Graph Theory Exercises
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Tough Is Toughness?
How tough is toughness? Hajo Broersma ∗ Abstract We survey results and open problems related to the toughness of graphs. 1 Introduction The concept of toughness was introduced by Chvátal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors. 1.1 Preliminaries We start with a number of crucial definitions and observations. Throughout this paper we only consider simple undirected graphs. Let G = (V; E) be such a graph. Every subset S ⊆ V induces a subgraph of G, denoted by G[S ], consisting of S and all edges of G between pairs of vertices of S . We use !(G) to denote the number of components of G, i.e., the set of maximal (with respect to vertex set inclusion) connected induced subgraphs of G.A vertex cut of G is a set S ⊂ V with !(G − S ) > 1. Clearly, complete graphs (in which every pair of vertices is joined by an edge) do not admit vertex cuts, but non-complete graphs have at least one vertex cut (if u and v are nonadjacent vertices in G, then the set S = V nfu; vg is a vertex cut such that !(G−S ) = 2). As usual, the (vertex) connectivity of G, denoted by κ(G), is the cardinality of a smallest vertex cut of G (if G is non-complete; for the complete graph Kn on n vertices it is usually set at n − 1). -
The Determining Number of Kneser Graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas
The determining number of Kneser graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas To cite this version: José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas. The determining number of Kneser graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 1 (1), pp.1–14. hal-00990602 HAL Id: hal-00990602 https://hal.inria.fr/hal-00990602 Submitted on 13 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:1, 2013, 1–14 The determining number of Kneser graphsy Jose´ Caceres´ 1z Delia Garijo2x Antonio Gonzalez´ 2{ Alberto Marquez´ 2k Mar´ıa Luz Puertas1∗∗ 1 Department of Statistics and Applied Mathematics, University of Almeria, Spain. 2 Department of Applied Mathematics I, University of Seville, Spain. received 21st December 2011, revised 19th December 2012, accepted 19th December 2012. A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G. -
Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension. -
Strongly Regular and Pseudo Geometric Graphs
Strongly regular and pseudo geometric graphs M. Mitjana 1;2 Departament de Matem`atica Aplicada I Universitat Polit`ecnica de Catalunya Barcelona, Spain E. Bendito, A.´ Carmona, A. M. Encinas 1;3 Departament de Matem`atica Aplicada III Universitat Polit`ecnica de Catalunya Barcelona, Spain Abstract Very often, strongly regular graphs appear associated with partial geometries. The point graph of a partial geometry is the graph whose vertices are the points of the geometry and adjacency is defined by collinearity. It is well known that the point graph associated to a partial geometry is a strongly regular graph and, in this case, the strongly regular graph is named geometric. When the parameters of a strongly regular graph, Γ, satisfy the relations of a geometric graph, then Γ is named a pseudo geometric graph. Moreover, it is known that not every pseudo geometric graph is geometric. In this work, we characterize strongly regular graphs that are pseudo geometric and we analyze when the complement of a pseudo geometric graph is also pseudo geometric. Keywords: Strongly regular graph, partial geometry, pseudo geometric graph. 1 Strongly regular graphs A strongly regular graph with parameters (n; k; λ, µ) is a graph on n vertices which is regular of degree k, any two adjacent vertices have exactly λ common neighbours and two non{adjacent vertices have exactly µ common neighbours. We recall that antipodal strongly regular graphs are characterized by sat- isfying µ = k, or equivalently λ = 2k − n, which in particular implies that 2k ≥ n. In addition, any bipartite strongly regular graph is antipodal and it is characterized by satisfying µ = k and n = 2k. -
Minimal Digraphs with Given Imbalance Sequence
Acta Univ. Sapientiae, Mathematica, 4, 1 (2012) 86{101 Minimal digraphs with given imbalance sequence Shariefuddin Pirzada Antal Iv¶anyi University of Kashmir EÄotvÄosLor¶andUniversity Department of Mathematics Faculty of Informatics Srinagar, India Budapest, Hungary email: [email protected] email: [email protected] Abstract. Let a and b be integers with 0 · a · b. An (a; b)-graph is such digraph D in which any two vertices are connected at least a and at most b arcs. The imbalance a(v) of a vertex v in an (a; b)-graph D is + - + - de¯ned as a(v) = d (v)-d (v), where d (v) is the outdegree and d (v) is the indegree of v. The imbalance sequence A of D is formed by listing the imbalances in nondecreasing order. A sequence of integers is (a; b)- realizable, if there exists an (a; b)-graph D whose imbalance sequence is A. In this case D is called a realization of A. An (a; b)-realization D of A is connection minimal if does not exist (a; b0)-realization of D with b 0 < b. A digraph D is cycle minimal if it is a connected digraph which is either acyclic or has exactly one oriented cycle whose removal disconnects D. In this paper we present algorithms which construct connection minimal and cycle minimal realizations having a given imbalance sequence A. 1 Introduction Let a; b and n be nonnegative integers with 0 · a · b and n ¸ 1. An (a; b)- graph is a digraph D in which any two vertices are connected at least a and at most b arcs. -
Independence Number, Vertex (Edge) ୋ Cover Number and the Least Eigenvalue of a Graph
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 433 (2010) 790–795 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa The vertex (edge) independence number, vertex (edge) ୋ cover number and the least eigenvalue of a graph ∗ Ying-Ying Tan a, Yi-Zheng Fan b, a Department of Mathematics and Physics, Anhui University of Architecture, Hefei 230601, PR China b School of Mathematical Sciences, Anhui University, Hefei 230039, PR China ARTICLE INFO ABSTRACT Article history: In this paper we characterize the unique graph whose least eigen- Received 4 October 2009 value attains the minimum among all graphs of a fixed order and Accepted 4 April 2010 a given vertex (edge) independence number or vertex (edge) cover Available online 8 May 2010 number, and get some bounds for the vertex (edge) independence Submitted by X. Zhan number, vertex (edge) cover number of a graph in terms of the least eigenvalue of the graph. © 2010 Elsevier Inc. All rights reserved. AMS classification: 05C50 15A18 Keywords: Graph Adjacency matrix Vertex (edge) independence number Vertex (edge) cover number Least eigenvalue 1. Introduction Let G = (V,E) be a simple graph of order n with vertex set V = V(G) ={v1,v2, ...,vn} and edge set E = E(G). The adjacency matrix of G is defined to be a (0, 1)-matrix A(G) =[aij], where aij = 1ifvi is adjacent to vj and aij = 0 otherwise. The eigenvalues of the graph G are referred to the eigenvalues of A(G), which are arranged as λ1(G) λ2(G) ··· λn(G). -
Strongly Regular Graphs
Chapter 4 Strongly Regular Graphs 4.1 Parameters and Properties Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is a strong property for a graph to have, and it can be recognized easily from the adjacency matrix, since it means that all row sums are equal, and that1 is an eigenvector. If a graphG of ordern is regular of degreek, it means that kn must be even, since this is twice the number of edges inG. Ifk�n− 1 and kn is even, then there does exist a graph of ordern that is regular of degreek (showing that this is true is an exercise worth thinking about). Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint union of two cycles of different lengths, or the connected example below. Various properties of graphs that are stronger than regularity can be considered, one of the most interesting of which is strong regularity. Definition 4.1.1. A graphG of ordern is called strongly regular with parameters(n,k,λ,µ) if every vertex ofG has degreek; • ifu andv are adjacent vertices ofG, then the number of common neighbours ofu andv isλ (every • edge belongs toλ triangles); ifu andv are non-adjacent vertices ofG, then the number of common neighbours ofu andv isµ; • 1 k<n−1 (so the complete graph and the null graph ofn vertices are not considered to be • � strongly regular). -
Some Topics Concerning Graphs, Signed Graphs and Matroids
SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results. -
Octonion Multiplication and Heawood's
CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7]. -
3.1 Matchings and Factors: Matchings and Covers
1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices. -
Catalogue of Graph Polynomials
Catalogue of graph polynomials J.A. Makowsky April 6, 2011 Contents 1 Graph polynomials 3 1.1 Comparinggraphpolynomials. ........ 3 1.1.1 Distinctivepower.............................. .... 3 1.1.2 Substitutioninstances . ...... 4 1.1.3 Uniformalgebraicreductions . ....... 4 1.1.4 Substitutioninstances . ...... 4 1.1.5 Substitutioninstances . ...... 4 1.1.6 Substitutioninstances . ...... 4 1.2 Definabilityofgraphpolynomials . ......... 4 1.2.1 Staticdefinitions ............................... ... 4 1.2.2 Dynamicdefinitions .............................. 4 1.2.3 SOL-definablepolynomials ............................ 4 1.2.4 Generalizedchromaticpolynomials . ......... 4 2 A catalogue of graph polynomials 5 2.1 Polynomialsfromthezoo . ...... 5 2.1.1 Chromaticpolynomial . .... 5 2.1.2 Chromatic symmetric function . ...... 6 2.1.3 Adjointpolynomials . .... 6 2.1.4 TheTuttepolynomial . ... 7 2.1.5 Strong Tutte symmetric function . ....... 7 2.1.6 Tutte-Grothendieck invariants . ........ 8 2.1.7 Aweightedgraphpolynomial . ..... 8 2.1.8 Chainpolynomial ............................... 9 2.1.9 Characteristicpolynomial . ....... 10 2.1.10 Matchingpolynomial. ..... 11 2.1.11 Theindependentsetpolynomial . ....... 12 2.1.12 Thecliquepolynomial . ..... 14 2.1.13 Thevertex-coverpolynomial . ...... 14 2.1.14 Theedge-coverpolynomial . ..... 15 2.1.15 TheMartinpolynomial . 16 2.1.16 Interlacepolynomial . ...... 17 2.1.17 Thecoverpolynomial . 19 2.1.18 Gopolynomial ................................. 21 2.1.19 Stabilitypolynomial . ...... 23 1 2.1.20 Strong U-polynomial............................... -
The Vertex Isoperimetric Problem on Kneser Graphs
The Vertex Isoperimetric Problem on Kneser Graphs UROP+ Final Paper, Summer 2015 Simon Zheng Mentor: Brandon Tran Project suggested by: Brandon Tran September 1, 2015 Abstract For a simple graph G = (V; E), the vertex boundary of a subset A ⊆ V consists of all vertices not in A that are adjacent to some vertex in A. The goal of the vertex isoperimetric problem is to determine the minimum boundary size of all vertex subsets of a given size. In particular, define µG(r) as the minimum boundary size of all vertex subsets of G of size r. Meanwhile, the vertex set of the Kneser graph KGn;k is the set of all k-element subsets of f1; 2; : : : ; ng, and two vertices are adjacent if their correspond- ing sets are disjoint. The main results of this paper are to compute µG(r) for small and n 1 n−12 large values of r, and to prove the general lower bound µG(r) ≥ k − r k−1 −r when G = KGn;k. We will also survey the vertex isoperimetric problem on a closely related class of graphs called Johnson graphs and survey cross-intersecting families, which are closely related to the vertex isoperimetric problem on Kneser graphs. 1 1 Introduction The classical isoperimetric problem on the plane asks for the minimum perimeter of all closed curves with a fixed area. The ancient Greeks conjectured that a circle achieves the minimum boundary, but this was not rigorously proven until the 19th century using tools from analysis. There are two discrete versions of this problem in graph theory: the vertex isoperimetric problem and the edge isoperimetric problem.