SUPPLEMENTARY DATA Cell-Cycle and DNA-Damage Response

Total Page:16

File Type:pdf, Size:1020Kb

SUPPLEMENTARY DATA Cell-Cycle and DNA-Damage Response SUPPLEMENTARY DATA Cell-cycle and DNA-damage response pathway is involved in leptomeningeal metastasis of non-small cell lung cancer Yun Fan1†*, Xuehua Zhu2†, Yan Xu3†, Xuesong Lu4, Yanjun Xu1, Mengzhao Wang3, Haiyan Xu4, Jingyan Ding2, Xin Ye2, Luo Fang5, Zhiyu Huang5, Lei Gong5, Hongyang Lu1, Weimin Mao1, and Min Hu2* 1Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China. 2IMED Asia, AstraZeneca, Shanghai, China. 3Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China. 4Research & Development Information, AstraZeneca, Shanghai, China. 5Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China. †These authors contributed equally to this work. *Corresponding Authors: Yun Fan, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, Zhejiang 310022, China. Phone: (+86)0571-88122396; Fax: (+86)0571-88122396; Email: [email protected]. Min Hu, AstraZeneca, No. 199 Liangjing Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China. Phone: (+86)021-61097820; Fax: (+86)021-58387337; Email: min- [email protected]. 1 SUPPLEMENTARY FIGURES Supplementary Figure S1. 2100 Bioanalyzer spectra of total DNA extracted from CSF samples. Pellet DNA comprised the major proportion of total CSF DNA for most samples except in P6C there was a high fraction of cfDNA. The amount of DNA input used for library construction was indicated in each panel. 2 SUPPLEMENTARY TABLES Supplementary Table S1. Sample collection information. Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Primary tumor √ √ √ √ √ √ √ √ √ √ √ Tumor percentage 70% 60% 60% 85% 30% 90% 60% 30% 80% 60% 50% CSF √ √ √ √ √ √ √ √ √ √ √ Whole blood √ √ √ √ √ √ √ Adjacent normal √ 3 Supplementary Table S2. Genes/regions included in the LungPlasma panel. 44 genes (whole exons) AKT1 CDK6 FGFR2 MAP2K1 NTRK1 STK11 APC CDKN2A FGFR3 MDM2 NTRK2 TP53 ATM CTNNB1 FLT3 MET NTRK3 TSC1 AURKA DDR2 IGF1R MTOR PDGFRA TSC2 BIM EGFR JAK2 NF1 PIK3CA BRAF ERBB2 KDR NOTCH1 PTEN CCND1 ERBB4 KIT NRAS RB1 CDK4 FGFR1 KRAS NRG1 SMO 3 genes (whole exons and selected introns) ALK RET ROS1 121 genes (selected exons) ACER2 COL5A2 GKN2 NFE2L2 PTPRD TPTE ADAMTS12 CSMD1 GRIA3 NLRP4 PYHIN1 TRIM58 ADAMTS16 CSMD3 GUCY1A3 NRXN1 REG1B TRIML1 ADAMTS20 CTNNA2 HCN1 NTM RYR2 TRPC5 AK5 CYP2D6 HGF OBP2A SAGE1 TSHR AKR1B10 DHX9 HRAS OCA2 SCN7A U2AF1 AMOT DPP10 IL1RAPL1 ODZ3 SETD2 UGT1A1 ANKRD30A EIF3E INHBA OR2T4 SI UNC5D ASTN1 EPB41L4B ITM2A OR4A15 SLC26A3 VHL ATP10B EPHA3 KEAP1 OR4C6 SLC4A10 VPS13A BTRC EPHA5 KLHL1 OR5L2 SLC5A1 WISP3 CACNA1E EXOC5 KRTAP5-5 OR6F1 SLC6A5 WT1 CD5L EYA4 LRP1B PDE1C SNTG1 XPO1 CDH18 F9 LRRC2 PDE4DIP SORCS3 XRCC3 CNGB3 FAM135B LRRC7 POLDIP2 SPTA1 ZNF217 CNOT4 FAM5C LTBP1 POLR3B TBX15 ZNF703 CNTN5 FBN2 MDGA2 POM121L12 THSD7A CNTNAP5 FGFR4 MLL3 POTEG TIMD4 COASY GALNT13 MRPL1 PRSS1 TMEM132D COL19A1 GATA3 MYH2 PSG2 TNN COL25A1 GFRAL NAV3 PSG5 TNR 4 Supplementary Table S3. Genes included in the customized SeqCap EZ Choice Library. 394 genes (whole exons) ABCA6 CDKN1A FGF9 LRRK2 PAMR1 RNF43 ABCB1 CDKN1B FGFR1 LYRM5 PARP1 RPA1 ABL1 CDKN2A FGFR3 MALAT1 PAX6 RPA2 ACVR1B CDKN2B FGFR4 MAP2K1 PBRM1 RPA3 ACVR2A CDKN2C FHOD3 MAP2K2 PCBP1-AS1 RPL22 ACVRL1 CEBPA FIP1L1 MAP2K4 PDPK1 RPL5 ADAM28 CHD7 FKBP1A MAP3K1 PGM5 RPL6 AGTR2 CHEK1 FLT3 MAP3K13 PHF6 RPSAP58 AKT1 CHEK2 FOXA1 MAP3K8 PHLPP1 RUNX1 AKT1S1 CLVS1 FOXA2 MAPK1 PHLPP2 SBNO1 AKT2 CNTLN FOXC1 MAPK3 PIK3C2B SDK1 AKT3 COL6A3 FOXL2 MAPK8IP1 PIK3C2G SETBP1 AMER1 CR2 FRMD4A MAPKAP1 PIK3C3 SETD2 AOC3 CRIPAK FRS2 MBD6 PIK3CA SF3B1 APC CRKL GAS6 MCL1 PIK3CB SH3KBP1 AR CRYGD GATA3 MDC1 PIK3CD SIN3A ARAF CSNK2A1 GATA3-AS1 MDM2 PIK3CG SLC27A3 ARHGAP35 CTCF GLI1 MDM4 PIK3R1 SMAD2 ARID1A CTNNB1 GNA11 MECOM PIK3R2 SMAD4 ARID1B CYP2D6 GNA13 MED12 PIM1 SMC1A ARID2 DCUN1D1 GNAQ MEDAG PIM2 SMC3 ARID5B DDC GNAS MFRP PIM3 SMIM4 ASXL1 DDR1 GNG12 MGA PLEKHA6 SOX17 ATM DDR2 GSE1 MITF PMS1 SOX9-AS1 ATP2A1 DEPTOR GSTP1 MLH1 PMS2 SPOP ATP6V1B1 DIS3 H2AFX MLH3 POLD1 STAG2 ATR DNMT3A H3F3C MLST8 POLE STK11 ATRX DOCK2 HGF MPL POLM SVIL AXIN2 DSG3 HIST1H1C MRAS POLQ TAF1 B2M DYRK4 HIST1H2BD MRE11A PPOX TBL1XR1 ADGRB3 EDNRB HNF1A MSH3 PPP2R1A TBX3 BAP1 EGR3 HRAS MSH6 PPP2R2A TBX4 BARD1 EIF4A2 IDH1 MTHFR PRKAA1 TDP1 BCHE ELF3 IDH2 MTOR PRKAA2 TET2 BCL2L1 EP300 IGF1R MUC16 PRKAB1 TEX26-AS1 BCL2L11 EPCAM IL32 MUTYH PRKDC TFDP1 BCL9 EPHA3 IL6 MVK PRPF40B TGFBR2 BCORL1 EPHB6 INF2 MYC PRX TLR4 BMPR1A EPPK1 INPP4A MYCL PTCH1 TMEM132D BRAF ERAS INPP4B MYCN PTEN TP53 5 BRD2 ERBB2 IRAK4 MYH9 PTENP1 TP53BP1 BRD3 ERBB3 IRS4 MYOF PTPN11 TPTE BRD4 ERBB4 JAK1 NAV3 PTPN6 TRAM1L1 BRD9 ERCC1 JAK2 NBN RABGAP1 TSHZ2 BRIP1 ERCC2 JAK3 NCOR1 RAC1 TSHZ3 BUB1B ERRFI1 JARID2 NCOR2 RAD21 TTC19 BZRAP1 ESR1 KDM5C NDUFB11 RAD50 U2AF1 BZRAP1-AS1 EZH2 KDM6A NDUFB2 RAD51 USP9X C6orf89 FAM175A KDR NF1 RAD51AP2 UTP23 C7orf50 FANCI KEAP1 NF2 RAD51B VCAN C9orf131 FANCL KIF7 NFE2L2 RAD51C VEZF1 CBFB FAT4 KIT NFE2L3 RAD51D VHL RAD51L3- CBL FBXW7 KLC3 NKX2-1 WBP1 RFFL CCND1 FGF1 KLF3 NKX2-8 RAD52 WNT16 CCND2 FGF10 KLLN NLK RAD54L WT1 CCND3 FGF12 KMT2B NOTCH1 RAF1 XPC CCNE1 FGF14 KMT2C NPM1 RALGAPB XRCC1 CD4 FGF19 KMT2D NRAS RASA1 XRCC2 CDC14A FGF2 KRAS NRG1 RB1 XRCC4 CDH1 FGF23 KRTAP5-5 NSD1 RBM10 XRCC5 CDH10 FGF3 LAMP1 NTRK3 RELN XRCC6 CDK12 FGF4 LARP4B OR5M3 RHEB XYLT2 CDK4 FGF5 LIFR OTX2 RHOA ZBTB20 CDK6 FGF6 LIG1 PAFAH1B1 RICTOR ZNF43 CDK8 FGF7 LIG4 PAK1 RIT1 CDK9 FGF8 LMAN1 PALB2 RNF2 9 genes (whole exons and introns) ALK BRCA2 FGFR2 MSH2 RET ROS1 BRCA1 EGFR MET 6 Supplementary Table S4. List of hotspot mutations and structural rearrangements. Hotspot mutations Gene Accession No. CDS change AA change COSMIC ID AKT1 NM_005163 c.49G>A E17K COSM33765 BRAF NM_004333 c.1798_1799GT>AA V600K COSM473 BRAF NM_004333 c.1798_1799GT>AG V600R COSM474 BRAF NM_004333 c.1799T>A V600E COSM476 ERBB2 NM_004448 c.1963A>G I655V COSM4000121 ERBB2 NM_004448 c.2033G>A R678Q COSM436498 ERBB2 NM_004448 c.2264T>C L755S COSM14060 ERBB2 NM_004448 c.2524G>A V842I COSM14065 ERBB2 NM_004448 c.929C>T S310F COSM48358 KRAS NM_033360 c.182A>G Q61R COSM552 KRAS NM_033360 c.182A>T Q61L COSM553 KRAS NM_033360 c.183A>C Q61H COSM554 KRAS NM_033360 c.183A>T Q61H COSM555 KRAS NM_033360 c.34G>A G12S COSM517 KRAS NM_033360 c.34G>C G12R COSM518 KRAS NM_033360 c.34G>T G12C COSM516 KRAS NM_033360 c.35G>A G12D COSM521 KRAS NM_033360 c.35G>C G12A COSM522 KRAS NM_033360 c.35G>T G12V COSM520 KRAS NM_033360 c.37G>T G13C COSM527 KRAS NM_033360 c.38G>A G13D COSM532 MET NM_001127500 c.3029C>T T1010I COSM707 MET NM_001127500 c.3757T>G Y1253D COSM700 NRAS NM_002524 c.181C>A Q61K COSM580 NRAS NM_002524 c.182A>G Q61R COSM584 NRAS NM_002524 c.182A>T Q61L COSM583 NRAS NM_002524 c.183A>C Q61H COSM586 NRAS NM_002524 c.183A>T Q61H COSM585 NRAS NM_002524 c.34G>A G12S COSM563 NRAS NM_002524 c.34G>C G12R COSM561 NRAS NM_002524 c.34G>T G12C COSM562 NRAS NM_002524 c.35G>A G12D COSM564 NRAS NM_002524 c.35G>C G12A COSM565 7 NRAS NM_002524 c.35G>T G12V COSM566 NRAS NM_002524 c.37G>C G13R COSM569 NRAS NM_002524 c.37G>T G13C COSM570 NRAS NM_002524 c.38G>A G13D COSM573 NRAS NM_002524 c.38G>T G13V COSM574 PIK3CA NM_006218 c.1035T>A N345K COSM754 PIK3CA NM_006218 c.1258T>C C420R COSM757 PIK3CA NM_006218 c.1624G>A E542K COSM760 PIK3CA NM_006218 c.1633G>A E545K COSM763 PIK3CA NM_006218 c.2176G>A E726K COSM87306 PIK3CA NM_006218 c.3140A>G H1047R COSM775 PIK3CA NM_006218 c.3140A>T H1047L COSM776 PIK3CB NM_006219 c.3151G>A E1051K COSM317875 PTEN NM_000314 c.388C>G R130G COSM5219 PTEN NM_000314 c.388C>T R130* COSM5152 PTEN NM_000314 c.389G>A R130Q COSM5033 PTEN NM_000314 c.697C>T R233* COSM5154 Structural rearrangements EML4-ALK STRN-ALK KIAA1549-BRAF CCDC6-RET SLC34A2-ROS1 NPM1-ALK ATIC-ALK FAM131B-BRAF NCOA4-RET EZR-ROS1 CLTC-ALK KIF5B-ALK SND1-BRAF KIF5B-RET GOPC-ROS1 TPM3-ALK TPM4-ALK FGFR1-PLAG1 PRKAR1A-RET SDC4-ROS1 RANBP2-ALK TFG-ALK FGFR3-TACC3 CD74-ROS1 8 Supplementary Table S5. Co-existence of EGFR and PIK3CA mutations as reported in NSCLC patient datasets. Comparing with the current LM cohort, the co-existence of PIK3CA mutations was significantly lower in general EGFR mutation-positive NSCLC patient population (p-values: 1.65E-6 and 9.89E-06 by Fisher's exact test for Western and Asian datasets, respectively). *: datasets from cBioPortal (1,2); #: dataset from The Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/). Co-existence Source Sample size EGFRm+ PIK3CAm+ Reported mutation sites (% EGFRm+) Lung adenocarcinoma EGFR exon 18-21; PIK3CA E542K, E545K, 182 21 4 1 (4.76%) (Broad, Cell 2012) * H1047L Lung adenocarcinoma 34 1 0 0 (0) EGFR exon 18-21 (MSKCC 2015) * Lung adenocarcinoma EGFR exon 18-21; PIK3CA E542K, E545K, 567 49 13 0 (0) (TCGA, Provisional) # E726K, H1047R Lung adenocarcinoma 163 20 0 0 (0) EGFR exon 18-21 (TSP, Nature 2008) * EGFR 19Del, G719A/D/C/S, L858R/M, T790M; PIK3CA K111E/N/R, E542K/Q, Sherwood JL, et al (3) 238 20 10 1 (5%) Western datasets Western E545A/G/D/K/Q, Q546H/R/P/L, H1047L/R/Q/Y EGFR exon 19-21; activating mutations in Chaft JE, et al (4) 1125 260 23 3 (1.15%) PIK3CA Total 2309 371 50 5 (1.35%) EGFR exons 18-21; PIK3CA exon 9 (T536I, Wang L, et al (5) 807 522 22 16 (3.07%) E542K, E545A/K/Q/G, Q546R) and exon 20 (G1007R, Y1021C, M1043L, H1047L/R) EGFR exons 18-21; PIK3CA E542K, Serizawa M, et al (6) 411 144 11 4 (2.78%) E545K/Q, H1047R atasets EGFR exons 18-21; PIK3CA E542K, Wu SG, et al (7) 760 485 14 12 (2.47%) E545K/Q, H1047R Asian d EGFR exons 18-21; PIK3CA exon 9 and exon Song Z, et al (8) 810 401 23 12 (2.99%) 20 Total 2788 1552 70 44 (2.84%) 9 Supplementary Table S6.
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Investigation of the Fatty Acid Transporter-Encoding Genes
    www.nature.com/scientificreports OPEN Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism Received: 13 February 2015 1 1 1 1 Accepted: 12 October 2015 Motoko Maekawa , Yoshimi Iwayama , Tetsuo Ohnishi , Manabu Toyoshima , 1 1 1 1 2,3 Published: 09 November 2015 Chie Shimamoto , Yasuko Hisano , Tomoko Toyota , Shabeesh Balan , Hideo Matsuzaki , Yasuhide Iwata3, Shu Takagai3, Kohei Yamada3, Motonori Ota4, Satoshi Fukuchi5, Yohei Okada6,7, Wado Akamatsu6,8, Masatsugu Tsujii3,9, Nobuhiko Kojima10, Yuji Owada11, Hideyuki Okano6, Norio Mori3 & Takeo Yoshikawa1 The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology.
    [Show full text]
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • Multifactorial Erβ and NOTCH1 Control of Squamous Differentiation and Cancer
    Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks, … , Karine Lefort, G. Paolo Dotto J Clin Invest. 2014;124(5):2260-2276. https://doi.org/10.1172/JCI72718. Research Article Oncology Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ–dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer. Find the latest version: https://jci.me/72718/pdf Research article Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks,1,2 Paola Ostano,3 Seung-Hee Jo,1,2 Jun Dai,1,2 Spiro Getsios,4 Piotr Dziunycz,5 Günther F.L.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Funkce CDK12 a CDK13 V Regulaci Transkripce Hana Paculová
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE Funkce CDK12 a CDK13 v regulaci transkripce Disertační práce Hana Paculová Školitel: Mgr. Jiří Kohoutek, Ph.D Brno 2018 Bibliogra cký záznam Autorka: Mgr. Hana Paculová Prrodovedecáá aaául,a鏈 Maaarkáova unvverv,a Úa,av bvochemve Název práce: Funáce CDK12 a CDK13 v regulacv ,ranaárvpce Studijní program: Bvochemve Studijní obor: Bvochemve Školitel: Mgr. Jvr Kohou,eá鏈 Ph.D Akademický rok: 2017/2018 Po et stran: 89 Klí ová slova: Ckálvn-dependen,n ávnaaa鏈 CDK12鏈 ,ranaárvpce鏈 RNA polkmeraaa II鏈 raáovvna vaječnáů鏈 CHK1 Bibliographic entry Author: Mgr. Hana Paculová Facul,k oa acvence鏈 Maaarká unvverav,k Department of Biochemistry Title oF dissertation: CDK12 and CDK13 aunc,von vn ,ranacrvp,von regula,von Degree programme: Bvochemva,rk Field oF study: Bvochemva,rk Supervisor: Mgr. Jvr Kohou,eá鏈 Ph.D Academic year: 2017/2018 Number oF pages: 89 Keywords: Ckclvn-dependen ávnaae鏈 CDK12鏈 ,ranacrvp,von鏈 RNA polkmeraae II鏈 ovarvan cancer鏈 CHK1 Abstrakt Ckálvn-dependen,n ávnaaa 12 (CDK12) je ,ranaárvpčn ávnaaa鏈 á,erá rd expreav avých clových genů ,m鏈 že aoaaorkluje RNA polkmeraau II v průbehu elongačn aáe ,ranaárvpce. CDK12 je apojena do neáolváa bunečných preceaů鏈 což ahrnuje odpoveď na pošáoen DNA鏈 vývoj a bunečnou dvaerencvacv a aea,rvh mRNA. CDK12 bkla popaána jaáo jeden genů鏈 á,eré jaou čaa,o mu,ovánk v hvgh-grade aerónm ovarválnm áarcvnomu鏈 nvcméne vlvv ,ech,o mu,ac na aunácv CDK12 a jejvch role v áarcvnogenev dopoaud nebkla a,anovena. Zjva,vlv jame鏈 že ve,švna mu,ac CDK12鏈 á,eré bklk naleenk v nádorech鏈 brán vk,voren áomplexu CDK12 a Ckálvnem K a vnhvbuj ávnaaovou aá,vvv,u CDK12.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials: Supplemental Table 1 Abbreviations FMDV Foot and Mouth Disease Virus FMD Foot and Mouth Disease NC Non-treated Control DEGs Differentially Expressed Genes RNA-seq High-throughput Sequencing of Mrna RT-qPCR Quantitative Real-time Reverse Transcriptase PCR TCID50 50% Tissue Culture Infective Doses CPE Cytopathic Effect MOI Multiplicity of Infection DMEM Dulbecco's Modified Eagle Medium FBS Fetal Bovine Serum PBS Phosphate Buffer Saline QC Quality Control FPKM Fragments per Kilo bases per Million fragments method GO Gene Ontology KEGG Kyoto Encyclopedia of Genes and Genomes R Pearson Correlation Coefficient NFKBIA NF-kappa-B Inhibitor alpha IL6 Interleukin 6 CCL4 C-C motif Chemokine 4 CXCL2 C-X-C motif Chemokine 2 TNF Tumor Necrosis Factor VEGFA Vascular Endothelial Growth Gactor A CCL20 C-C motif Chemokine 20 CSF2 Macrophage Colony-Stimulating Factor 2 GADD45B Growth Arrest and DNA Damage Inducible 45 beta MYC Myc proto-oncogene protein FOS Proto-oncogene c-Fos MCL1 Induced myeloid leukemia cell differentiation protein Mcl-1 MAP3K14 Mitogen-activated protein kinase kinase kinase 14 IRF1 Interferon regulatory factor 1 CCL5 C-C motif chemokine 5 ZBTB3 Zinc finger and BTB domain containing 3 OTX1 Orthodenticle homeobox 1 TXNIP Thioredoxin-interacting protein ZNF180 Znc Finger Protein 180 ZNF36 Znc Finger Protein 36 ZNF182 Zinc finger protein 182 GINS3 GINS complex subunit 3 KLF15 Kruppel-like factor 15 Supplemental Table 2 Primers for Verification of RNA-seq-detected DEGs with RT-qPCR TNF F: CGACTCAGTGCCGAGATCAA R:
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Functional Genomics Atlas of Synovial Fibroblasts Defining Rheumatoid Arthritis
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability Xiangyu Ge1*, Mojca Frank-Bertoncelj2*, Kerstin Klein2, Amanda Mcgovern1, Tadeja Kuret2,3, Miranda Houtman2, Blaž Burja2,3, Raphael Micheroli2, Miriam Marks4, Andrew Filer5,6, Christopher D. Buckley5,6,7, Gisela Orozco1, Oliver Distler2, Andrew P Morris1, Paul Martin1, Stephen Eyre1* & Caroline Ospelt2*,# 1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK 2Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 3Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia 4Schulthess Klinik, Zurich, Switzerland 5Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 6NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK 7Kennedy Institute of Rheumatology, University of Oxford Roosevelt Drive Headington Oxford UK *These authors contributed equally #corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.12.16.20248230; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Gene Symbol Category ACAN ECM ADAM10 ECM Remodeling-Related ADAM11 ECM Remodeling-Related ADAM12 ECM Remodeling-Related ADAM15 E
    Supplementary Material (ESI) for Integrative Biology This journal is (c) The Royal Society of Chemistry 2010 Gene symbol Category ACAN ECM ADAM10 ECM remodeling-related ADAM11 ECM remodeling-related ADAM12 ECM remodeling-related ADAM15 ECM remodeling-related ADAM17 ECM remodeling-related ADAM18 ECM remodeling-related ADAM19 ECM remodeling-related ADAM2 ECM remodeling-related ADAM20 ECM remodeling-related ADAM21 ECM remodeling-related ADAM22 ECM remodeling-related ADAM23 ECM remodeling-related ADAM28 ECM remodeling-related ADAM29 ECM remodeling-related ADAM3 ECM remodeling-related ADAM30 ECM remodeling-related ADAM5 ECM remodeling-related ADAM7 ECM remodeling-related ADAM8 ECM remodeling-related ADAM9 ECM remodeling-related ADAMTS1 ECM remodeling-related ADAMTS10 ECM remodeling-related ADAMTS12 ECM remodeling-related ADAMTS13 ECM remodeling-related ADAMTS14 ECM remodeling-related ADAMTS15 ECM remodeling-related ADAMTS16 ECM remodeling-related ADAMTS17 ECM remodeling-related ADAMTS18 ECM remodeling-related ADAMTS19 ECM remodeling-related ADAMTS2 ECM remodeling-related ADAMTS20 ECM remodeling-related ADAMTS3 ECM remodeling-related ADAMTS4 ECM remodeling-related ADAMTS5 ECM remodeling-related ADAMTS6 ECM remodeling-related ADAMTS7 ECM remodeling-related ADAMTS8 ECM remodeling-related ADAMTS9 ECM remodeling-related ADAMTSL1 ECM remodeling-related ADAMTSL2 ECM remodeling-related ADAMTSL3 ECM remodeling-related ADAMTSL4 ECM remodeling-related ADAMTSL5 ECM remodeling-related AGRIN ECM ALCAM Cell-cell adhesion ANGPT1 Soluble factors and receptors
    [Show full text]
  • Health-Relevant Phenotypes in the Offspring of Mice Given CAR Activators Prior to Pregnancy S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/08/28/dmd.118.082925.DC1 1521-009X/46/11/1827–1835$35.00 https://doi.org/10.1124/dmd.118.082925 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1827–1835, November 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Health-Relevant Phenotypes in the Offspring of Mice Given CAR Activators Prior to Pregnancy s Karin Dietrich, Jan Baumgart, Leonid Eshkind, Lea Reuter, Ute Gödtel-Armbrust, Elke Butt, Michael Musheev, Federico Marini, Piyush More, Tanja Grosser, Christof Niehrs, Leszek Wojnowski, and Marianne Mathäs Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.) Received June 6, 2018; accepted August 22, 2018 Downloaded from ABSTRACT Hepatic induction in response to drugs and environmental chem- analyses. The important environmental pollutant PCB153 acti- icals affects drug therapies and energy metabolism. We investigated vated CAR in the F1 generation in a manner similar to TCPOBOP. whether the induction is transmitted to the offspring. We injected Our findings indicate that chemicals accumulating and persisting 3-day- and 6-week-old F0 female mice with TCPOBOP, an activator in adipose tissue may exert liver-mediated, health-relevant effects dmd.aspetjournals.org of the nuclear receptor constitutive androstane receptor (CAR, on F1 offspring simply via physical transmission in milk.
    [Show full text]