Numerical Methods in Matrix Computations Texts in Applied Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Methods in Matrix Computations Texts in Applied Mathematics Texts in Applied Mathematics 59 Åke Björck Numerical Methods in Matrix Computations Texts in Applied Mathematics Volume 59 Editors-in-chief Stuart Antman, College Park, MD, USA Leslie Greengard, New York, NY, USA Philip Holmes, Princeton, NJ, USA More information about this series at http://www.springer.com/series/1214 Åke Björck Numerical Methods in Matrix Computations 123 Åke Björck Department of Mathematics Linköping University Linköping Sweden ISSN 0939-2475 ISSN 2196-9949 (electronic) ISBN 978-3-319-05088-1 ISBN 978-3-319-05089-8 (eBook) DOI 10.1007/978-3-319-05089-8 Library of Congress Control Number: 2014943253 47A12, 47A30, 47A52, 47B36, 62J02, 62J05, 62J07, 62J12, 65-01, 65Fxx, 65F05, 65F08, 65F10, 65F15, 65F20, 65F22, 65F25, 65F35, 65F40, 65F50, 65F60, 65G30, 65G50, 65H04, 65H17 Springer Cham Heidelberg New York Dordrecht London Ó Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) In Memoriam George E. Forsythe and Gene H. Golub Preface Work on this book started more than 15 years ago, when I began a revision of a textbook from 1974 on numerical methods. That book devoted only about 90 pages to matrix computations compared to the more than 700 pages of the present book. This difference reflects not only a change in ambition, but also an increase in size and importance of the subject. A stunning growth in hardware performance has allowed more sophisticated mathematical models to be employed in sciences and engineering. In most of these applications, solution of systems of linear equations and/or eigenvalue problems lies at the core. Increased problem sizes and changes in computer architecture have also made the development of new methods and new implementations of old ones necessary. Although there is a link between matrix computations and linear algebra as taught in departments of mathematics, there are also several important differences. Matrices are used to represent many different objects such as networks and images, besides linear transformations. Concepts such as ill-conditioning, norms, and orthogonality, which do not extend to arbitrary fields, are central to matrix com- putations. This is the reason for not using ‘‘linear algebra’’ in the title of the book. This book attempts to give a comprehensible and up-to-date treatment of methods and algorithms in matrix computations. Both direct and iterative methods for linear systems and eigenvalue problems are covered. This unified approach has several advantages. Much of the theory and methods used to solve linear systems and eigenvalue problems are closely intertwined—it suffices to think of matrix factorizations and Krylov subspaces. It is inevitable that personal interests would to some extent influence the selection of topics. This is most obvious in Chap. 2, which gives an unusually broad coverage of least squares methods. Several nonstandard topics are treated, e.g., tensor problems, partial least squares, and least angle regression. Methods for solving discrete inverse problems are also treated. Nonlinear least squares prob- lems such as exponential fitting, nonlinear orthogonal regression, and logistic regression are covered. Parts of this chapter were originally written for a never published revised edition of my 1996 monograph entitled Numerical Methods for Least Squares. vii viii Preface The book is suitable for use in a two-semester course on matrix computations at advanced undergraduate or graduate level. The first semester could cover direct methods for linear systems and least squares using Chaps. 1 and 2; the second semester eigenvalue problems and iterative methods using Chaps. 3 and 4. But other combinations are possible. As prerequisite, a basic knowledge of analysis and linear algebra and some experience in programming and floating point com- putations will suffice. The text can also serve as a reference for graduates in engineering and as a basis for further research work. Problems and computer exercises are included after each section. It is highly recommended that a modern interactive system such as Matlab be available for working out these assignments. It should be stressed that the Matlab programs included in the text are mainly for illustration. They work, but are toy programs and not in any way close to pro- duction codes. To keep the book within reasonable bounds, complete proofs are not given for all theorems. For the pursuit of particular topics in more detail, the book contains a large comprehensive and up-to-date bibliography of historical and review papers, as well as recent research papers. Care has been taken to include references to the original research papers since these are often rewarding to read. More than 50 short biographical notes on mathematicians who have made significant con- tributions to matrix computations are given as footnotes in the text. When working on this book I soon realized that I was trying to hit a moving target. Having rewritten one chapter I invariably found that some other chapter now needed to be revised. Therefore, many draft versions have existed. At various stages of this process several colleagues, including Bo Einarsson and Tommy Elfving, read parts of early drafts and made many constructive comments. I am also greatly indebted to Michele Benzi, Nick Higham, and David Watkins, as well as several anonymous reviewers, whose suggestions led to major improvements in later versions of the text. I am indebted to Wlodek Proskurowski for his continuous encouragement and for using early versions of the book for courses at USC, Los Angeles. Michael Saunders somehow found time to proofread the last draft and pains- takingly corrected my faulty English language and other lapses. Without his help I would not have been able to get the book in shape. Finally, I thank Lynn Brandon, my editor at Springer, for her helpful and professional support during the publi- cation process. The book was written in Emacs and typeset in LATEX, the references were prepared in BibTEX, and the index with MakeIndex. Matlab was used for working out examples and generating figures. Using these great tools is always a joy. The biographical notes are based on the biographies compiled at the School of Mathematics and Statistics, Uni- versity of St Andrews, Scotland (www-history.mcs.st-andrews.ac.uk). The book is dedicated to the memory of George E. Forsythe and Gene H. Golub, who were my gracious and inspiring hosts during my postdoctoral stay at Stanford University in 1968. Their generosity with their time and ideas made Preface ix this stay into a decisive experience for my future life and work. Finally, I thank my wife Eva for her forbearance and understanding during all the time I spent on writing this book. Linköping, November 2013 Åke Björck Contents 1 Direct Methods for Linear Systems........................ 1 1.1 Elements of Matrix Theory. 1 1.1.1 Matrix Algebra . 2 1.1.2 Vector Spaces. 6 1.1.3 Submatrices and Block Matrices . 9 1.1.4 Operation Counts in Matrix Algorithms . 13 1.1.5 Permutations and Determinants. 14 1.1.6 The Schur Complement . 19 1.1.7 Vector and Matrix Norms . 22 1.1.8 Eigenvalues . 29 1.1.9 The Singular Value Decomposition . 32 1.2 Gaussian Elimination Methods . 37 1.2.1 Solving Triangular Systems . 38 1.2.2 Gaussian Elimination and LU Factorization . 39 1.2.3 LU Factorization and Pivoting . 44 1.2.4 Variants of LU Factorization . 50 1.2.5 Elementary Elimination Matrices . 54 1.2.6 Computing the Matrix Inverse . 57 1.2.7 Perturbation Analysis. 59 1.2.8 Scaling and componentwise Analysis . 64 1.3 Hermitian Linear Systems. 71 1.3.1 Properties of Hermitian Matrices . 71 1.3.2 The Cholesky Factorization . 76 1.3.3 Inertia of Symmetric Matrices . 80 1.3.4 Symmetric Indefinite Matrices . 82 1.4 Error Analysis in Matrix Computations . 88 1.4.1 Floating-Point Arithmetic. 89 1.4.2 Rounding Errors in Matrix Operations. 92 1.4.3 Error Analysis of Gaussian Elimination . 95 xi xii Contents 1.4.4 Estimating Condition Numbers . 101 1.4.5 Backward Perturbation Bounds . 105 1.4.6 Iterative Refinement of Solutions .
Recommended publications
  • A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices
    Appl. Math. Inf. Sci. 9, No. 2L, 319-324 (2015) 319 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/092L06 A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices Waldemar Hołubowski1, Dariusz Kurzyk1,∗ and Tomasz Trawi´nski2 1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, Gliwice 44–100, Poland 2 Mechatronics Division, Silesian University of Technology, Akademicka 10a, Gliwice 44–100, Poland Received: 6 Jul. 2014, Revised: 7 Oct. 2014, Accepted: 8 Oct. 2014 Published online: 1 Apr. 2015 Abstract: We propose an effective method to find the inverse of symmetric block arrowhead matrices which often appear in areas of applied science and engineering such as head-positioning systems of hard disk drives or kinematic chains of industrial robots. Block arrowhead matrices can be considered as generalisation of arrowhead matrices occurring in physical problems and engineering. The proposed method is based on LDLT decomposition and we show that the inversion of the large block arrowhead matrices can be more effective when one uses our method. Numerical results are presented in the examples. Keywords: matrix inversion, block arrowhead matrices, LDLT decomposition, mechatronic systems 1 Introduction thermal and many others. Considered subsystems are highly differentiated, hence formulation of uniform and simple mathematical model describing their static and A square matrix which has entries equal zero except for dynamic states becomes problematic. The process of its main diagonal, a one row and a column, is called the preparing a proper mathematical model is often based on arrowhead matrix. Wide area of applications causes that the formulation of the equations associated with this type of matrices is popular subject of research related Lagrangian formalism [9], which is a convenient way to with mathematics, physics or engineering, such as describe the equations of mechanical, electromechanical computing spectral decomposition [1], solving inverse and other components.
    [Show full text]
  • Accurate Eigenvalue Decomposition of Arrowhead Matrices and Applications
    Accurate eigenvalue decomposition of arrowhead matrices and applications Accurate eigenvalue decomposition of arrowhead matrices and applications Nevena Jakovˇcevi´cStor FESB, University of Split joint work with Ivan Slapniˇcar and Jesse Barlow IWASEP9 June 4th, 2012. 1/31 Accurate eigenvalue decomposition of arrowhead matrices and applications Introduction We present a new algorithm (aheig) for computing eigenvalue decomposition of real symmetric arrowhead matrix. 2/31 Accurate eigenvalue decomposition of arrowhead matrices and applications Introduction We present a new algorithm (aheig) for computing eigenvalue decomposition of real symmetric arrowhead matrix. Under certain conditions, the aheig algorithm computes all eigenvalues and all components of corresponding eigenvectors with high rel. acc. in O(n2) operations. 2/31 Accurate eigenvalue decomposition of arrowhead matrices and applications Introduction We present a new algorithm (aheig) for computing eigenvalue decomposition of real symmetric arrowhead matrix. Under certain conditions, the aheig algorithm computes all eigenvalues and all components of corresponding eigenvectors with high rel. acc. in O(n2) operations. 2/31 Accurate eigenvalue decomposition of arrowhead matrices and applications Introduction We present a new algorithm (aheig) for computing eigenvalue decomposition of real symmetric arrowhead matrix. Under certain conditions, the aheig algorithm computes all eigenvalues and all components of corresponding eigenvectors with high rel. acc. in O(n2) operations. The algorithm is based on shift-and-invert technique and limited finite O(n) use of double precision arithmetic when necessary. 2/31 Accurate eigenvalue decomposition of arrowhead matrices and applications Introduction We present a new algorithm (aheig) for computing eigenvalue decomposition of real symmetric arrowhead matrix. Under certain conditions, the aheig algorithm computes all eigenvalues and all components of corresponding eigenvectors with high rel.
    [Show full text]
  • High Performance Selected Inversion Methods for Sparse Matrices
    High performance selected inversion methods for sparse matrices Direct and stochastic approaches to selected inversion Doctoral Dissertation submitted to the Faculty of Informatics of the Università della Svizzera italiana in partial fulfillment of the requirements for the degree of Doctor of Philosophy presented by Fabio Verbosio under the supervision of Olaf Schenk February 2019 Dissertation Committee Illia Horenko Università della Svizzera italiana, Switzerland Igor Pivkin Università della Svizzera italiana, Switzerland Matthias Bollhöfer Technische Universität Braunschweig, Germany Laura Grigori INRIA Paris, France Dissertation accepted on 25 February 2019 Research Advisor PhD Program Director Olaf Schenk Walter Binder i I certify that except where due acknowledgement has been given, the work presented in this thesis is that of the author alone; the work has not been sub- mitted previously, in whole or in part, to qualify for any other academic award; and the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program. Fabio Verbosio Lugano, 25 February 2019 ii To my whole family. In its broadest sense. iii iv Le conoscenze matematiche sono proposizioni costruite dal nostro intelletto in modo da funzionare sempre come vere, o perché sono innate o perché la matematica è stata inventata prima delle altre scienze. E la biblioteca è stata costruita da una mente umana che pensa in modo matematico, perché senza matematica non fai labirinti. Umberto Eco, “Il nome della rosa” v vi Abstract The explicit evaluation of selected entries of the inverse of a given sparse ma- trix is an important process in various application fields and is gaining visibility in recent years.
    [Show full text]
  • Master of Science in Advanced Mathematics and Mathematical
    Master of Science in Advanced Mathematics and Mathematical Engineering Title: Cholesky-Factorized Sparse Kernel in Support Vector Machines Author: Alhasan Abdellatif Advisors: Jordi Castro, Lluís A. Belanche Departments: Department of Statistics and Operations Research and Department of Computer Science Academic year: 2018-2019 Universitat Polit`ecnicade Catalunya Facultat de Matem`atiquesi Estad´ıstica Master in Advanced Mathematics and Mathematical Engineering Master's thesis Cholesky-Factorized Sparse Kernel in Support Vector Machines Alhasan Abdellatif Supervised by Jordi Castro and Llu´ısA. Belanche June, 2019 I would like to express my gratitude to my supervisors Jordi Castro and Llu´ıs A. Belanche for the continuous support, guidance and advice they gave me during working on the project and writing the thesis. The enthusiasm and dedication they show have pushed me forward and will always be an inspiration for me. I am forever grateful to my family who have always been there for me. They have encouraged me to pursue my passion and seek my own destiny. This journey would not have been possible without their support and love. Abstract Support Vector Machine (SVM) is one of the most powerful machine learning algorithms due to its convex optimization formulation and handling non-linear classification. However, one of its main drawbacks is the long time it takes to train large data sets. This limitation is often aroused when applying non-linear kernels (e.g. RBF Kernel) which are usually required to obtain better separation for linearly inseparable data sets. In this thesis, we study an approach that aims to speed-up the training time by combining both the better performance of RBF kernels and fast training by a linear solver, LIBLINEAR.
    [Show full text]
  • The QR-Algorithm for Arrowhead Matrices
    The QR-algorithm for arrowhead matrices Nicola Mastronardi1;2; Marc Van Barel1, Ellen Van Camp1, Raf Vandebril1 Keywords: Arrowhead matrices, QR-algorithm, diagonal-plus-semi- separable matrices Abstract One of the most fundamental problems in numerical linear algebra is the computation of the eigenspectrum of matrices. Of special interest are the symmetric eigenproblems. The classical algorithm for computing the whole spectral decomposition first reduces the symmetric matrix into a symmetric tridiagonal matrix by means of orthogonal similarity transformations and secondly, the QR-algorithm is applied to this tridiagonal matrix. Another frequently used technique to find the eigendecomposition of this tridiagonal matrix is a divide and conquer strategy. Using this strategy, quite often the eigendecomposition of arrowhead matrices is needed. An arrowhead matrix consists of a diagonal matrix with one extra nonzero row and column. The most common way of computing the eigenvalues of an arrowhead matrix is solving a secular equation. In this talk, we will propose an al- ternative way for computing the eigendecomposition of arrowhead matrices, more precisely we will apply the QR-algorithm to them. When exploiting the special structure of arrowhead matrices, which actually is the structure of diagonal-plus-semiseparable matrices because an arrowhead matrix be- longs to the latter class of matrices, the QR-algorithm will be speeded up. A comparison between this QR-algorithm and solving the secular equation will be presented. 1 Department of Computer Science, Katholieke Universiteit Leuven, Celestij- nenlaan 200A, 3001 Heverlee, Belgium, email: [marc.vanbarel, ellen.vancamp, raf. vandebril, nicola.mastronardi]@cs.kuleuven.ac.be 2 Istituto per le Applicazioni del Calcolo.
    [Show full text]
  • Inversion of Selected Structures of Block Matrices of Chosen TECHNICAL SCIENCES, Vol
    BULLETINBULLETIN OF THE OF THE POLISH POLISH ACADEMY ACADEMY OF OF SCIENCES SCIENCES TECHNICALTECHNICAL SCIENCES, SCIENCES, Vol. Vol. XX, 64, No. No. Y, 4, 20162016 DOI: 10.1515/bpasts-2016-00ZZDOI: 10.1515/bpasts-2016-0093 BULLETIN OFInversion THE POLISH ACADEMY of OF selected SCIENCES structures of block matrices of chosen TECHNICAL SCIENCES, Vol. XX, No. Y, 2016 BULLETIN OF THE POLISH ACADEMY OF SCIENCES DOI: 10.1515/bpasts-2016-00ZZInversion of selected structures of block matrices of chosen TECHNICAL SCIENCES, Vol. XX, No. Y, 2016 mechatronic systems DOI: 10.1515/bpasts-2016-00ZZ mechatronic systems 1 1 1 2 InversionTomasz of Trawiselectednski´ ∗, structures Adam Kochan of, Paweł block Kielan matricesand Dariusz of Kurzyk chosen InversionT. of TRAWIŃSKI selected1* structures, A. KOCHAN1 of, P. KIELAN block1 matrices, and D. KURZYK of chosen2 1 Department of Mechatronics,mechatronic Silesian University of Technology, systems Akademicka 10A, 44-100 Gliwice, Poland 12DepartmentInstitute ofof Mathematics,Mechatronics,mechatronic Silesian Silesian University University of ofTechnology, Technology, systems 10A KaszubskaAkademicka 23, St., 44-100 44-100 Gliwice,Gliwice, Poland Poland 2Institute of Mathematics,1 Silesian University 1of Technology, 23 Kaszubska1 St., 44-100 Gliwice, Poland2 Tomasz Trawinski´ ∗, Adam Kochan , Paweł Kielan and Dariusz Kurzyk Tomasz Trawinski´ 1 , Adam Kochan 1, Paweł Kielan1 and Dariusz Kurzyk2 Abstract. This1 Department articleTomasz describes of Trawi Mechatronics, hownski´ to calculate∗, Silesian Adam the
    [Show full text]
  • Accurate Eigenvalue Decomposition of Arrowhead Matrices and Applications
    Accurate eigenvalue decomposition of arrowhead matrices and applications N. Jakovˇcevi´cStora,1,∗, I. Slapniˇcara,1, J. Barlowb,2 aFaculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boˇskovi´ca 32, 21000 Split, Croatia bDepartment of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802-6822, USA Abstract We present a new algorithm for solving an eigenvalue problem for a real sym- metric arrowhead matrix. The algorithm computes all eigenvalues and all com- ponents of the corresponding eigenvectors with high relative accuracy in O(n2) operations. The algorithm is based on a shift-and-invert approach. Double precision is eventually needed to compute only one element of the inverse of the shifted matrix. Each eigenvalue and the corresponding eigenvector can be computed separately, which makes the algorithm adaptable for parallel com- puting. Our results extend to Hermitian arrowhead matrices, real symmetric diagonal-plus-rank-one matrices and singular value decomposition of real trian- gular arrowhead matrices. Keywords: eigenvalue decomposition, arrowhead matrix, high relative accuracy, singular value decomposition 2000 MSC: 65F15 1. Introduction and Preliminaries In this paper we consider eigenvalue problem for a real symmetric matrix A which is zero except for its main diagonal and one row and column. Since eigenvalues are invariant under similarity transformations, we can symmetrically arXiv:1302.7203v3 [math.NA] 11 Apr 2013 permute the rows and the columns of the given matrix. Therefore, we assume without loss of generality that the matrix A is a n n real symmetric arrowhead matrix of the form × ∗Corresponding author Email addresses: [email protected] (N.
    [Show full text]
  • This File Was Downloaded From
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Queensland University of Technology ePrints Archive This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Kumar, S., Guivant, J., Upcroft, B., & Durrant-Whyte, H. F. (2007) Sequen- tial nonlinear manifold learning. Intelligent Data Analysis, 11(2), pp. 203- 222. This file was downloaded from: http://eprints.qut.edu.au/40421/ c Copyright 2007 IOS Press Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: Intelligent Data Analysis 11 (2007) 203–222 203 IOS Press Sequential nonlinear manifold learning S. Kumar, J. Guivant, B. Upcroft and H.F. Durrant-Whyte Australian Centre for Field Robotics, University of Sydney, NSW 2006, Australia Tel.: +612 93512186; Fax: +612 93517474; E-mail: [email protected] Received 5 December 2005 Revised 2 March 2006 Accepted 7 May 2006 Abstract. The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method.
    [Show full text]
  • Accurate Eigenvalue Decomposition of Arrowhead Matrices and Applications
    Accurate eigenvalue decomposition of arrowhead matrices and applications N. Jakovˇcevi´cStora,1,∗, I. Slapniˇcara,1, J. Barlowb,2 aFaculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boˇskovi´ca32, 21000 Split, Croatia bDepartment of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802-6822, USA Abstract We present a new algorithm for solving an eigenvalue problem for a real sym- metric arrowhead matrix. The algorithm computes all eigenvalues and all com- ponents of the corresponding eigenvectors with high relative accuracy in O(n2) operations. The algorithm is based on a shift-and-invert approach. Double precision is eventually needed to compute only one element of the inverse of the shifted matrix. Each eigenvalue and the corresponding eigenvector can be computed separately, which makes the algorithm adaptable for parallel com- puting. Our results extend to Hermitian arrowhead matrices, real symmetric diagonal-plus-rank-one matrices and singular value decomposition of real trian- gular arrowhead matrices. Keywords: eigenvalue decomposition, arrowhead matrix, high relative accuracy, singular value decomposition 2000 MSC: 65F15 1. Introduction and Preliminaries In this paper we consider eigenvalue problem for a real symmetric matrix A which is zero except for its main diagonal and one row and column. Since eigenvalues are invariant under similarity transformations, we can symmetrically permute the rows and the columns of the given matrix. Therefore, we assume without loss of generality that the matrix A is a n×n real symmetric arrowhead matrix of the form ∗Corresponding author Email addresses: [email protected] (N. Jakovˇcevi´cStor), [email protected] (I.
    [Show full text]
  • Explicit Minimum Polynomial, Eigenvector, and Inverse Formula for Nonsymmetric Arrowhead Matrix
    International Journal of Pure and Applied Mathematics Volume 108 No. 4 2016, 967-984 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: 10.12732/ijpam.v108i4.21 ijpam.eu EXPLICIT MINIMUM POLYNOMIAL, EIGENVECTOR, AND INVERSE FORMULA FOR NONSYMMETRIC ARROWHEAD MATRIX Wiwat Wanicharpichat 1Department of Mathematics Faculty of Science and 2Research Center for Academic Excellence in Mathematics Naresuan University Phitsanulok 65000, THAILAND Abstract: In this paper, we treat the eigenvalue problem for a nonsymmetric arrowhead matrix which is the general form of a symmetric arrowhead matrix. The purpose of this paper is to present explicit formula of determinant, inverse, minimum polynomial, and eigenvector formula of some nonsymmetric arrowhead matrices are presented. AMS Subject Classification: 15A09, 15A15, 15A18, 15A23, 65F15, 65F40 Key Words: arrowhead matrix, Krylov matrix, Schur complement, nonderogatory matrix 1. Introduction and Preliminaries Let R be the field of real numbers and C be the field of complex numbers and ∗ C = C \{0}. For a positive integer n, let Mn be the set of all n × n matrices over C. The set of all vectors, or n × 1 matrices over C is denoted by Cn.A n nonzero vector v ∈ C is called an eigenvector of A ∈ Mn corresponding to a Received: June 6, 2016 c 2016 Academic Publications, Ltd. Published: August 16, 2016 url: www.acadpubl.eu 968 W. Wanicharpichat scalar λ ∈ C if Av = λv, and the scalar λ is an eigenvalue of the matrix A. The set of eigenvalues of A is called as the spectrum of A and is denoted by σ(A).
    [Show full text]
  • A Quantum Interior-Point Method for Second-Order Cone Programming Iordanis Kerenidis, Anupam Prakash, Daniel Szilagyi
    A Quantum Interior-Point Method for Second-Order Cone Programming Iordanis Kerenidis, Anupam Prakash, Daniel Szilagyi To cite this version: Iordanis Kerenidis, Anupam Prakash, Daniel Szilagyi. A Quantum Interior-Point Method for Second- Order Cone Programming. [Research Report] IRIF. 2019. hal-02138307 HAL Id: hal-02138307 https://hal.archives-ouvertes.fr/hal-02138307 Submitted on 23 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Quantum Interior-Point Method for Second-Order Cone Programming Technical report Iordanis Kerenidis1, Anupam Prakash1, and Dániel Szilágyi1,2 1CNRS, IRIF, Université Paris Diderot, Paris, France 2École Normale Supérieure de Lyon, Lyon, France 1. Introduction In the last 40 years, convex optimization has seen a tremendous rise in popularity, both as a research area, and as a tool used by practicioners across the industry. By and large, the community has realized that the proper division of the field is into convex (feasible, “easy”) and nonconvex (sometimes “as hard as it gets”). The reason[6] for this is twofold: 1. Starting with the work of Khachiyan[17] and Karmarkar[13], (theoretically and practi- cally) efficient algorithms for convex optimization have been developed.
    [Show full text]
  • Book of Abstracts Iwasep 9
    BOOK OF ABSTRACTS IWASEP 9 9th International Workshop on Accurate Solution of Eigenvalue Problems Napa Valley, June 4 - 7, 2012 Organizers: Jesse Barlow (Chair), Zlatko Drmac, Volker Mehrmann, Ivan Slapniˇcar, Kresimir Veselic. Local Organizing Committee: Jim Demmel, Esmond G. Ng, Oded Schwartz. 1 Deflations Preserving Relative Accuracy William Kahan Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a block of off-diagonal elements. When can this be done without changing the eigenvalues of an Hermitian matrix beyond each one's last significant digit or two no matter how widespread are eigenval- ues' magnitudes? We seek practicable answers to this question, particularly for tridiagonals. Answers for bidiagonals' singular values were found by Ren-Cang Li in 1994. 2 Accurate Computation of Eigenvalues by an Analytical Level Set Method Pavel Grinfeld A numerical technique, based on an analytical level set method, is presented. The proposed technique yields eigenvalues for a broad range of smooth shapes with arbitrarily high accu- racy. The technique applies to most common linear operators, including the Laplace operator which will be the focus of the presentation. The method is characterized by utmost simplicity, exponential convergence, ease of analysis and the ability to produce an exact solution to an approximate problem. 3 Orthogonal Functions and Inverse Eigenvalue Problems Marc Van Barel Orthogonal polynomials on the real line satisfy a three term recurrence relation. This relation can be written in matrix notation by using a tridiagonal matrix. Similarly, orthogonal poly- nomials on the unit circle satisfy a Szeg}orecurrence relation that corresponds to an (almost) unitary Hessenberg matrix.
    [Show full text]