In a World of Algorithms, What Is the Importance of Being Human?

Total Page:16

File Type:pdf, Size:1020Kb

In a World of Algorithms, What Is the Importance of Being Human? IN A WORLD OF ALGORITHMS, WHAT IS THE IMPORTANCE OF BEING HUMAN? Bragg Member Question 2016 A publication In a world of algorithms, The Royal what is the Institution importance of being of human?Australia 1 In a world of algorithms, what is the importance of being human? 2 Contents Editors Carol Perkins Julie LeMessurier 4 Foreword - Dr Paul Willis 4 What is a Bragg member? Art Director/Designer Shawnee Willis Bragg Member Submissions In A World of Algorithms, 5 Dr Alan Finkel AO What is the Importance 7 Professor Lyn Beazley AO of Being Human? 9 Professor Marcello Costa is a publication of 11 Professor Michael Archer AM The Royal Institution of Australia 12 Emerita Professor Patricia Vickers-Rich 13 Peter Gago 16 Professor Tanya Monro 17 Adjunct Professor Zee Upton 20 Bragg Member Profiles In a world of algorithms, what is the importance of being human? 3 Foreword Dr Paul Willis Director, The Royal Institution of Australia In the third edition of his Systema Natura Carl Linnaeus named our species Homo sapiens. Literally translated to “know thyself”, in bestowing this name on us all Linnaeus was saying that the distinguishing feature of humans against all other life on Earth was our ability for introspection, the still undefinable character of consciousness and the unscientific but meaningful concept of a human spirit. It is this human spirit that has been the foundation for our success. Our ability for introspection spawned curiosity. For the first time in the history of life we could change our environment to suit our needs thus freeing ourselves from the endless iterations of Natural Selection where the environment shaped us. All that we have gained and developed can be traced back to that enigmatic description that Linnaeus so keenly identified; Know Thyself. But, in an age where our technologies greatly exceed our natural abilities, we should take time to reflect on how far this replacement of our human functions can or should extend. Will the digital algorithms that can already outstrip our analog capacities to calculate, remember and organise ever extend to challenge the essence of what it is to be human? Can artificial intelligence ever define for us that which we cannot define for ourselves and approximate the functions of the human spirit? When so many domains of our historical activities are being replaced with automation, will there be any space left for the functions of the human brain? Will the rise of technology ever lead to the redundancy of humans? These are deep and profound questions that arise out of the proposition In a world of algorithms, what is the importance of being human? We posed this proposition to some of the greatest minds in the nation, the Honorary Bragg Members of The Royal Institution of Australia. I think you will find their varied and insightful responses will keep you thinking long after you have read them. What is a Bragg member? Named after the prominent Australian Pioneer scientists, Sir William Henry Bragg and Sir William Lawrence Bragg, Honorary Bragg Membership is the highest category of membership awarded by The Royal Institution of Australia and recognises excellence in scientific achievement and commitment to science communication. In a world of algorithms, what is the importance of being human? 4 As Australia’s Chief Scientist I have been Dr Alan Finkel AO struck by our knack for finding reasons not to succeed. We are not innovative, our research is average, we don’t collaborate, we’re underfunded, we’re overfunded, life’s so good that we’re complacent, life’s so bad that we’re fearful and boring…There seems to be no data we can’t report in a “Humans are the depressing way. most remarkable Then it hit me that this negativity is not some quirk of the Australian character, synthesis of a lot but part of the human condition, so deeply of tolerable ingrained that we even apply it to the characteristics to business of being human itself. We are not create a whole that as fast as cheetahs, we can’t see like an eagle, we can’t camouflage ourselves like is truly astonishing” a chameleon, we can’t smell like a dog, we can’t dive like a dolphin… If I thought about our country as the sum total of its inadequacies then I too might be tempted to despair. But consider for a moment the positives – unemployment is low, the standard of living is high, and Australia is the only country in the world that can say it hasn’t seen a recession in 25 years. Something is clearly going right! And that something can only be found by thinking of our country as more than the sum of its real and imagined limitations. So too with humans. Yes, we could come up with a miserable list by looking for the outliers in the animal world and comparing our performance on the very things that make those animals exceptional. That would be the wrong way to assess our capabilities! In a world of algorithms, what is the importance of being human? 5 Humans are the most remarkable synthesis of a lot of tolerable characteristics to create a whole that is truly astonishing. This is particularly so when it comes to our brains, rightly described by many commentators as the most complex machine in the known universe. If there is any creature out there that might one day come close to the package of features known as a human being, it is the creature that we ourselves are creating – the algorithm. Or call it Artificial Intelligence, or Machine Learning, or Robotics. It’s easy to look at the individual skills embodied in the world of algorithms and conclude it is all over. We will become irrelevant, of no importance; and soon enough, unemployed. But take solace in package deals. Yes, computers are faster and more accurate than us, just like a cheetah runs faster. Yes, image processing software can pick out more details than we can, just like an eagle sees further. Yes, there are algorithms that can learn like we do and beat us in chess. And there are algorithms that can analyse company reports, or compose music or write a short story. There are robots that can drive, others that can climb, still others that can crawl through rubble to find signs of life in collapsed buildings after an earthquake. But put them altogether and all you will have is a highly capable machine. Good luck getting it to go snorkelling, dry off and have a drink at the bar, share some funny stories, then wander over to the lab to discover something new before rushing home to read to the kids. Good luck getting it to enjoy those things. A smarter robot is not a substitute human. And in a world of algorithms, why would I still choose to be human? The answer, friends, is the package deal. The package of features that constitutes a human is special and will remain special for a very long time. In a world of algorithms, what is the importance of being human? 6 Let’s start by defining the word algorithm: Professor Lyn Beazley AO “a process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer”. And now let’s give some examples of their use in our lives. Algorithms underpin the automation that keeps modern life on track on a 24/7 basis. Yet we do not question how computer- controlled automation happens, we take it for granted. We hardly think twice about the automation underlying the processing that “... can algorithms ensures the purity of the water we drink or the safety of the electricity generated and fuel the human distributed to reach our door. Complex spirit? I doubt it” computer-controlled processes are unseen but without them we wouldn’t have discovered the gas fields and extracted their contents to provide the gas with which we cook our food nor could we have produced, processed and packaged the food that forms so much of our modern diet. And where would we be without the algorithms that allow us to use our mobile phones and be part of the worldwide web? Perhaps in years to come, we will take for granted that our car is under remote control. All the present automation seems pretty acceptable to most people (if they even stop to think about it) but the seemingly inexorable advance of automation has down sides at a personal level: remotely controlled mine sites or the oil and gas platforms mean fewer jobs, and impersonal machines replace a person who takes our money at a car park exit or a real human In a world of algorithms, what is the importance of being human? 7 who answers that enquiry by phone. At present, at least we interact with a hopefully caring person when we visit the doctor although increasingly computers such as Watson will aid in diagnosis and robots will conduct operations (it’s happening for precision knee surgery right now). When we take to the skies, the plane is mainly under computer control, but how many of us would accept a robot addressing you from the cockpit? These examples begin to address the importance of being human. At a simplistic level, humans are important because their creativity generates the algorithms on which they rely day in, day out. But can algorithms fuel the human spirit? I doubt it. The spirit generates the full range of human behaviour and emotions, both good and bad, that determine human history.
Recommended publications
  • Curriculum Vitae Brian P
    Curriculum Vitae Brian P. Schmidt AC FAA FRS Address: Office of the Vice Chancellor The Australian National University Canberra, ACT 2600, Australia Birthdate: 24 February 1967, Missoula Montana USA Citizenship: United States of America and Australia Telephone: +61 2 6125 2510 email: [email protected] Academic Qualifications: 1993: Ph.D. in Astronomy, Harvard University 1992: A.M. in Astronomy, Harvard University 1989: B.S. in Physics, University of Arizona 1989: B.S. in Astronomy, University of Arizona PhD thesis: Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale – Supervisor: Robert P. Kirshner Research and other Interests: Observational Cosmology, Studies of Supernovae, Gamma Ray Bursts, Large Surveys, Photometry and Calibration, Extremely Metal Poor Stars, Exoplanet Discovery Public Policy in the Areas of Education, Science, and Innovation Vigneron and Grape Grower: Maipenrai Vineyard and Winery Academic Positions Held: 2016- Vice Chancellor and President, The Australian National University 2013-2015 Public Policy Fellow, Crawford School, The Australian National University 2010- Distinguished Professor, The Australian National University 2010-2015 Australian Research Council Laureate Fellow (ANU) 2005-2009 Australian Research Council Federation Fellow (ANU) 2003-2005 Australian Research Council Professorial Fellow, (ANU) 1999-2002 Fellow, The Australian National University (RSAA) 1997-1999 Research Fellow, The Australian National University (MSSSO) 1995-1996 Postdoctoral Fellow, The Australian National University
    [Show full text]
  • Monash Physics and Astronomy
    MONASH PHYSICS AND ASTRONOMY study.monash PHYSICS AND ASTRONOMY Have you ever wondered if absolute zero temperature can be reached, how a black hole forms, or what the Universe is made of? Have you ever had a CT, an ultrasound or an MRI scan? Do you use a smart phone, the internet or a computer? Almost everything that makes your life more comfortable, The skills you gain through studying physics and astrophysics or allows you to work efficiently in the 21st century, is due to at Monash can be used in many areas, such as: developing engineered solutions based on physical principles. For example, medical instrumentation, radiotherapy treatment of cancer, the discovery of electricity, magnetism, relativity and quantum modelling climate and weather, analysing big data and financial mechanics came about through human curiosity; however, systems, developing innovative ways to address sustainability, technologies based on these discoveries did not eventuate until exploring emergent behaviour in complex biological systems, much later. and understanding the function of the brain. Physicists and Astrophysicists explore the Universe at all scales of Physics and astronomy at Monash is going through an exciting length, time and energy – from sub-atomic particles (such as the period of growth – investing significantly in people and facilities. Higgs boson) to the large scale structure of the Universe; from We are working across a broad range of creative, curiosity-driven ultra cold gases (close to absolute zero temperature), to what research areas that will impact on future generations – including happened at the Big Bang. Physics seeks to understand the biomedical imaging, quantum computing, atomtronics, and nature of space, time and matter, and in doing so it addresses novel materials for next generation photonics, optoelectronics profound philosophical questions about the nature of reality and and spintronics.
    [Show full text]
  • Professor Robert Mccredie May
    Professor Robert McCredie May The degree of Doctor of Science (honoris causa) was conferred upon Professor Robert McCredie May at the Science ceremony held in the Great Hall at 9.30am on 19 May 1995. Professor Robert May, photo, Tracey Schramm, 'The University of Sydney News', 12 July 1995. Citation Presented by the Vice-Chancellor and Principal Professor D McNicol Chancellor I have the honour to present Professor Robert McCredie May for admission to the degree of Doctor of Science (honoris causa). Professor May has a record of outstanding achievement in two very different fields of science - theoretical physics and population biology. Born and educated in Sydney, Professor May graduated BSc at this University with the University Medal in Physics in 1956, and PhD in Theoretical Physics in 1959, supervised by Dr M.R. Schafroth. After a brief interlude at Harvard University, he returned to join the academic staff of the School of Physics in 1962. For his distinguished theoretical contributions to the physics of ionized gases, he was awarded the Pawsey Medal by the Australian Academy of Science in 1967. In 1969 he was the first to be appointed to a Personal Chair in this University. The metamorphosis from physics to biology began with Professor May's investigation of the problem of the relation between stability and complexity in natural communities. His elegant mathematical solution to the predator-prey problem later led to him being regarded as one of the fathers of the modem theory of chaos. The transition to biology was completed in 1973 with his appointment to Princeton University to take up the Class of 1877 Professorship of Zoology.
    [Show full text]
  • Quantum Measurement and Control Howard M
    Cambridge University Press 978-0-521-80442-4 - Quantum Measurement and Control Howard M. Wiseman and Gerard J. Milburn Frontmatter More information QUANTUM MEASUREMENT AND CONTROL The control of individual quantum systems promises a new technology for the twenty-first century – quantum technology. This book is the first comprehensive treatment of modern quantum measurement and measurement-based quantum control, which are vital elements for realizing quantum technology. Readers are introduced to key experiments and technologies through dozens of recent experiments in cavity QED, quantum optics, mesoscopic electronics and trapped particles, several of which are analysed in detail. Nearly 300 exercises help build understanding, and prepare readers for research in these exciting areas. This important book will interest graduate students and researchers in quantum informa- tion, quantum metrology, quantum control and related fields. Novel topics covered include adaptive measurement; realistic detector models; mesoscopic current detection; Markovian, state-based and optimal feedback; and applications to quantum information processing. howard m. wiseman is Director of the Centre for Quantum Dynamics at Griffith University, Australia. He has worked in quantum measurement and control theory since 1992, and is a Fellow of the Australian Academy of Science (AAS). He has received the Bragg Medal of the Australian Institute of Physics, the Pawsey Medal of the AAS and the Malcolm Macintosh Medal of the Federal Science Ministry. gerard j. milburn is an Australian Research Council Federation Fellow at the Uni- versity of Queensland, Australia. He has written three previous books, on quantum optics, quantum technology and quantum computing. He has been awarded the Boas Medal of the Australian Institute of Physics and is a Fellow of the Australian Academy of Science and the American Physical Society.
    [Show full text]
  • Issue 9 Jul09
    Issue 9, July 2009 SCHOOL OF PHYSICS ALUMNI & FRIENDS NEWSLETTER MESSAGE FROM THE HEAD Also in 2009 we have seen Dean’s awards This year and hopefully reveal the Higgs boson. to our staff for research and outreach. is a year of With regard to the second, the Square These went to Andrew Melatos for his work remarkable physics Kilometre Array will look back in time to on sources of gravitational waves and to anniversaries! the early universe and reveal the first stars Roger Rassool for his science shows for Here in the School and answer some of the most profound primary and secondary students. A further of Physics we are questions about the origin and evolution raft of Dean’s awards went to our research celebrating the of the universe. We have high hopes that students Dougal Maclaurin, Paul Fraser, 400th anniversary Australia will be chosen for the site for the Michelle Strack, Andrew McCulloch and of Galileo’s first SKA. Rebecca Ryan. We are very grateful to astronomical People in Physics here in Melbourne are the sponsors of these awards that make it discoveries. We deeply involved in these two big projects. possible to recognise the accomplishments are also celebrating We have been very pleased to see of our students. the 100th our people working on these and other anniversary of the year Ernest Rutherford projects recognised for their excellence by It is also worth noting that the new and his students “reverse engineered” the a flood of medals and awards. Melbourne Model curriculum has atom and discovered the nucleus.
    [Show full text]
  • Professor Tanya Monro
    South Australian Division Women in Credit 16th June 2017 National Partners Women in Credit Luncheon DATE: Friday 16th June 2017 VENUE: Playford Hotel, 120 North Terrace Adelaide TIME: 11:30am Registrations 12:00pm Start 3:00pm Finish COST: Members-$99 (Inc. GST) Non-members $110 (Inc. GST) Don't miss the upcoming Women in Credit business lunch in South Australia. Women in Credit events are a fabulous opportunity to learn from industry leaders and network with other credit professionals. AICM are committed to recognising and progressing women in the credit industry and strive to provide more opportunities to enhance careers. The Women In Credit initiative was established by the AICM in 2015 to provide informative and career development opportunities to women at all levels and ages. BOOK NOW Australian Institute of Credit Management Register online (+ pay online) at: http://memberhub.aicm.com.au/login.aspx (you need your user name or the email address registered in your membership details) OR Fill in this form, then email or fax it to us (at the details below) TAX INVOICE M17SE206 Name Company Date…………………………………. Address Member Y/N Dietary Requirements…...................................................................................................................................... Telephone Email Please debit my credit card Cardholders Name (Printed) Signature Security No…………………..Expiry………………………...Visa/MasterCard/Amex EFT payment – Commonwealth Bank BSB: 062 104 Account: 1003 9560 (please quote name & event). Personal details will remain in confidence and in accordance with the Australian Institute of Credit Management’s privacy policy P 1300 560 996 F (02) 9906 5686 E [email protected] W www.aicm.com.au ABN 79 008 455 758 Divisional Partners South Australian Division Women in Credit 16th June 2017 National Partners Speakers Bio – Professor Tanya Monro Professor Tanya Monro is Deputy Vice Chancellor Research and Innovation and an ARC Georgina Sweet Laureate Fellow at the University of South Australia.
    [Show full text]
  • CURRICULUM VITAE: PROF. BRYAN M. GAENSLER (He/Him)
    CURRICULUM VITAE: PROF. BRYAN M. GAENSLER (he/him) Dunlap Institute for Astronomy and Astrophysics Phone: +1 416 978 6223 The University of Toronto Email: [email protected] 50 St. George Street, Toronto, ON M5S 3H4, Canada WWW: http://dunlap.utoronto.ca/∼bgaensler/ EDUCATION 1995 – 1999 Doctor of Philosophy, School of Physics, The University of Sydney 1994 First Class Honours, School of Physics, The University of Sydney 1991 – 1993 Bachelor of Science, The University of Sydney (Majors: Physics, Applied Mathematics) EMPLOYMENT 2015 – Director, Dunlap Institute for Astronomy and Astrophysics, The University of Toronto 2015 – Professor of Astronomy, The University of Toronto 2011 – 2014 Director, ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 2006 – 2014 Professor of Physics, The University of Sydney 2006 Associate Professor of Astronomy, Harvard University 2002 – 2006 Assistant Professor of Astronomy, Harvard University 2001 – 2002 Clay Fellow, Smithsonian Astrophysical Observatory 1998 – 2001 Hubble Fellow, Center for Space Research, Massachusetts Institute of Technology SELECTED PROFESSIONAL AFFILIATIONS AND RESPONSIBILITIES 2019 – 2021 Co-Chair, Canadian Astronomy Long Range Plan 2020–2030 2015 – 2019 Canadian Science Director, Square Kilometre Array Organisation 2009 – 2014 Editor-in-Chief, Publications of the Astronomical Society of Australia 2006 – 2007 International Project Scientist, Square Kilometre Array 2005 – Fellow, Astronomical Society of Australia 2003 – Member, International Astronomical Union 1999
    [Show full text]
  • CSIRO Australia Telescope National Facility
    ASTRONOMY AND SPACE SCIENCE www.csiro.au CSIRO Australia Telescope National Facility Annual Report 2014 CSIRO Australia Telescope National Facility Annual Report 2014 ISSN 1038-9554 This is the report of the CSIRO Australia Telescope National Facility for the calendar year 2014, approved by the Australia Telescope Steering Committee. Editor: Helen Sim Designer: Angela Finney, Art when you need it Cover image: An antenna of the Australia Telescope Compact Array. Credit: Michael Gal Inner cover image: Children and a teacher from the Pia Wadjarri Remote Community School, visiting CSIRO's Murchison Radio-astronomy Observatory in 2014. Credit: CSIRO ii CSIRO Australia Telescope National Facility – Annual Report 2014 Contents Director’s Report 2 Chair’s Report 4 The ATNF in Brief 5 Performance Indicators 17 Science Highlights 23 Operations 35 Observatory and Project Reports 43 Management Team 53 Appendices 55 A: Committee membership 56 B: Financial summary 59 C: Staff list 60 D: Observing programs 65 E: PhD students 73 F: PhD theses 74 G: Publications 75 H: Abbreviations 84 1 Director’s Report Credit: Wheeler Studios Wheeler Credit: This year has seen some very positive an excellent scorecard from the Australia Dr Lewis Ball, Director, Australia results achieved by the ATNF staff, as well Telescope Users Committee. Telescope National Facility as some significant challenges. We opened We began reducing CSIRO expenditure a new office in the Australian Resources on the Mopra telescope some five years Research Centre building in Perth, installed ago. This year’s funding cut pushed us to phased-array feeds (PAFs) on antennas of take the final step along this path, and we our Australian SKA Pathfinder (ASKAP), and will no longer support Mopra operations collected data with a PAF-equipped array for using CSIRO funds after the end of the 2015 the first time ever in the world.
    [Show full text]
  • Australian Mathematical Sciences Institute
    Forum Program Maths for the future: Keep Australia competitive 7–8 February 2012 University House, ANU, Canberra A national forum proposing strategies to secure mathematical and statistical skills for Australia. Key players will talk about policy initiatives to improve standards, reverse teacher shortages and increase mathematics enrolments. The forum will outline action and endorse a coherent plan to ensure supply meets demand. Day 1 Program Tuesday 7 February 2012 TIME SESSION 12:00 - 13:00 Celia Hoyles (former Mathematics Advisor to UK government) 13:00 - 14:00 Lunch Overview Ron Sandland (AMSI) Ian Chubb (Chief Scientist for Australia) The future of the mathematical pipeline Glenn Wightwick (IBM) 15:25 - 15:50 Afternoon tea Rob Vertessy (Bureau of Meteorolgy) Mike Manton (Academy of Technological Sciences and Engineering) Kim Beswick (AAMT) Christopher Pyne 18:30 Pre-Dinner Drinks 19:00 Conference Dinner Nobel Prize winner Professor Brian Schmidt will be guest speaker Day 2 Program Wednesday 8 February 2012 TIME SESSION 9:15 The importance of maths for the future Paul Van Bergen (KPMG) Chris Evans 10:25 - 10:50 Morning tea Doug Hilton (WEHI) Len Sciacca (DSTO) Louise Ryan (CSIRO) Sophie Mirabella 13:00 - 14:00 Lunch Future Policy Steve Davies (APRA) Attila Brungs (Deputy Vice Chancellor (Research), University of Technology Sydney) John Rice (Australian Council of Deans of Science) 15:15 - 15:40 Afternoon tea Taking Action 15:40 - 17:00 Round table Day 1 Speakers Professor Celia Hoyles Professor Celia Hoyles has been Professor of Mathematics Education at the Institute of Education, University of London since 1984, following teaching in London secondary schools.
    [Show full text]
  • Professor Benjamin J. Eggleton Current Appointment: Director
    Professor Benjamin J. Eggleton Current appointment: Director, University of Sydney Nano Institute (Sydney Nano) (appointed in 2018); Tenured and full Professor (appointed in 2003), Co-Director, NSW Smart Sensing Network (NSSN) (2016-). Qualifications: B. Sc. (Hons 1), Physics, 1992, PhD, Physics, University of Sydney, 1996. Previous employment: Postdoctoral Member of Technical Staff, Bell Laboratories, Lucent Technologies (1996–1998); Member of Technical Staff, (1998–2000); Technical Manager – Fiber gratings and photonic devices group, (2000–2001); Research Director, Specialty Fiber Devices business with Lucent Technologies (Jan. 2001–Nov. 2001); Director of Photonic Devices Research, OFS Laboratories & OFS – Specialty Photonics Division (Nov. 2001–Dec. 2002). ARC Federation Fellow, University of Sydney (2003-2012); ARC Laureate Fellow (2003-2017); Director, Institute of Photonics and Optical Science (IPOS) (2003-1018); Director, CUDOS ARC Centre of Excellence (2003-2018); Editorial duties: Editor-in-Chief for APL Photonics (AIP Publishing), Editor-in-Chief of Optics Communications (2007–present), Associate Editor for IEEE Photonic Technology Letters (2003–2007). Membership of professional societies: • 2016 Fellow of the Australian Academy of Science • 2009 Fellow of the Australian Academy of Technological Sciences and Engineering. • 2009 Fellow of the IEEE Photonics Society; limited to 3% of membership. • 2008 Fellow of the Australian Institute of Physics. • 2003 Fellow of the Optical Society of America • 2003 Member of the Australian Optical Society (President 2008‐10) Awards: • 2017 VICE CHANCELLORS AWARD FOR OUTSTANDING RESEARCH. • 2011 WALTER BOAS MEDAL from the Australian Institute of Physics • 2011 EUREKA PRIZE FOR LEADERSHIP IN SCIENCE • 2010 SCOPUS YOUNG RESEARCHER OF THE YEAR in the physical sciences • 2008 NSW SCIENTIST OF THE YEAR Award for Physics and Astronomy • 2007 THE PAWSEY MEDAL from the Australian Academy of Science • 2007 COSMOS BRIGHT SPARK.
    [Show full text]
  • CURRICULUM VITAE of Professor Chennupati Jagadish
    CURRICULUM VITAE of Professor Chennupati Jagadish Current Position: Distinguished Professor and Head of Semiconductor Optoelectronics and Nanotechnology Group, Australian National University (ANU) Convenor, Australian Nanotechnology Network Director (ACT Node), Australian National Fabrication Facility Honorary Positions: Vice-President and Secretary Physical Sciences, Australian Academy of Science Fellow, School of Engineering, University of Tokyo, Japan Overseas Visiting Professor, Anna University, India Honorary Professor, Nanjing University, China Thousand Talents Plan (Short-Term) Professor, University of Electronic Science and Technology of China, Chengdu, China Date of Birth: 10 August 1957; Citizenship: Australian Mailing Address: Department of Electronic Materials Engineering Research School of Physical Sciences and Engineering The Australian National University Canberra, ACT 0200, Australia Tel: 61-2-6125-0363, FAX: 61-2-6125-0511, E mail: [email protected] Education: Ph.D. 1983-1986 Physics (semiconducting thin films), University of Delhi M. Phil. 1981-1982 Physics (semiconducting thin films), University of Delhi M. Sc (Tech). 1977-1980 Applied Physics (Electronics), Andhra University B. Sc. 1974-1977 Physics, Nagarjuna University Employment History: Aug. 1985-Apr. 1988, Lecturer in Electronics and Physics, S.V. College, University of Delhi, India Apr. 1988-Jun. 1990, Post-Doctoral Fellow in Physics, Queen's University, Kingston, Canada July 1990-July 1999, Research Scientist, Research Fellow, Fellow, Senior Fellow, Dept. of Electronic Materials Engineering (EME), Research School of Physical Sciences and Engineering (RSPE), ANU July 1999 – Nov. 2004, Professor (Level E1, Level E2) and Head of Semiconductor Optoelectronics and Nanotechnology Group, EME, RSPE, Australian National University Nov 2004-Nov 2009, Federation Fellow and Professor (Level E2) and Head of Semiconductor Optoelectronics and Nanotechnology Group, EME, RSPE, Australian National University.
    [Show full text]
  • “Design, Development and Implementation of an Object-Oriented Data Model for Small and Medium Sized Winemaking Enterprises In
    JAMES WILSON PHD CANDIDATE SCHOOL OF CHEMICAL ENGINEERING UNIVERSITY OF ADELAIDE “DESIGN, DEVELOPMENT AND IMPLEMENTATION OF AN OBJECT- ORIENTED DATA MODEL FOR SMALL AND MEDIUM SIZED WINEMAKING ENTERPRISES IN AUSTRALIA.” October 2013 Table Of Contents Abstract ................................................................................................................................................. 15 With Thanks To... .................................................................................................................................. 16 Declaration ............................................................................................................................................ 17 Terminology and Assumptions .............................................................................................................. 18 1. Introduction ................................................................................................................................... 19 2. Justification .................................................................................................................................... 21 2.1 The complexities of managing a winemaking enterprise ..................................................... 21 2.1.1 Bureaucracy....................................................................................................................... 21 2.1.2 Economic Sophistication ................................................................................................... 22 2.1.3 Logistical
    [Show full text]