full text]
  • Swarms and Swarm Intelligence
    SOFTWARE TECHNOLOGIES homogeneous. Intelligent swarms can also comprise heterogeneous elements Swarms from the outset, reflecting different capabilities as well as a possible social structure. and Swarm Researchers have used agent swarms as a computer modeling tech- nique and as a tool to study complex systems. Simulation examples include Intelligence bird swarms and business, economics, and ecological systems. In swarm sim- Michael G. Hinchey, Loyola College in Maryland ulations, each agent tries to maximize Roy Sterritt, University of Ulster its given parameters. Chris Rouff, Lockheed Martin Advanced Technology Laboratories In terms of bird swarms, each bird tries to find another to fly with, and then flies slightly higher to one side to reduce drag, with the birds eventually forming a flock. Other types of swarm simulations exhibit unlikely emergent behaviors, which are sums of simple Intelligent swarm technologies solve individual behaviors that form com- complex problems that traditional plex and often unexpected behaviors approaches cannot. when aggregated. Swarm intelligence Gerardo Beni and Jing Wang intro- duced the term swarm intelligence in a 1989 article (“Swarm Intelligence,” Proc. 7th Ann. Meeting of the Robotics e are all familiar with working together to achieve a goal Society of Japan, RSJ Press, 1989, pp. swarms in nature. The and produce significant results. 425-428). Swarm intelligence tech- word swarm conjures Swarms may operate on or under the niques (note the difference from intel- up images of large Earth’s surface, under water, or on ligent swarms) are population-based W groups of small insects other planets. stochastic methods used in combina- in which each member performs a torial optimization problems in which simple role, but the action produces SWARMS AND INTELLIGENCE the collective behavior of relatively sim- complex behavior as a whole.
    [Show full text]
  • What Is a Social Spider? “Sub”-Social Spiders Eusociality Social Definitions Natural History
    What is a Social Spider? • Generally accepted as living in colonies while having generational overlap and exhibiting cooperative brood care and nest maintenance Scott Trageser • Can also have reproductive division of labor and exhibit swarming behavior (Achaearanea wau) • Social hierarchies arise • Species and population dependant • Arguable if certain species qualify as eusocial “Sub”-Social Spiders Eusociality • Sociality also classified by territoriality and • There is cooperative brood-care so it is permanence not each one caring for their own offspring • Can be social on a seasonal basis and • There is an overlapping of generations so have an obligate solitary phase that the colony will sustain for a while, • Individuals can have established allowing offspring to assist parents during territories within the nest or can move their life freely • That there is a reproductive division of • Can have discrete webs connected to labor, i.e. not every individual reproduces other webs in the colony (cooperative?) equally in the group Social Definitions Natural History • Solitary: Showing none of the three features mentioned in the previous slide (most insects) • 23 of over 39,000 spider species are • Sub-social: The adults care for their own young for “social” some period of time (cockroaches) • Many other species are classified as • Communal: Insects use the same composite nest without cooperation in brood care (digger bees) “sub”-social • Quasi-social: Use the same nest and also show cooperative brood care (Euglossine bees and social • Tropical origin. Latitudinal and elevational spiders) distribution constrictions due to prey • Semi-social: in addition to the features in type/abundance quasisocial, they also have a worker caste (Halictid bees) • Emigrate (swarm) after courtship and • Eusocial: In addition to the features of semisocial, copulation but prior to oviposition there is overlap in generations (Honey bees).
    [Show full text]
  • Inference of Causal Information Flow in Collective Animal Behavior Warren M
    IEEE TMBMC SPECIAL ISSUE 1 Inference of Causal Information Flow in Collective Animal Behavior Warren M. Lord, Jie Sun, Nicholas T. Ouellette, and Erik M. Bollt Abstract—Understanding and even defining what constitutes study how the microscopic interactions scale up to give rise animal interactions remains a challenging problem. Correlational to the macroscopic properties [26]. tools may be inappropriate for detecting communication be- The third of these goals—how the microscopic individual- tween a set of many agents exhibiting nonlinear behavior. A different approach is to define coordinated motions in terms of to-individual interactions determine the macroscopic group an information theoretic channel of direct causal information behavior—has arguably received the most scientific attention flow. In this work, we present an application of the optimal to date, due to the availability of simple models of collective causation entropy (oCSE) principle to identify such channels behavior that are easy to simulate on computers, such as the between insects engaged in a type of collective motion called classic Reynolds [27], Vicsek [26], and Couzin [28] models. swarming. The oCSE algorithm infers channels of direct causal inference between insects from time series describing spatial From these kinds of studies, a significant amount is known movements. The time series are discovered by an experimental about the nature of the emergence of macroscopic patterns protocol of optical tracking. The collection of channels infered and ordering in active, collective systems [29]. But in argu- by oCSE describes a network of information flow within the ing that such simple models accurately describe real animal swarm. We find that information channels with a long spatial behavior, one must implicitly make the assumption that the range are more common than expected under the assumption that causal information flows should be spatially localized.
    [Show full text]
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • Swarm Intelligence
    Swarm Intelligence Leen-Kiat Soh Computer Science & Engineering University of Nebraska Lincoln, NE 68588-0115 [email protected] http://www.cse.unl.edu/agents Introduction • Swarm intelligence was originally used in the context of cellular robotic systems to describe the self-organization of simple mechanical agents through nearest-neighbor interaction • It was later extended to include “any attempt to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies and other animal societies” • This includes the behaviors of certain ants, honeybees, wasps, cockroaches, beetles, caterpillars, and termites Introduction 2 • Many aspects of the collective activities of social insects, such as ants, are self-organizing • Complex group behavior emerges from the interactions of individuals who exhibit simple behaviors by themselves: finding food and building a nest • Self-organization come about from interactions based entirely on local information • Local decisions, global coherence • Emergent behaviors, self-organization Videos • https://www.youtube.com/watch?v=dDsmbwOrHJs • https://www.youtube.com/watch?v=QbUPfMXXQIY • https://www.youtube.com/watch?v=M028vafB0l8 Why Not Centralized Approach? • Requires that each agent interacts with every other agent • Do not possess (environmental) obstacle avoidance capabilities • Lead to irregular fragmentation and/or collapse • Unbounded (externally predetermined) forces are used for collision avoidance • Do not possess distributed tracking (or migration)
    [Show full text]
  • Wolf Family Values
    Wolf family values The exquisitely balanced social life of the wolf has implications far beyond the pack, says Sharon Levy ORDON HABER was tracking a wolf pack Wolf Project. Despite many thousands of he had known for over 40 years when his hours spent in the field, Haber published G plane crashed on a remote stretch of the little peer-reviewed documentation of his Toklat river in Denali national park, Alaska, work. Now, however, in the months following last October. The fatal accident silenced one his sudden death, Smith and other wolf of the most outspoken and controversial biologists have reported findings that support advocates for wolf protection. Haber, an some of Haber’s ideas. independent biologist, had spent a lifetime Once upon a time, folklore shaped our studying the behaviour and ecology of wolves thinking about wolves. It is only in the past and his passion for the animals was obvious. two decades that biologists have started to “I am still in awe of what I see out there,” he build a clearer picture of wolf ecology (see wrote on his website. “Wolves enliven the “Beyond myth and legend”, page 42). Instead northern mountains, forests, and tundra like of seeing rogue man-eaters and savage packs, no other creature, helping to enrich our stay we now understand that wolves have evolved on the planet simply by their presence as other to live in extended family groups that include Few places remain highly advanced societies in our midst.” a breeding pair – typically two strong, where wolves can live His opposition to hunting was equally experienced individuals – along with several as nature intended intense.
    [Show full text]
  • Real-Time Kinematics Coordinated Swarm Robotics for Construction 3D Printing
    1 Real-time Kinematics Coordinated Swarm Robotics for Construction 3D Printing Darren Wang and Robert Zhu, John Jay High School Abstract Architectural advancements in housing are limited by traditional construction techniques. Construction 3D printing introduces freedom in design that can lead to drastic improvements in building quality, resource efficiency, and cost. Designs for current construction 3D printers have limited build volume and at the scale needed for printing houses, transportation and setup become issues. We propose a swarm robotics-based construction 3D printing system that bypasses all these issues. A central computer will coordinate the movement and actions of a swarm of robots which are each capable of extruding concrete in a programmable path and navigating on both the ground and the structure. The central computer will create paths for each robot to follow by processing the G-code obtained from slicing a CAD model of the intended structure. The robots will use readings from real-time kinematics (RTK) modules to keep themselves on their designated paths. Our goal for this semester is to create a single functioning unit of the swarm and to develop a system for coordinating its movement and actions. Problem Traditional concrete construction is costly, has substantial environmental impact, and limits freedom in design. In traditional concrete construction, workers use special molds called forms to shape concrete. Over a third of the construction cost of a concrete house stems from the formwork alone. Concrete manufacturing and construction are responsible for 6% – 8% of CO2 emissions as well as 10% of energy usage in the world. Many buildings use more concrete than necessary, and this stems from the fact that formwork construction requires walls, floors, and beams to be solid.
    [Show full text]
  • Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks 1 Introduction
    1 Supporting Mobile Swarm Robotics in Low Power and Lossy Sensor Networks Kevin Andrea [email protected] Robert Simon [email protected] Sean Luke [email protected] Department of Computer Science George Mason University 4400 University Drive MSN 4A5 Fairfax, VA 22030 USA Summary Wireless low-power and lossy networks (LLNs) are a key enabling technology for the deployment of massively scaled self-organizing sensor swarm systems. Supporting applications such as providing human users situational awareness across large areas requires that swarm-friendly LLNs effectively support communication between embedded and mobile devices, such as autonomous robots. The reason for this is that large scale embedded sensor applications such as unattended ground sensing systems typically do not have full end-to-end connectivity, but suffer frequent communication partitions. Further, it is desirable for many tactical applications to offload tasks to mobile robots. Despite the importance of support this communication pattern, there has been relatively little work in designing and evaluating LLN-friendly protocols capable of supporting such interactions. This paper addresses the above problem by describing the design, implementation, and evaluation of the MoRoMi system. MoRoMi stands for Mobile Robotic MultI-sink. It is intended to support autonomous mobile robots that interact with embedded sensor swarms engaged in activities such as cooperative target observation, collective map building, and ant foraging. These activities benefit if the swarm can dynamically interact with embedded sensing and actuator systems that provide both local environmental or positional information and an ad-hoc communication system. Our paper quantifies the performance levels that can be expected using current swarm and LLN technologies.
    [Show full text]
  • Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T
    1 2 Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T. Winfield3 & Jean-Louis Deneubourg4 7 8 9 10 11 12 1Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and 13 Ecology of Fishes, 12587 Berlin, Germany; 14 2Humboldt-University of Berlin, Department for Crop and Animal Sciences, Philippstrasse 15 13, 10115 Berlin, Germany; 16 3Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, Bristol 17 BS16 1QY, UK; 18 4Unit of Social Ecology, Campus Plaine - CP 231, Université libre de Bruxelles, Bd du 19 Triomphe, B-1050 Brussels - Belgium 20 21 22 23 24 25 26 27 28 Corresponding author: Krause, J. ([email protected]), Leibniz Institute of Freshwater 29 Ecology and Inland Fisheries, Department of the Biology and Ecology of Fishes, 30 Müggelseedamm 310, 12587 Berlin, Germany. 31 32 33 1 33 Interactive robots have the potential to revolutionise the study of social behaviour because 34 they provide a number of methodological advances. In interactions with live animals the 35 behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that 36 different morphologies and behavioural strategies can be combined), behaviour can be 37 manipulated in complex interaction sequences and models of behaviour can be embodied by 38 the robot and thereby be tested. Furthermore, robots can be used as demonstrators in 39 experiments on social learning. The opportunities that robots create for new experimental 40 approaches have far-reaching consequences for research in fields such as mate choice, 41 cooperation, social learning, personality studies and collective behaviour.
    [Show full text]
  • Special Feature on Advanced Mobile Robotics
    applied sciences Editorial Special Feature on Advanced Mobile Robotics DaeEun Kim School of Electrical and Electronic Engineering, Yonsei University, Shinchon, Seoul 03722, Korea; [email protected] Received: 29 October 2019; Accepted: 31 October 2019; Published: 4 November 2019 1. Introduction Mobile robots and their applications are involved with many research fields including electrical engineering, mechanical engineering, computer science, artificial intelligence and cognitive science. Mobile robots are widely used for transportation, surveillance, inspection, interaction with human, medical system and entertainment. This Special Issue handles recent development of mobile robots and their research, and it will help find or enhance the principle of robotics and practical applications in real world. The Special Issue is intended to be a collection of multidisciplinary work in the field of mobile robotics. Various approaches and integrative contributions are introduced through this Special Issue. Motion control of mobile robots, aerial robots/vehicles, robot navigation, localization and mapping, robot vision and 3D sensing, networked robots, swarm robotics, biologically-inspired robotics, learning and adaptation in robotics, human-robot interaction and control systems for industrial robots are covered. 2. Advanced Mobile Robotics This Special Issue includes a variety of research fields related to mobile robotics. Initially, multi-agent robots or multi-robots are introduced. It covers cooperation of multi-agent robots or formation control. Trajectory planning methods and applications are listed. Robot navigations have been studied as classical robot application. Autonomous navigation examples are demonstrated. Then services robots are introduced as human-robot interaction. Furthermore, unmanned aerial vehicles (UAVs) or autonomous underwater vehicles (AUVs) are shown for autonomous navigation or map building.
    [Show full text]