Nuclear Receptor Biomed Central

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Receptor Biomed Central Nuclear Receptor BioMed Central Research Open Access ERβ Binds N-CoR in the Presence of Estrogens via an LXXLL-like Motif in the N-CoR C-terminus Paul Webb*1, Cathleen Valentine1,2, Phuong Nguyen1, Richard H Price Jr1,2, Adhirai Marimuthu1, Brian L West1, John D Baxter1 and Peter J Kushner1,2 Address: 1Metabolic Research Unit and Diabetes Center, University of California, San Francisco, CA 94143, USA and 2Department of Medicine, University of California, San Francisco, CA 94143, USA Email: Paul Webb* - [email protected]; Cathleen Valentine - [email protected]; Phuong Nguyen - [email protected]; Richard H Price - [email protected]; Adhirai Marimuthu - [email protected]; Brian L West - [email protected]; John D Baxter - [email protected]; [email protected] * Corresponding author Published: 28 June 2003 Received: 13 May 2003 Accepted: 28 June 2003 Nuclear Receptor 2003, 1:4 This article is available from: http://www.nuclear-receptor.com/content/1/1/4 © 2003 Webb et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor β (ERβ) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERα interactions with corepressors, which are inhibited by estradiol, and resembles that of ERβ interactions with coactivators. ERβ /N-CoR interactions involve ERβ AF-2, which also mediates coactivator recognition. Moreover, ERβ recognizes a sequence (PLTIRML) in the N-CoR C- terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERβ LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo. Background vators include TRAP220[7], which is part of a larger The nuclear receptor (NR) family comprises 48 structur- complex (TRAP/DRIP/SMCC/mediator) that contacts the ally related transcription factors, many of which require basal transcription machinery and PGC-1[8], a cold their cognate ligand for activity [1–3]. The NRs regulate inducible coactivator that binds CBP and SRC-1 and pro- transcription by binding to response elements in the pro- teins involved in RNA processing [9]. NR corepressors moters of target genes and acting as scaffolds for the include NR corepressor (N-CoR) and silencing mediator assembly of large coactivator and corepressor complexes of retinoid and thyroid responsive transcription (SMRT) [4]. NR coactivators include the p160s (including GRIP1/ [4]. Both N-CoR and SMRT repress transcription, at least TIF-2, SRC-1 and AIB1/ACTR/pCIP). The p160s enhance in part, by binding to histone de-acetylases (HDACs) transcription by binding histone acetyl-transferases such either directly or indirectly through other corepressor as p300/CBP and pCAF [5]and methyl-transferases such complex components. Other known NR corepressors as CARM1 and PRMT [6] which, in turn, enhance tran- include RIP140 [10], Hairless [11], short heterodimer scription by modification of chromatin. Other NR coacti- partner (SHP) [12] and DAX [13], and receptor specific Page 1 of 15 (page number not for citation purposes) Nuclear Receptor 2003, 1 http://www.nuclear-receptor.com/content/1/1/4 corepressors such as the estrogen receptor (ER) interacting gens, but ERβ is a more potent repressor than ERα [27]. proteins REA and HET-SAFB [14,15]. However, some of the most striking isoform-specific dif- ferences in gene regulation are observed at promoters, Generally, NR transcriptional activity is dictated by the such as that of cyclin D1, which contain AP-1 sites or balance between coactivator and corepressor recruitment, related cyclic AMP response elements (CREs). ERα and one of the most important factors that influences this enhances AP-1 activity in response to estrogens, [28,29] balance is the absence or presence of agonist ligands but ERβ inhibits AP-1 activity in response to estrogens (reviewed in [4]). Unliganded NRs such as thyroid (TRs) [29–31]. ERβ also completely suppresses ERα activity at and retinoid receptors (RARs) bind corepressors, and lig- the cyclin D1 promoter and even suppresses the activity of and promotes release of corepressor and subsequent bind- an ERα mutant that is selectively superactive at AP-1 sites ing of coactivators. The mechanism of this coregulator and CREs [29]. Finally, ERβ shows a unique capacity to exchange is well understood. NRs consist of three enhance AP-1 activity in response to selective estrogen domains, the N-terminal domain (which contains a con- receptor modulators (SERMs) such as raloxifene, text-specific activation function AF-1), the central DNA tamoxifen and ICI 182,780/Faslodex (ICI) [30–32]. binding domain (DBD) and the C-terminal ligand bind- Together, these observations suggest that there are funda- ing domain (LBD), which contains a hormone-dependent mental differences in the way that the ERs bind unspeci- activation function, AF-2. The unliganded LBD recognizes fied cofactors that modulate gene expression, and that hydrophobic motifs, termed interaction domains (IDs), some of these cofactors must play a role in differential ER which are reiterated three times in N-CoR and twice in activity at AP-1 sites. SMRT and conform to the consensus L/IXXIIXXXL [4](see also[16]). By contrast, the liganded LBD binds shorter Although the poorly conserved NTD region clearly plays hydrophobic motifs termed NR boxes that are reiterated an important role in isoform-specificity [32,33], it is also several times within each coactivator and conform to the likely that there are differences in the better conserved consensus LXXLL. The LBD utilizes a large hydrophobic LBD region that contribute to differential ERα and ERβ cleft composed of residues along H3 and H5 to bind IDs activities. Phage display techniques have revealed that [17], and a smaller hydrophobic cleft that is composed of ERα and ERβ show different preferences in LXXLL binding residues in the upper part of H3 and H5 and H12 (and (reviewed in [34,35]). Moreover, some cofactors that con- corresponds to AF-2) to bind NR boxes [18]. Thus, ago- tain LXXLL motifs show differential binding to LBDs of nists promote coregulator exchange by promoting the the ER isoforms (reviewed in [36]). SHP binds ERα pref- packing of H12 over the lower part of the ID binding erentially [37], and represses ERα activity more strongly region, an event that simultaneously completes the coac- than that of ERβ. The PGC-1 related protein PERC also tivator binding surface. In other cases, however, the bal- binds ERα preferentially, and potentiates ERα activity ance of coactivator and corepressor recruitment is more strongly than that of ERβ [38]. We recently observed regulated by direct competition for the AF-2 surface, that ERα binds the C-terminal NR interacting regions of rather than ligand-dependent coregulator exchange. N-CoR and SMRT in the presence of SERMs but not estro- RIP140, Hairless and DAX possess NR boxes that interact gens [39]. In this study, we report that ERβ interactions with AF-2 [11,13,19] and these corepressors act as nega- with N-CoR and SMRT are promoted by agonists and tive regulators of the activity of the liganded NR. inhibited by SERMs. Thus, the ERs show completely opposite ligand preferences of interaction with corepres- The NR family contains two related ERs (ERα and ERβ) sors. We discuss the potential significance of these differ- that conform to the typical three domain NR structure and ent modes of ER interaction with N-CoR in terms of share extensive sequence homology in the DBD and LBD known isoform-specific behaviors. region[20,21]. Analysis of the function of the individual ERs in mouse knockout models suggests that the major Results proliferative effects of estrogen are mediated by ERα and Agonist Dependent ERβ Interactions with N-CoR and not by ERβ, which seems to play an inhibitory role in pro- SMRT liferation in some studies[22,23]. The ligand-binding To investigate ERβ interactions with corepressors, we properties of the ERs are different, with ERβ often exhibit- examined the interactions of full length ERβ (amino acids ing stronger binding to plant-derived phytoestrogens 1–530) with bacterially expressed C-terminal NR interact- [24]. More importantly, the ERs exhibit isoform-specific ing domain of N-CoR (amino acids 1944–2453) in vitro effects on gene expression. Both ERs enhance transcrip- (Fig. 1A). Fig. 1B reveals, surprisingly, that ERβ bound N- tion from genes with classical estrogen response elements CoR in the absence of hormone and in the presence of (EREs), but ERα requires less ligand to obtain maximal agonist ligands (E2, DES) and phytoestrogens (genistein, activation than ERβ [25,26]. Likewise, both ERs suppress coumestrol). Moreover, these interactions were sup- the activity of the TNFα promoter in response to estro- pressed by SERMs (ICI, raloxifene and tamoxifen). ERβ Page 2 of 15 (page number not for citation purposes) Nuclear Receptor 2003, 1 http://www.nuclear-receptor.com/content/1/1/4 ERFigureβ Binds 1 N-CoR in the Presence of Agonists ERβ Binds N-CoR in the Presence of Agonists. (A) Schematic of N-CoR primary structure. Silencing domains are indicated with hatched bars. NR binding regions (ID motifs) are illustrated with solid bars. (B) Radiolabeled ERβ retained by GST-N- CoR (amino acids 1944–2453) or GST-GRIP1 (amino acids 563–1121) after separation by SDS-PAGE.
Recommended publications
  • RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
    Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C.
    [Show full text]
  • Single Cell Transcriptomics Reveal Temporal Dynamics of Critical Regulators of Germ Cell Fate During Mouse Sex Determination
    bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single cell transcriptomics reveal temporal dynamics of critical regulators of germ 2 cell fate during mouse sex determination 3 Authors: Chloé Mayère1,2, Yasmine Neirijnck1,3, Pauline Sararols1, Chris M Rands1, 4 Isabelle Stévant1,2, Françoise Kühne1, Anne-Amandine Chassot3, Marie-Christine 5 Chaboissier3, Emmanouil T. Dermitzakis1,2, Serge Nef1,2,*. 6 Affiliations: 7 1Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, 8 Switzerland; 9 2iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 10 Geneva, Switzerland; 11 3Université Côte d'Azur, CNRS, Inserm, iBV, France; 12 Lead Contact: 13 *Corresponding Author: Serge Nef, 1 rue Michel-Servet CH-1211 Genève 4, 14 [email protected]. + 41 (0)22 379 51 93 15 Running Title: Single cell transcriptomics of germ cells 1 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abbreviations; 17 AGC: Adrenal Germ Cell 18 GC: Germ cell 19 OGC: Ovarian Germ Cell 20 TGC: Testicular Germ Cell 21 scRNA-seq: Single-cell RNA-Sequencing 22 DEG: Differentially Expressed Gene 23 24 25 Keywords: 26 Single-cell RNA-Sequencing (scRNA-seq), sex determination, ovary, testis, gonocytes, 27 oocytes, prospermatogonia, meiosis, gene regulatory network, germ cells, development, 28 RNA splicing 29 2 bioRxiv preprint doi: https://doi.org/10.1101/747279; this version posted November 2, 2020.
    [Show full text]
  • Olig2 and Ngn2 Function in Opposition to Modulate Gene Expression in Motor Neuron Progenitor Cells
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells Soo-Kyung Lee,1 Bora Lee,1 Esmeralda C. Ruiz, and Samuel L. Pfaff2 Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA Spinal motor neurons and oligodendrocytes are generated sequentially from a common pool of progenitors termed pMN cells. Olig2 is a bHLH-class transcription factor in pMN cells, but it has remained unclear how its transcriptional activity is modulated to first produce motor neurons and then oligodendrocytes. Previous studies have shown that Olig2 primes pMN cells to become motor neurons by triggering the expression of Ngn2 and Lhx3. Here we show that Olig2 also antagonizes the premature expression of post-mitotic motor neuron genes in pMN cells. This blockade is counteracted by Ngn2, which accumulates heterogeneously in pMN cells, thereby releasing a subset of the progenitors to differentiate and activate expression of post-mitotic motor neuron genes. The antagonistic relationship between Ngn2 and Olig2 is mediated by protein interactions that squelch activity as well as competition for shared DNA-binding sites. Our data support a model in which the Olig2/Ngn2 ratio in progenitor cells serves as a gate for timing proper gene expression during the development of pMN cells: Olig2high maintains the pMN state, thereby holding cells in reserve for oligodendrocyte generation, whereas Ngn2high favors the conversion of pMN cells into post-mitotic motor neurons. [Keywords: Motor neuron; oligodendrocyte; development; basic helix–loop–helix (bHLH); neurogenin (Ngn); Olig] Supplemental material is available at http://www.genesdev.org.
    [Show full text]
  • Landscape of Transcriptional Deregulation in Lung Cancer Shu Zhang1,2,3,4, Mingfa Li1, Hongbin Ji2,3,4,5* and Zhaoyuan Fang2,3,4,6*
    Zhang et al. BMC Genomics (2018) 19:435 https://doi.org/10.1186/s12864-018-4828-1 RESEARCHARTICLE Open Access Landscape of transcriptional deregulation in lung cancer Shu Zhang1,2,3,4, Mingfa Li1, Hongbin Ji2,3,4,5* and Zhaoyuan Fang2,3,4,6* Abstract Background: Lung cancer is a very heterogeneous disease that can be pathologically classified into different subtypes including small-cell lung carcinoma (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large-cell carcinoma (LCC). Although much progress has been made towards the oncogenic mechanism of each subtype, transcriptional circuits mediating the upstream signaling pathways and downstream functional consequences remain to be systematically studied. Results: Here we trained a one-class support vector machine (OC-SVM) model to establish a general transcription factor (TF) regulatory network containing 325 TFs and 18724 target genes. We then applied this network to lung cancer subtypes and identified those deregulated TFs and downstream targets. We found that the TP63/SOX2/ DMRT3 module was specific to LUSC, corresponding to squamous epithelial differentiation and/or survival. Moreover, the LEF1/MSC module was specifically activated in LUAD and likely to confer epithelial-to-mesenchymal transition, known important for cancer malignant progression and metastasis. The proneural factor, ASCL1, was specifically up-regulated in SCLC which is known to have a neuroendocrine phenotype. Also, ID2 was differentially regulated between SCLC and LUSC, with its up-regulation in SCLC linking to energy supply for fast mitosis and its down-regulation in LUSC linking to the attenuation of immune response. We further described the landscape of TF regulation among the three major subtypes of lung cancer, highlighting their functional commonalities and specificities.
    [Show full text]
  • The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Active Estrogen Receptor-Alpha Signaling in Ovarian Cancer Models and Clinical Specimens
    Author Manuscript Published OnlineFirst on January 10, 2017; DOI: 10.1158/1078-0432.CCR-16-1501 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Active estrogen receptor-alpha signaling in ovarian cancer models and clinical specimens Courtney L. Andersen1,2,3,12, Matthew J. Sikora1,3, Michelle M. Boisen3,4, Tianzhou Ma5, Alec Christie3, George Tseng5, Yongseok Park5, Soumya Luthra6, Uma Chandran6, Paul Haluska7, Gina M. Mantia- Smaldone8, Kunle Odunsi9, Karen McLean10, Adrian V. Lee1,3, Esther Elishaev11, Robert P. Edwards4, Steffi Oesterreich1,2,3 Affiliations: 1Department of Pharmacology & Chemical Biology, University of Pittsburgh; 2Molecular Pharmacology Training Program, University of Pittsburgh; 3Women’s Cancer Research Center, University of Pittsburgh Cancer Institute; 4Department of Obstetrics, Gynecology, & Reproductive Sciences, Magee- Womens Hospital of UPMC; 5Department of Biostatistics, University of Pittsburgh; 6Department of Biomedical Informatics, University of Pittsburgh; 7Oncology, Merck Research Laboratories; 8Department of Surgical Oncology, Fox Chase Cancer Center; 9Department of Gynecologic Oncology, Roswell Park Cancer Institute; 10Division of Gynecologic Oncology, University of Michigan; 11Department of Pathology, Magee- Womens Hospital of UPMC; 12Present address: IMED Oncology, AstraZeneca Corresponding Author: Steffi Oesterreich, PhD.: B411 Womens Cancer Research Center, University of Pittsburgh Cancer Institute, Magee-Womens Research Institute, 204 Craft
    [Show full text]
  • The Id-Protein Family in Developmental and Cancer-Associated Pathways Cornelia Roschger and Chiara Cabrele*
    Roschger and Cabrele Cell Communication and Signaling (2017) 15:7 DOI 10.1186/s12964-016-0161-y REVIEW Open Access The Id-protein family in developmental and cancer-associated pathways Cornelia Roschger and Chiara Cabrele* Abstract Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop- helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases.
    [Show full text]
  • At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension
    G C A T T A C G G C A T genes Review At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension Meghan M. Cirulis 1,2,* , Mark W. Dodson 1,2, Lynn M. Brown 1,2, Samuel M. Brown 1,2, Tim Lahm 3,4,5 and Greg Elliott 1,2 1 Division of Pulmonary, Critical Care and Occupational Medicine, University of Utah, Salt Lake City, UT 84132, USA; [email protected] (M.W.D.); [email protected] (L.M.B.); [email protected] (S.M.B.); [email protected] (G.E.) 2 Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Salt Lake City, UT 84107, USA 3 Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; [email protected] 4 Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA 5 Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA * Correspondence: [email protected]; Tel.: +1-801-581-7806 Received: 29 September 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: Group 1 pulmonary hypertension (pulmonary arterial hypertension; PAH) is a rare disease characterized by remodeling of the small pulmonary arteries leading to progressive elevation of pulmonary vascular resistance, ultimately leading to right ventricular failure and death. Deleterious mutations in the serine-threonine receptor bone morphogenetic protein receptor 2 (BMPR2; a central mediator of bone morphogenetic protein (BMP) signaling) and female sex are known risk factors for the development of PAH in humans.
    [Show full text]
  • Lineage Transcription Factors Co-Regulate Subtype-Specific Genes Providing a Roadmap For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249029; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lineage transcription factors co-regulate subtype-specific genes providing a roadmap for systematic identification of small cell lung cancer vulnerabilities Karine Pozo1,2, Rahul K. Kollipara3, Demetra P. Kelenis1, Kathia E. Rodarte1, Xiaoyang Zhang4, John D. Minna5,6,7,8 and Jane E. Johnson1,6,8 1Department of Neuroscience, 2Department of Surgery, 3McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA 4Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 5Hamon Center for Therapeutic Oncology Research, 6Simmons Comprehensive Cancer Center, 7Department of Internal Medicine, 8Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA JDM receives licensing fees for lung cancer lines from the NIH and UT Southwestern. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249029; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Lineage-defining transcription factors (LTFs) play key roles in tumor cell growth, making them highly attractive, but currently “undruggable”, small cell lung cancer (SCLC) vulnerabilities.
    [Show full text]
  • High Dimensional Single-Cell Analysis Reveals Inkt Cell Developmental
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.070425; this version posted May 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High dimensional single-cell analysis reveals iNKT cell developmental trajectories and 2 effector fate decision 3 4 Thomas Baranek1,2,9, Kevin Lebrigand3, Carolina de Amat Herbozo4, Loïc Gonzalez1,2, Gemma 5 Bogard1,2, Céline Dietrich5, Virginie Magnone3, Chloé Boisseau1,2, Youenn Jouan1,2,6, François 6 Trottein7, Mustapha Si-Tahar1,2, Maria Leite-de-Moraes5, Thierry Mallevaey4,8, Christophe 7 Paget1,2,9,10 8 9 1INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France. 10 2Université de Tours, Faculté de Médecine de Tours, France. 11 3Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France. 12 4Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. 13 5Université de Paris, Paris, France; Laboratory of Immunoregulation and Immunopathology, 14 INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, 15 France. 16 6Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, 17 Tours, France. 18 7Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of 19 Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France. 20 8Institute of Biomaterials & Biomedical Engineering, Toronto, Ontario M5S 1A8, Canada. 21 9Correspondance: [email protected] or [email protected] 22 10Lead contact 23 24 Keywords: iNKT cells; single cell RNA-sequencing; thymus; developmental program; 25 transcriptome; FHL2.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]