32nd EPS Conference on Physics ����������������� 8th International Workshop on Fast Ignition of Fusion Targets

Programme

including

Abstracts of Invited Talks

Tarragona, Spain 27 June – 1 July 2005 32nd EPS Conference on Plasma Physics ����������������� 8th International Workshop on Fast Ignition of Fusion Targets

Organisation

The organisation of the conference is carried out by the Laboratorio Nacional de Fusión (Asociación EURATOM-CIEMAT para Fusión), which forms part of the Centro de Investigaciones Energéticas, Medio- Ambientales y Tecnológicas (CIEMAT), located in Madrid, Spain, and the Universitat Rovira i Virgili, located in Tarragona, Spain.

Sponsors

Asociación EURATOM-CIEMAT para Fusión Ajuntament de Tarragona Communications & Power Industries Ministerio de Educación y Ciencia Patronat Municipal de Turisme de Tarragona Tesla Engineering Ltd. The Tarragona Trade Fair and Congress Centre Universitat Rovira i Virgili

Programme Committee

Chair: Paul Thomas, CEA (France) Christine Labaune, LULI, Ecole Poly. (France) Emilia Barbato, ENEA (Italy) Sergei Lebedev, IOFFE (Russia) Dimitri Batani, INFN (Italy) Jo Lister, EPFL (Switzerland) Henrik Binslev, Risoe (Denmark) Alberto Loarte, EFDA, Garching (EU) Richard Buttery, UKAEA (UK) Oleg Petrov, IHED Moscow (Russia) Richard Dendy, UKAEA (UK) Kazuo Tanaka, Inst. Laser Engineering (Japan) David Hammer, Cornell Univ. (USA) Loukas Vlahos, Univ. Thessaloniki (Greece) Carlos Hidalgo, CIEMAT (Spain) Jerzy Wolowski, Inst. Plasma Phys. and Laser Javier Honrubia, Univ. Pol. Madrid (Spain) Fusion (Poland) Holger Kersten, INP Greifswald (Germany) Matthew Zepf, Queen's Univ.,Belfast (UK) Thomas Klinger, IPP (Germany) Sandor Zoletnik, KFKI (Hungary) Fulvio Zonca, ENEA (Italy)

Local Organising Committee

Chair: Carlos Hidalgo, CIEMAT (Spain) Scientific Secretary: Boudewijn van Milligen, CIEMAT (Spain) Lina Rodríguez, CIEMAT (Spain) María Angeles Pedrosa, CIEMAT (Spain) Amor Suárez, CIEMAT (Spain) Francesc Díaz, University Rovira i Virgili (Spain) Basil Duval, EPFL (Switzerland)

2 Contents

Introduction ...... 5

Programme ...... 7

Layout of congress centre ...... 13

Abstracts of Invited Papers...... 17

List of Contributions ...... 101

3 4 Introduction

Welcome to the 32nd European Physical Society Conference on Plasma Physics, held from 27 June through 1 July, 2005, this year in combination with the 8th International Workshop on Fast Ignition of Fusion Targets.

One of the main goals of the conference is to facilitate the cross- disciplinary exchange of information between various plasma physics related fields. For this purpose, tutorial plenary invited talks will aim at broadening the general background knowledge of plasma physics of the congress participants. Other plenary and parallel invited talks will review the latest developments in plasma science. Parallel oral and poster sessions will enter into advanced technical detail.

Remarks regarding the programme

The plenary talks are generally scheduled for the morning sessions, except on Friday, where the last session before closing is plenary. Remaining oral presentation sessions are parallel, distributed over four lecture halls in accordance with the four main topic areas:

Magnetic Confinement Fusion Beam Plasmas and Inertial Fusion Dusty and Low Temperature Plasmas Basic and Astrophysics

Posters should be displayed during the whole day on the day of the corresponding poster session, i.e. they should be put up first thing in the morning. The poster sessions run in parallel with some of the parallel oral presentation sessions. Also, poster sessions occasionally overlap with lunch, coffee or tea breaks. While the posters should be displayed for viewing at these times, poster authors need only attend their posters during non-break times.

Abstracts and publications

Abstracts of the Invited Papers are included in this booklet. All abstracts (including those corresponding to Contributed Papers) will be made available on the conference website, http://eps2005.ciemat.es.

After the conference, all papers will be made available via the website. Invited papers will be published in a special issue of the Plasma Physics and Controlled Fusion journal. The proceedings with the contributed papers will be published on CD-ROM. Both the special issue and the CD- ROM will be distributed to conference delegates via ordinary mail.

5 Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics

Each year, the European Physical Society awards this Prize to one or more persons who have made outstanding contributions to plasma physics in experimental, theoretical or technological areas. This year’s Prize winners will be presented on Monday morning, after the opening ceremony.

European Physical Society Plasma Physics Division PhD Research Award

The Plasma Physics Division of the European Physical Society is creating the "European Physical Society Plasma Physics Division PhD Research Award". Up to three prizes will be awarded for the first time in 2005 to recognise exceptional quality of the work carried out by young physicists as part of their PhD research in any area of plasma physics. This year’s Prize winners will give a presentation of their work on Thursday afternoon.

Women in Plasma Physics

On Tuesday, the second "Women in Plasma Physics" meeting will be held in the framework of the EPS Conference, in the Eutyches Auditorium at 18:30. Maria J. Yzuel will give a short presentation with title “Women in Physics in Spain”, related to the role of women in physics research and education, followed by discussion and conversation in an informal setting. Drinks and light refreshments will be served. You are kindly invited to attend.

Talk for the General Public

On Tuesday afternoon at 19:30, Dr. Ana Inés Gómez de Castro will give a talk for the general public in the Spanish language. The talk will focus on the study of star-forming regions, which is yielding important information on the formation of our Sun and the planets, the characteristics and habitability of other planetary systems, and the structure and evolution of this gigantic that sustains life on Earth.

Meeting on Education in Plasma Physics

On Wednesday morning, a discussion will be organized on the educational activities of the plasma physics community across Europe. A few short presentations will be followed by a discussion on the teaching of undergraduate courses, the organisation of graduate courses, summer schools and intensive courses, and the formation of PhD students working in fusion-related labs. Action points to be discussed are: the creation of a web site for educational material, the possible establishment of an Erasmus-Socrates thematic network for (under-) graduate students, and the possibility of recording a full course on video for self-education purposes.

6 �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

�������������

Monday Tuesday Wednesday Thursday Friday

8:30 I2.001 Pitts 8:30 I3.001 Cavailler 8:30 I4.001 Drake 8:30 Parallel Inv. 9:00 Opening 9:00 Parallel Inv. 9:10 I2.002 Eden 9:10 I3.002 Antoni 9:10 I4.002 Huysmans 9:30 Parallel Inv. 9:45 Alfvén Prize 9:50 I2.003 Mima 9:50 I3.003 Krushelnick 9:50 I4.003 Loeb 10:00 Parallel Inv. 10:15 Coffee 10:30 Coffee 10:30 Coffee 10:30 Coffee 10:30 Coffee

11:00 Parallel Cont. S. 11:00 I1.001 Sánchez 11:00 Parallel Inv. 11:00 Parallel Inv. 11:00 Parallel Inv. 11:20 Parallel Cont. 11:30 Parallel Inv. 11:30 Parallel Inv. 11:30 Parallel Inv. 11:40 Parallel Cont. 11:40 I1.002 J. Kirk

7 12:00 Parallel Inv. 12:00 Parallel Inv. 12:00 Parallel Inv. 12:00 Parallel Cont.

12:20 I1.003 Matzen 12:30 Parallel Inv. 12:30 Parallel Inv. 12:30 Parallel Inv. 12:20 Lunch Poster

13:00 Lunch 13:00 Lunch 13:00 Lunch 13:00 Lunch P5 14:00 I5.001 Murari

14:40 I5.002 Malka 15:00 Parallel Inv. 15:00 Parallel Cont. 15:00 Parallel Cont. 15:20 Parallel Cont. 15:20 Parallel Cont. 15:20 I5.003 Helander 15:30 Parallel Inv. 15:40 Parallel Cont. 15:40 Parallel Cont. 16:00 Parallel Inv. 16:00 Parallel Cont. 16:00 Parallel Cont. 16:00 Close 16:30 Tea 16:20 Tea 16:20 Tea 17:00 Parallel Cont. 17:00 Parallel Cont. 17:00 Parallel Cont. 17:20 Parallel Cont. 17:20 Parallel Cont. 17:20 Parallel Cont. 17:40 Parallel Cont. 17:40 Parallel Cont. Excursion 17:40 Parallel Cont. P4 Poster Session Poster P4 P2 Poster Session Poster P2 18:00 Parallel Cont. Session Poster P1 18:00 Parallel Cont. 18:00 Parallel Cont. 18:20 Close 18:20 Close 18:20 PhD Prize 18:30 Women in Pl. Physics 19:00 Close 19:30 General Public Talk (Sp.) 20:00 Reception 22:30 Dance show 21:00 Conference Dinner

Consult breakdown of parallel sessions on day overviews �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

������

Main Auditorium (August) Medusa Room Genius Room Eutyches Auditorium Plenary / Magn. Confin. Inertial Confin.

9:00 Opening

9:45 Alfvén Prize

10:15 Coffee

11:00 I1.001 Sánchez : 11:40 I1.002 Kirk, J. 8 Dendy Chair 12:20 I1.003 Matzen

13:00 Lunch

15:00 I1.004 Gruber 15:00 I1.007 Callahan : : 15:30 I1.005 Sakamoto 15:30 I1.008 Glenzer 16:00 I1.006 Giruzzi 16:00 I1.009 Rohlena Cjair Ida Chair Cavailler 16:30 Tea 16:30 Tea

: 17:00 O1.001 Politzer 17:00 O1.005 Giorla 17:20 O1.002 Kuteev : 17:20 O1.006 Rozmus 17:40 O1.003 Park 17:40 O1.007 Sheng Chair Vlad Chair 18:00 O1.004 Buratti Pegoraro 18:00 O1.008 Kuroda 18:20 Close 18:20 Close

20:00 Reception 20:00 Reception �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

�������

Main Auditorium (August) Medusa Room Genius Room Eutyches Auditorium Plenary / Magn. Confin. Dusty / Low T. Plasmas Basic / Astrophysics Inertial Confin.

8:30 I2.001 Pitts : 9:10 I2.002 Eden Chair Kroesen 9:50 I2.003 Mima

10:30 Coffee 11:00 I2.004 Chen 11:00 I2.008 Boeuf 11:00 I2.015 Font 11:00 I2.018 Koenig 11:30 I2.005 Imbeaux 11:30 I2.009 Foest 11:30 I2.016 Duffy 11:30 I2.019 Riley : : : 9 : 12:00 I2.006 Roach 12:00 I2.010 Tachibana 12:00 I2.017 Koepke 12:00 I2.020 Lebedev � 12:30 I2.021 Rose 12:30 I2.007 Jenko 12:30 I2.011 Massines 12:30 Transfer to Eutyches Chair Woolsey Chair Eden Chair Loukas Chair Strand 13:00 Lunch 13:00 Lunch 13:00 Lunch 13:00 Lunch H.-E.

15:00 O2.001 Brower , 15:00 I2.012 Usachev 15:00 O2.013 15:00 O2.021 Vinci 15:20 O2.002 Maget : 15:20 O2.014 Coppi 15:20 O2.022 Limpouch : : : 15:40 O2.003 Schneider 15:30 I2.013 Petrov 15:40 O2.015 Schekochihin 15:40 O2.023 Ramis Chair 16:00 O2.004 Yavorskij 16:00 I2.014 Samarian Loukas 16:00 O2.016 Ciardi 16:00 O2.024 Perlado Chair Thomas Chair Wagner Koenig Chair 16:20 Tea 16:30 Tea 16:20 Tea 16:20 Tea 17:00 O2.005 Konz 17:00 O2.009 Ivlev 17:00 O2.017 Sulem 17:00 O2.025 Pegoraro : : : 17:20 O2.006 Ida : 17:20 O2.010 Vladimirov 17:20 O2.018 Tsironis 17:20 O2.026 Andreev 17:40 O2.007 Puiatti 17:40 O2.011 Gavrikov 17:40 O2.019 Gargaté 17:40 O2.027 Depierreux Chair Loukas

18:00 O2.008 Parail 18:00 O2.012 Maiorov 18:00 O2.020 Vann Chair Wolowski 18:00 O2.028 Labaune Chair Barbato Chair Samarian 18:20 Close 18:20 Close 18:20 Close 18:20 Close 18:30 Women in Pl. Physics 19:30 General Public Talk * 22:30 Dance Show 22:30 Dance Show 22:30 Dance Show 22:30 Dance Show

* The talk for the general public will be in Spanish �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

���������

Main Auditorium (August) Medusa Room Genius Room Eutyches Auditorium Plenary / Magn. Confin. Dusty / Low T. Plasmas Inertial Confin.

8:30 I3.001 Cavailler

: 9:10 I3.002 Antoni

9:50 I3.003 Krushelnick Chair Rohlena 10:30 Coffee

11:00 I3.004 Kallenbach : 11:00 I3.008 Zajícková 11:00 I3.010 Kodama 11:30 I3.005 Lehnen 11:30 I3.009 Pal 11:24 I3.011 Lancaster Chair Kersten 10 11:48 I3.012 Mackinnon : : 12:00 I3.006 Peng 12:00 Education in Plasma Ph. 12:12 I3.013 Meyer-ter-Vehn 12:30 I3.007 Labombard Chair Chair Loarte Honrubia 12:36 I3.014 Slutz 13:00 Lunch 13:00 Lunch 13:00 Lunch

15:00 I3.015 Pukhov 15:24 I3.016 Ren : 15:48 I3.017 Tikhonchuk 16:12 I3.018 Mendonça Chair Kodama 16:36 Tea 17:00 O3.001 Betti, R. 17:15 O3.002 Norreys : 17:30 O3.003 Antici 17:45 O3.004 Borghesi 18:00 O3.005 Santos Chair Key 18:15 O3.006 Freeman 18:30 Close

Int. Workshop on Fast Ign. of Fusion Targets �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

��������

Main Auditorium (August) Medusa Room Genius Room Eutyches Auditorium Plenary / Magn. Confin. Dusty / Low T. Plasmas Basic / Astrophysics Inertial Confin.

8:30 I4.001 Drake bar í : 9:10 I4.002 Huysmans Chair Ascas 9:50 I4.003 Loeb

10:30 Coffee 11:00 I4.004 Konovalov 11:00 I4.008 Neumann 11:00 I4.012 Horbury 11:00 I4.016 Stoeckl 11:30 I4.005 Castejón 11:30 I4.009 Becker 11:30 I4.013 Galtier 11:24 I4.017 Key

11 11:48 I4.018 Baton : : : 12:00 I4.006 Brunsell : 12:00 I4.010 Mizeraczyk 12:00 I4.014 Zimbardo 12:12 I4.019 Karsch 12:30 I4.007 Graves 12:30 I4.011 Wagner 12:30 I4.015 van Milligen Chair Nishimura Chair Kirk Chair Buttery Chair Loeb 12:36 I4.020 Snavely 13:00 Lunch 13:00 Lunch 13:00 Lunch 13:00 Lunch

15:00 O4.001 Kirk, A. 15:00 O4.009 Khrapak 15:00 O4.017 Carter 15:00 O4.025 Town : : a 15:15 O4.026 Myatt í 15:20 O4.002 Snyder : 15:20 O4.010 Samarian 15:20 O4.018 del-Castillo-N. 15:30 O4.027 Robinson 15:40 O4.003 Lang 15:40 O4.011 Chernyshev 15:40 O4.019 Dudson : 15:45 O4.028 Sherlock Chair Garc 16:00 O4.004 Horacek 16:00 O4.012 Yaroshenko Chair Kirk 16:00 O4.020 Spineanu 16:00 O4.029 Honrubia Chair Boeuf 16:15 O4.030 Krasheninnikov Chair Tikhonchuk 16:20 Tea 16:20 Tea 16:20 Tea 16:30 Tea 17:00 O4.005 Bucalossi 17:00 O4.013 Ratynskaia 17:00 O4.021 Weber 17:00 O4.031 Mora : 17:15 O4.032 Betti, S. : : 17:20 O4.006 Garofalo 17:20 O4.014 Shakhova 17:20 O4.022 Das : 17:30 O4.033 Patin 17:40 O4.007 Menard 17:40 O4.015 Samsonov 17:40 O4.023 Califano 17:45 O4.034 Li Chair 18:00 O4.008 Post-deadline 18:00 O4.016 Klumov Kirk 18:00 O4.024 Loureiro 18:00 O4.035 Bret Chair Klinger Chair Petrov Chair Betti 18:15 O4.036 Robson 18:20 Close 18:20 Close 18:20 PhD Prize 18:30 Close 19:00 Close

21:00 Conference Dinner 21:00 Conference Dinner 21:00 Conference Dinner 21:00 Conference Dinner

Int. Workshop on Fast Ign. of Fusion Targets �� ���� ��������� �� ��� �� ��� ���������� �� ������ ������� ������ ��������� combined with the ���� ��� ������������� �������� �� ���� �������� �� ������ �������

������

Main Auditorium (August) Medusa Room Genius Room Eutyches Auditorium Plenary / Magn. Confin. Inertial Confin.

8:30 I5.004 Tuccillo 8:30 I5.008 Atzeni

Vehn 8:54 I5.009 Hatchett

9:00 I5.005 Post-deadline -

: 9:18 I5.010 Delettrez ter

9:30 I5.006 Pericoli -

: 9:42 I5.011 Davies

Chair Sen 10:00 I5.007 Goodman 10:06 I5.012 Murakami

10:30 Coffee Chair Meyer 10:30 Coffee 11:00 O5.001 Moskalenko 11:00 I5.013 Nishimura

: 11:20 O5.002 Lemoine : 11:24 I5.014 Patel 11:40 O5.003 Grulke 12 11:48 I5.015 Roth

Chair Boozer 12:00 O5.004 Naulin Batani Chair 12:12 I5.016 Zhang 12:20 Lunch 12:36 Lunch

14:00 I5.001 Murari

: 14:40 I5.002 Malka nter ü

Chair G 15:20 I5.003 Helander

16:00 Close

Int. Workshop on Fast Ign. of Fusion Targets 13 14 15 16 ���������������������� �������������� ����������������� ���������������������������������� ��������������������������

��������������������������

17 I1.001

Keeping the options open: Concept Improvements and Physics J. Sánchez Laboratorio Nacional de Fusión. Asociación EURATOM-CIEMAT, 28040 Madrid, Spain

The roadmap to a feasible fusion reactor based on the line is already established. However, options for further improvements are very desirable, and are second only to related in investment, performance, and degree of physics understanding.

Like tokamaks, stellarators are also toroidal confining devices but with two fundamental differences: most, if not all, the confining magnetic field is generated by external coils and the lack of toroidal symmetry. The history of tokamaks shows how the original concept have converged to a very successful solution, and actually, all large tokamak projects are relatively similar, on the other hand most of the stellarators are apparently very different (coil structure, plasma shape, size, ...).

The advantage of the stellarators higher dimensionality has been perceived as a shortcoming but recent theoretical as well as computational advancements have permitted to develop improved concepts and design new stellarators with outstanding physics properties. Moreover, most of the devices under construction are stellarators.

This work is devoted to discuss how stellarators have helped in the understanding of basic physical processes in fusion devices, how future stellarators, based on different concept improvements, are planning to expand their plasma parameter range, and finally the potential of the stellarator concept as a fusion reactor.

18 I1.002

Keeping the options open: Relativistic plasmas in pulsar winds

Concept Improvements and Stellarator Physics J.G. Kirk J. Sánchez Max-Planck-Institut für Kernphysik, Heidelberg, Germany Laboratorio Nacional de Fusión. Asociación EURATOM-CIEMAT, 28040 Madrid, Spain The pulsar phenomenon is a manifestation of a dipole magnet anchored in a rotating The roadmap to a feasible fusion reactor based on the tokamak line is already established. star. Electron-positron pair plasma is created close to the star and driven outwards in an ultra- However, options for further improvements are very desirable, and stellarators are second relativistic wind. Understanding the basic properties of the wind, such as how many particles only to related tokamaks in investment, performance, and degree of physics understanding. it contains, how fast it becomes, and how it radiates, requires modelling the particle accelera- tion and dissipation in relativistic shock fronts and current sheets. I will describe how recent Like tokamaks, stellarators are also toroidal confining devices but with two fundamental ground-based detections of TeV photons from several pulsar winds by the H.E.S.S. experiment, differences: most, if not all, the confining magnetic field is generated by external coils and combined with high resolution images in the X-ray (Chandra and XMM satellites) and opti- the lack of toroidal symmetry. The history of tokamaks shows how the original concept have cal (Hubble Space Telescope) have revolutionised our picture of these winds and placed strong converged to a very successful solution, and actually, all large tokamak projects are constraints on dissipation and particle acceleration models. relatively similar, on the other hand most of the stellarators are apparently very different (coil structure, plasma shape, size, ...).

The advantage of the stellarators higher dimensionality has been perceived as a shortcoming but recent theoretical as well as computational advancements have permitted to develop improved concepts and design new stellarators with outstanding physics properties. Moreover, most of the devices under construction are stellarators.

This work is devoted to discuss how stellarators have helped in the understanding of basic physical processes in fusion devices, how future stellarators, based on different concept improvements, are planning to expand their plasma parameter range, and finally the potential of the stellarator concept as a fusion reactor.

19 I1.003

Overview of recent ICF and HEDP related experiments on the Z-machine M. Keith Matzen Sandia National Laboratories, Albuquerque, New Mexico, USA

There continues to be dramatic progress in applying pulsed-power to research in High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF). The Z facility at Sandia National Laboratories delivers ~20-MA currents to create high magnetic fields (> 1000 T) and pressures (Mbar to Gbar). The large magnetic pressures directly-drive material dynamics and EOS studies at pressures up to 10 Mbar in Al. In a z-pinch configuration, the magnetic pressure supersonically implodes plasma created from a cylindrical wire-array. At stagnation, these plasmas have energy densities of 10 MJ/cm3 at densities up to 0.1% of solid, and produce x-ray energies of 1-2 MJ at powers up to 230 TW. Applications of wire-array radiation sources include two different z-pinch driven ICF concepts: the dynamic-hohlraum and the double-ended z-pinch hohlraum (DEH). Progress in many of these areas was recently reviewed [1]. After a brief overview of the pulsed-power HEDP/ICF program, this talk will focus on progress in achieving radiation symmetry of 2-4% for indirectly driven ICF capsule implosions with the DEH. In this concept, wire-array implosions heat two separate primary hohlraums located at each end of a central co-axial secondary hohlraum containing the ICF capsule. The DEH is the first pulsed-power concept to demonstrate ICF-relevant radiation symmetry. Capsule convergences of up to 14-21 have been shown with x-ray backlighting. We will summarize the development of the capabilities that now permit studies of low-mode radiation symmetry control at capsule diam. of 2.2 to 4.7 mm. Scaling of this concept to high fusion yields relevant for Inertial Fusion Energy will require x-ray powers of order �1 PW. Recent experiments have measured the mass distribution of wire arrays with monochromatic x-ray backlighting. We also summarize this and other progress in the understanding of the dynamics of single and nested wire-array z-pinches at currents of >13 MA, the impact on the scaling of the array power with drive current and mass, and the development of z-pinch designs that permit radiation pulseshaping appropriate for low entropy ICF capsule compression. This research is performed in collaboration with many other groups from around the world. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. [1] M. K. Matzen, et al., to be published Phys. Plasmas, (2005).

20 I1.004

������������������������������������������� O. Gruber, A.C. Sips, R. Dux, L.D. Horton, C.F. Maggi, Y.-S. Na, R. Neu, A. Stäbler, ASDEX Upgrade Team

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany

The prediction of Q=10 for ITER is based on standard ELMy H-mode performance. In recent years robust operating scenarios have been developed which extrapolate for ITER to significantly higher Q-values at full current or longer inductive pulse lengths at reduced plasma current with a non-inductive current drive fraction above 50%, called “hybrid” operation. In particular the stationary “improved H-Mode”, realized at ASDEX Upgrade in 1998, combines improved core confinement and stability with an H-mode edge. Further developments of this regime by AUG and DIII-D, its demonstration at JET and the similarity

to the “high-ßpol” plasmas at JT-60U have proven that it is a strong candidate for ITER “hybrid” operation. This scenario is stationary for several current re-distribution times and is characterized by a central q above 1, low central magnetic shear, fishbones or low (m,n) neoclassical tearing modes (NTM´s) replacing sawteeth, and a confinement factor with respect to H-mode of up to

1.4. (3,2) NTM´s remain small, enabling routine operation up to �N ~3 at ITER relevant

collisionalities for a broad range of q95 =3.2 – 4.5. Operation at low q maximises performance,

while higher q95 maximise bootstrap current fractions and pulse length. Fusion performances 2 in terms of HP-98�N / q95 ~0.4 have been stationary maintained over a broad density range compared with 0.2 assumed for the standard ITER scenario. Even at densities close to the

Greenwald density needed for optimum exhaust � values up to �N~3.5 and a fusion performance of 0.35 were achieved. Temperature profiles are still ITG/TEM turbulence dominated while density profiles are peaked even at high densities enhancing confinement.

Extrapolated to ITER one still expects from quasi-linear models peaked density profiles (R/Ln ~3). A further contribution to global confinement can arise from an increase of edge pedestal pressure combined with stiff temperature profiles. A main focus is to obtain improved H-modes over the widest range of non-dimensional

parameters extending to ITER values. In AUG at low collisionality, �N close to 3 and HP-98>1 -3 were achieved for �* ranging from 7.5 to 11·10 at fixed q95~4. At the lowest �* a heating power of 20 MW was needed. This result indicates a more favourable scaling of the

maximum �N to ITER compared to standard H-modes. No insurmountable problem arose from impurity accumulation despite the peaked density profiles. Using tailored heat deposition with central wave heating and broad NI deposition a compromise in density peaking was found allowing enhanced confinement and keeping the tungsten concentration below 10-5 even with tungsten coated first wall and divertor structures.

Experiments with dominant ICRH heating demonstrated operation slightly below �N~3 with reactor relevant heating schemes without particle input. Finally, benign type II ELMs have been combined with improved H-modes at high densities and close to double null configurations. We present the existing database and the status of theoretical understanding of the underlying transport and the self-regulating nature of the current density profile, proceeding evidently through (possibly differing) benign instabilities.

21 I1.005

Enhanced Performance and Control Issues in JT-60U Long Pulse Discharge Y. Sakamoto and the JT-60 team Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka Ibaraki, 311-0193 Japan.

The purposes of recent experiments on JT-60U are to achieve the highly integrated performance required in the steady-state operation in ITER and DEMO reactor, and to clarify control issues towards long sustainment of advanced tokamak plasmas. Towards these goals, the maximum pulse length of a discharge is extended from 15 s to 65 s, and NB power of >12MW is available for 30 s. These modifications enable us to clarify control issues in a long time scale exceeding the current diffusion time (�R) and close to the wall saturation time.

Since the sustainable normalized beta (�N) is mainly determined by NTM, several scenarios for controlling NTM are applied to sustain high �N over �R. The �N is gradually raised by feedback control with NB power to avoid NTM, as a result, �N=2.5 has been 2 sustained for 16.5 s (~10�R), where the figure of merit of fusion performance �NH89/q95 was kept 0.4-0.5. During this long time period no significant effect of current profile evolution on

MHD instabilities is observed. The �N=3 has been sustained for 6.2 s (4.1�R) without NTM thanks to shifting q=1.5 and 2 surfaces outward by lowering q95 down to 2.2-2.8 during NB heating. The suppression of NTM by ECCD has been successfully demonstrated at �N~3. Nearly full non-inductive current drive plasma towards ITER steady-state operation has been maintained for 5.8 s (2.8�R) with �N~2.4 and the bootstrap current fraction (fBS) of 45% by optimized weak shear q profile with qmin>~1.5. In a reversed shear plasma, fBS~75% has been sustained for 7.4 s (2.7�R) under nearly full non-inductive current drive condition, where the control of pressure gradient is the key for long sustainment. Since control of q profile is essential for stable sustainment of advanced tokamak plasmas, a real-time control of q profile has been developed using the MSE as a detector and the LHCD as an actuator. A slight decrease in energy confinement in the latter phase of a long pulse discharge with high �N was observed, which can be attributed to the increase in the wall recycling. The change in plasma wall interactions is important for a long pulse discharge. During a long- pulse high-recycling ELMy H-mode discharge, the saturation of wall inventory was observed. Even under the condition of wall saturation, the electron density was slightly increased or nearly kept constant by active divertor-pumping enhanced with the strike points located near the pumping slots, and ELMy H-mode was maintained.

22 I1.006

�������� �� ��� ������� �� ������������ ������� �� ���� ����� ����������� �� ���� �����

�� ������� �� ������ �� ��� ���� ����� ����

Association EURATOM-CEA sur la Fusion, DSM / Département de Recherches sur la Fusion Contrôlée, CEA-Cadarache, 13108 St. Paul-lez-Durance (FRANCE)

���� ������ �������� ��������� �� ���� ����� ���� ������ ������� �� ��� ���� ������ ���������� ��� ������� ��� ������������� �� ������� ��������� ������ �������� �� ��� ������� �� ������������ �������� ��������� ������� �� ��� ��������� �� ��� ������� �������� ������� �������� �� ��� ���� ������ ������������ ��������� ��� ��������� ���������� � �������� ��������� �������� ����� ���� ���� ���� ���� ������ ����� ���� ���� ��������� ���� ��� �� ����������� ��� ��� ���������������� �� ��� ��������� �������� ����� � ��������� �� ���������� ������� ������������� �� ������������ ������� ����������� ��� ������� ������������ ���� ���� ��������� ��������� �� � ��� ������ ���� �����������

����������� ������� ��� ������ �� �������� ����������� ������������� ������������� �������

� ���� ��� ����� ������� � ���� � ������������� �� ��� ������� ��������� ������� ������������� ������� �������� ���������� �� ����������� �� � ����������� ������� ������ ������� ���� ��� ���� ��� � ��� ������� �� ����� ������������� ������� � �������� ������������� �� ��� ������� ������� ���� ��� ����� ����������� �� �������� ��������� �� � � � � ��������� ��� ����������� ������� ���� �������� ���� ��� �������� ���� �� ���� �����

����� �� �� ��� �� ������� ����� �� ��� ��������� ������ �� �� � ��� ������ ������ ������� ������� ��������� ����� � ���������� ������� �� ��� �������� �� ������ ����� �������� ����������� ������ ��������� ����� �������� ����������� ������������ ����� ������ �������������� ������� �������������� ��� ����������� ���������� ��� ����������� ����������� ������������� ������ �������� �������������

��� ���� ����� �� ���� ����� ���� ����� �� ������ ������� ��� ���� ����� �� ���� ����� ���� ����� �� ������ ������� ��� ��������� �� ���� ����� ���� ����� �� ������ ������� ��� ��������� �� ���� ����� ���� ������ �� ������ �������

23 I1.007

Advances in Target Design for Heavy-Ion Fusion* D. A. Callahan1, M. Tabak1, G. R. Bennett2, M. E. Cuneo2, R. A. Vesey2, A. Nikroo3 1 Lawrence Livermore National Laboratory, Livermore, CA, USA 2 Sandia National Laboratories, Albuquerque, NM, USA 3 General Atomics, San Diego, CA USA

Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target [1,2] to the “hybrid” target [3] because the hybrid target allows a larger beam focal spot than the distributed radiator (~ 5 mm radius rather than ~ 2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement.

The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z- pinch hohlraum [4] on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules.

*This work performed under the auspices of the U.S Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

[1] M. Tabak, D. A. Callahan-Miller, Phys. Of Plasmas, 5, 1895 (1998). [2] D. A. Callahan-Miller and M. Tabak, , 39, 883 (1999). [3] D. A. Callahan, M. C. Herrmann, and M. Tabak, Laser and Particle Beams, 20, 405 (2002). [4] G. R. Bennett, et. Al, Phys of Plasmas, 10, 3717 (2003).

24 I1.008

Advances in Target Design for Heavy-Ion Fusion* ������������������������������������������������������� D. A. Callahan1, M. Tabak1, G. R. Bennett2, M. E. Cuneo2, R. A. Vesey2, A. Nikroo3 ���������������������������������������������������������������������������������������� 1 Lawrence Livermore National Laboratory, Livermore, CA, USA ����������������������������������������������������������������������������� 2 Sandia National Laboratories, Albuquerque, NM, USA ������������������������������������������������������������������������������ 3 General Atomics, San Diego, CA USA

�������� ��� ����� �������� ��� ����� ����������� ����������� ���� ���� ��������� �� Over the past few years, the emphasis in heavy ion target design has moved from the ��� �������� �������� �������� ����� �� ������� �� �������� ����� �������� ����������� distributed radiator target [1,2] to the “hybrid” target [3] because the hybrid target allows a larger beam focal spot than the distributed radiator (~ 5 mm radius rather than ������ ����� ��� ���� ������ ������� �������� ������ ��������� ���� ���� ~ 2 mm radius). The larger spot relaxes some of the requirements on the driver, but ���������� ���� ����� ������ �� �� � ��� ��� �� ����� ������� ��� �������� �� �� �� �� �� introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam �������� ������� ����� ������������ �� ����� ��� �������� ��������� ����������� ������� placement. ���� ��� ����� ����� ��� �������� ����� ��� �� ���� ������� ���� ��������

The shim is a thin layer of material placed on or near the capsule surface to block a ����������� ��������� �� ��� ���� ��� ����� ����� ����������� ��� ����������� ���� small amount of excess radiation. While we have been developing this technique for ��������� ���������� ������ ��� ������ ������������ �� �������� ������ ������� ��� the heavy ion hybrid target, the technique can be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z- ������� �������� ��������� ����������� ������������ ��� ������� �� ����� ���� pinch hohlraum [4] on the Sandia Z-machine. Experiments using shimmed thin wall ��������� �� �������� ���������� ����� ��� ������������ ��������� ���� �� ��� ����� capsules have shown that we can reverse the sign of a P2 asymmetry and significantly ���� ����������� ��� ���� ������� �� ������� ���� ����� ���� ����� ��� ��� ����� ���� ��� reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules. ����� ����������� ������ �� �������������� ���������� �������� �������� �������� ��� ���� ����� ���������� ������ ����������� ���� ����� ����������� ���� � �� �� ��� � ������ *This work performed under the auspices of the U.S Department of Energy by ������� �������������� ��� ���� ����� �� ���� ����� ���� ����� ���������� ��� University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. ������������������������������������������������������������

[1] M. Tabak, D. A. Callahan-Miller, Phys. Of Plasmas, 5, 1895 (1998). [2] D. A. Callahan-Miller and M. Tabak, Nuclear Fusion, 39, 883 (1999). ������������������������������������������������������������������������������������������������� [3] D. A. Callahan, M. C. Herrmann, and M. Tabak, Laser and Particle Beams, 20, 405 ������������������������������������������������������������������������������������ (2002). [4] G. R. Bennett, et. Al, Phys of Plasmas, 10, 3717 (2003).

25 I1.009

���������������������������������������������������������������������� ������

� � � � � � � ���������� ���������� �������������� ���������� ������������ ���������� ������������ �

������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������� ���������������������������������������������������������������������������� ��������������������������������������������������������

�� � ����� ������ ��������� �� � ������ ���� � ���� � �� ���� �� ������ �� ������� � ���� ��������� ������ �� ������ ������� ����� ��������� �� ��� ���������� �� ��� ����� ������� ���� ���� ������ ������ ���� �� �� �� ���� ���� ��� ��� �� ��������� ���� ��� �������� ������� ���� ���� �� �� �� �� ���� �� ���� ���� �� �������� ������������� ��� ��� ������� ������� ��� ����� ���� �� ������ �� � �������� �� ��� ���� ��� ������� ���� ��� �� ���� ������ ��� � ������ ����������� ���������� ��� � ������ ��� ������ ����� �� �������� �� � ����� ���� �� �������� ��������� ��������� ��� ������ ��� ������ ����������� ��� �������������� �� ��� ������ �������� ��� � ���������� ������ ����� ������������ �� ��� � ������ ��� ������������� �� ���������� ��� ��� ������������ �������� ��� ������� ��������� ��� ������� ������� �� ��� ����� �������� ��� ������� ���� �� ����������� ������ �� ��� ������������ ������������������������������������������ �������� ��� ����������� �� ��� ����� ���� ���� ��� ������ �� � ������ ������� ������� ������� ����������� ��������� ���� ���� ���������� ����� �� � ������� �������� �� ��� ������������� ������� �� ��� �������� ��� �������� ��� ���� �������� ������� �� � ����� ���� ��������� �� ��� ������ ������� ���������� ��� �������� �� ������� ���� �������� ������ ������� ��� ������ ��������� ��� ��������� ��� ������ �������� �� ��� ������������� �� ��� ����� ����� �� �������� ��������� �� ��� ��� ������� ���� ������� �� ��� ����� ������� ��� �� ����������� �� ��� ����� �� ���� �������� �� ��� ������� ����� ���� ������ ��� ������������ ������ �� ��� ���������� ����� ������ ��� � ��������� ������ ������ ������ �� �� ���������� ������ ����� �� ��������� ������������� �� ��� ���� �� �� ������ ��� �������� �� ��� ������� ������ ���� � �������� �������� �� ��� ����� ������� ��������� �� ��� ������� ������������ ��� ����������� ��������� ��� ����� �� ������� �� ���� ������� ����� ��� ����� �����������������

26 I2.001

Material erosion and migration in tokamaks R. A. Pitts with contributions from the AUG, DIII-D, JT-60U, TEXTOR, Tore Supra tokamak teams and contributors to the EFDA-JET work programme Centre de Recherches en Physique des Plasmas, Association EURATOM, Conférédation Suisse, EPFL, 1015 Lausanne, Switzerland

Material migration is one of the outstanding issues facing successful long pulse, high power tokamak operation, both for the next step device, ITER, and the longer term economic and technological viability of . Erosion of tokamak first wall surfaces may occur via a number of processes, both steady state and transient, the relative importance of each of which depends sensitively on the nature of the driving mechanism and the wall material itself. The subsequent transport of this eroded material through the plasma and its redeposition, often in locations remote from the point of release, constitute the foundation of material migration. Such material movement is intimately linked with the critical issue of tritium retention (via the process of co-deposition), which, in ITER and beyond, will determine the duration over which the tokamak may be operated before removal of the retained fraction is imposed by nuclear safety restrictions. Of the three processes: erosion, large-scale material transport and co-deposition, transport is currently the least understood, leading to large uncertainties in the predicted T-retention in ITER, independently of the chosen wall materials. The low duty cycle and reduced energy and particle fluxes to first wall surfaces in todayʼs tokamaks mean that the phenomena of migration is of no practical consequence to their operation. In steady state reactor-class devices, however, annual migration rates are currently predicted to be in the range of tons, even in the absence of transient events. These estimates are nevertheless associated with considerable uncertainty and, although the situation is unlikely to be completely resolved by the time ITER is constructed, a clearer understanding of the global migration picture is emerging from ongoing physics studies in current devices. In particular, the influential role of erosion at main chamber surfaces, followed by subsequent transfer to the divertor and the delicate erosion/deposition balance in the divertor itself is now recognised, even though the use of carbon in many tokamaks adds significant complexity to the problem through the requirement to account for hydrocarbon chemistry. This contribution aims both to review our current understanding of erosion and migration by compiling current experimental and modelling results, and to discuss key areas of uncertainty preventing the accurate prediction of migration rates in ITER and future reactors. Plans for a large- scale investigation of migration and T-retention at JET with the hitherto untested ITER first wall material mix will also be discussed.

27 I2.002

������������������������������������������������������������������ ������������������������������������������������������������������� �������������������������� J. G. Eden ���������������������� ���������������������

Microdischarge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally < 1 mm. Over the past several years, our laboratory has leveraged fabrication techniques developed largely by the VLSI and MEMs communities to demonstrate a broad spectrum of semiconductor, ceramic, and multi-layer metal/polymer structures (with microcavity cross-sectional dimensions as small as 10 � 10 µm2) that are promising for a variety of applications, including microdisplays, chemical sensors, and medical diagnostics. The remarkable properties of low temperature plasmas confined to mesoscopic dimensions — including picoliter � nanoliter volumes, operation at pressures up to one atmosphere (and beyond), and specific power loadings (on a continuous basis) of tens to hundreds of kW-cm–3 — will be discussed. The breadth of devices now available, the increasing level of functionality, and the promise of further advances as a result of fully integrating nanotechnology will be reviewed. For example, arrays as large as 500 � 500 pixels, each of which is a (50 µm)2 inverted pyramid microcavity device, have been

fabricated in 100 mm (4") dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all

key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed.

28 I2.003

�������������������������������������������������������������� ���������������������

������������������������������������ ������������������������������������������������� ��� ��������������������������������������������������������������

����� ������ ����� �� ������� ��� ������������ �� ������� ����� �� �������������� µ�� ����� ���� � ����� ��� ������ ������������ ��� �������� ��� ���� ���� �� ��������� ������ ��� ��� �� ����� ��� �������� ���� ���� �� ��� ����� ����� ���� �� ���� ���� ��� ��� ��� ����� �������� �� ������� ���� �� µ�� �� ��� ����� ��� �� ��� ������ ����� �� ���������� �� ������� ��� �������� ����� �� ���� ���� ���� ����� ����� ������������ ��������� ���������� �������� ���� �� ����� ��� ��� ��� ��� �������� ��������� �� ��� ����� ���������� ��������� ���� ��� ������� ���� ����� ��� ���������� �� ����� �� ���� ����� ��� ���� ��������� ���� ����� ������ ������������������������ ���� ����� ������ ��������� �� ������� �� ����������� ��� ����������� ��� ��� ������� ������ ������� ��� ������ �� ��������� ������������� ��� ���� �������� ���� � ��� ��������� ���� ������� ��� ������ ��������� ����������� ��� ����� ������� ���� ���� � ���� ������ ������� �� �� ���� �� ��� ������� ������� �� ��������� ��������� ��� ��� ���� ������� ��� �� ������������������������������������ �� ��� ���� ���� ����� ������� ���������� ����������� �� ����� ���� ��� ���� ��� �� ������ �� �� � ��� ��� ��� �� ������������� ��� ��������������� ���������� ������������ ������� ������������ ��������� ��� ���� ������ ���������� ���� ������� ��� ����� ������������ �������� ������ �� ������� ��� �������� ����� ��� ��� ������� ������ ��������� ���� ��� ������ ���� ��� �� ��� ���� ���� ���� ������� ��� � ���� ���� ����� ��� ����� ������ �� ������� ���� ����� ��������� ������� �� ��� ���� ������ ������ �� ���������� �� ��� ����� ������������ ��� ����������� �� ����� ��������� ���� �� �������� �� ��� ������� ���������� ��� ������� ������ ������������������������ ���� ��� ������� ������������� �� ��� ������� ������� ��� ��� ���� ����� ���������

�������������� �� ������� ���� ��� ��� ��� ��� ����� ���)� ��� ��� ����������� ���� ����� ���� ������ ��������� ���� ������ ��� ������ ����� ��� ������ ������������ �� ��� �������� �������� ��� ������ ����������� ��� ����������� ������ ���� ���������������� �� �� ��������� ���� ����� ��� ���� ����� ����������� �� ��� ������������� ������� ������� ����� ���������� ��� �������������� ��������� ��� ������ ��������� ��� �� ���� ���� �� ��� �� ��� ���� ����� ����� ������� � ��������� ��� ����� ������ �� � ����� ����� ���� �� ��� �������� ��� ���� ������� �� ���� ���� ������� ��� ������� ��� ���������� �� ��� ������ ����� ����� ��� ��� ����� ����� ��� ��������� ���������� ���� �� ���� ������ ��� ��� �� ����� �� ��� ���� �� ��� ����� �� ��� ��� ��� ����������� ������ ���� ���� ��� �������� �� ������� ������ ��� ��� �� ����� �� ���� �� ������������������������������������������������������������������������������������

��������� ����������������������������������������������������������������� �������������������������������������������������������������� ���������������� ������������������������������������������������

29 I2.004

��������������������������������������������������������������� ������������������������������������� �������� ������������������������������������������������������������������������������������

��������� ������ ����������� �������� ����������� ��� ��������� ����������� ������ ���� ���� �������� ����������� �������� ����� ����������� ��������� ��� ��������� �������� ��������� �� ���� ��������� ������������� ���� ������ �� ��� �������� ���� ��������� ���� ������ ������ �������� ������ ��� ������ ����� ������������� ������ ������ ��� ����������� ��� ��� ������ �������� ������ ����� ������ ��� ���������� ������������� ��� ���������� �� ��������� �� ����� ����������� ��������� ������ ��������� ��� ��� ������ �� ��� ��������� ������ ���� ��� ������ ����� ���� ��� ����������� ��������� ��� ��������� ����� ���� �������� ����������� �� ��� �������� ������� ��� ��� ������� ���� ��� ������������� ���������� ��� ��������� �������� �������� ��������� �������� �������� ��� �������� �������� ���� �� ����� ���������� � ������������������������������������������������������������������������������� �������������������������������������������������������������������������������

30 I2.005

                              

   

    β  = β                                                 ρ                      ρ        

31 I2.006

�������������������������������������������������� C.M. Roach1, D.J. Applegate2, S.C. Cowley2,3, W.D. Dorland2,4, N. Joiner2 ����������������������������������������������������������������������� � ���������������������������� ������������������������������������������� ����������������������������������������

Spherical tokamaks (STs) have attractive features for fusion, and there is considerable interest in understanding their transport properties, which are likely to be determined by the underlying micro-instabilities. Inhomogeneity in the magnetic field and � effects are large in STs, and are known to have important influences on the particle dynamics and the nature of the underlying micro-instabilities respectively. Gyrokinetic microstability calculations, using the flux-tube geometry code GS2, are presented for a number of ST equilibria, some closely resembling those from the MAST experiment. These calculations are performed both with and without electromagnetic effects (which are fully included in GS2). In a modest � MAST equilibrium, ion temperature gradient driven drift waves (ITG) are close to being stabilised by sheared equilibrium ��� flows, but electron temperature gradient driven drift waves (ETG) have stronger growth rates and cannot usually be stabilised in this way. Electromagnetic effects, even in this relatively low � equilibrium, appear to give rise to longer perpendicular wavelength tearing parity modes in the plasma core [1]. Microstability analyses are also presented for higher � equilibria, including that proposed for a conceptual ST power plant, where tearing parity modes are found over wide ranges of perpendicular length scales.

Mixing length estimates from linear calculations may suggest the level of the transport coefficients, but nonlinear calculations are required to derive the heat and particle fluxes self-consistently. The status of these computations, which are particularly challenging in today’s STs. will be reviewed, and the issues that must be resolved in the future in order to improve these calculations will be outlined.

������������������������������������������������

�������������������������������������������������������������������������������������������� ��������

32 I2.007

Heat and Particle Transport in a Tokamak: Advances in Nonlinear Gyrokinetic Simulations

F. Jenko, T. Dannert, C. Angioni

IPP, Boltzmannstr. 2, D-85748 Garching, EURATOM Association, Germany

We present gyrokinetic simulations of plasma turbulence driven by ion temperature gradient (ITG) modes and trapped electron modes (TEMs). These studies have become possible through an upgrade of the nonlinear gyrokinetic Vlasov code GENE [1] which now includes magnetic particle trapping. The new version of GENE has been benchmarked successfully against semi- analytic theory and other gyrokinetic codes.[2, 3] Several issues are addressed which are inter- esting both from a theoretical and from an experimental point of view. Finite β ITG turbulence. The dependence of ITG turbulence on the plasma β is studied. Here, β is increased from zero all the way to the ballooning mode regime. Our results confirm earlier fluid simulations [4] qualitatively but not quantitatively. Magnetic flutter transport is usually subdominant. This finding can be reconciled with test particle calculations if cross phase rela- tions are taken into account. Electron heat transport by TEM turbulence. The electron heat transport induced by TEM tur- bulence exhibits three key features which cannot be explained in terms of conventional (quasi- )linear theory: (a) a strong dependence on the safety factor, (b) an effective threshold in the normalized electron temperature gradient, and (c) a decoupling of the particle and electron heat transport for sufficiently steep gradients. These three features will be discussed, and a simple transport model will be presented which is able to capture at least the first two of these effects. Co-existence of ITG modes and TEMs. Taking a step towards increased complexity, we then focus on the co-existence of ITG modes and TEMs. Varying the density gradient, a transi- tion from down-gradient to up-gradient particle transport is observed as the dominant mode changes. The null point obtained in gyrokinetic simulations tends to correspond to the experi- mental working point.

References [1] F. Jenko, W. Dorland, M. Kotschenreuther and B.N. Rogers, Physics of Plasmas 7, 1904 (2000) [2] T. Dannert and F. Jenko, Computer Physics Communications 163, 67 (2004) [3] T. Dannert, Ph.D. thesis, TU München (2004) [4] P.B. Snyder and G.W. Hammett, Physics of Plasmas 8, 744 (2001)

33 I2.008

Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations J.P. Boeuf and L.C. Pitchford Centre de Physique des Plasmas et Applications de Toulouse CNRS and Univ. P. Sabatier, 31062 Toulouse, France

Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control.

However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years.

Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of “micro-discharges” arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of “micro-discharges” or filaments.

In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how discharge models can help clarify the physical mechanisms responsible for the force exerted by the plasma on the gas flow in this application.

34 I2.009

Non-thermal atmospheric pressure discharges for surface modification R. Foest, A. Ohl, M. Stieber, K.-D. Weltmann Institut für Niedertemperatur-Plasmaphysik, Greifswald, Germany

Throughout the last decades, plasma technology has been established in a series of surface treatment applications, e.g. for semiconductor processing or optical coatings. The majority of plasma assisted technologies is based on low pressure processes. In recent years, however, non-thermal atmospheric pressure discharges have attracted considerable interest because of their simplified technical devices for industrial applications as compared to low pressure processes which require vacuum equipment. Hence, batch processing can be avoided, thus facilitating the implementation of plasma process steps into production lines. Investment costs are cut down significantly. The use of atmospheric pressure plasmas for technical applications dates back to the ozone production with dielectric barrier discharges (DBD) by Siemens in 1857. Lately, the application of atmospheric pressure plasmas for surface treatment has been reported, e.g. for the treatment of foils to improve printability, for surface cleaning and protective coatings. The DBD is known as a strongly inhomogeneous, filamentary discharge. A non filamentary, homogeneous DBD was observed in He, N2, other gases, and mixtures. An example of this discharge type and its application for the deposition of thin films by plasma polymerization is discussed in more detail. The standard planar electrode geometry of the DBD is characterized by a narrow inter-electrode gap in the mm-Region. Hence, surface treatment has been restricted to thin, flat substrates. Attempts to overcome these limitations involve micro discharge arrays and jet geometries, which are evoked by an enhanced gas flow, partly in combination with the electric field. Jets are created out of several plasma types, among them corona discharge, DBD, microwave discharge and RF discharge. With these plasma sources, substrate geometries displaying 3-dimensional features can be treated, too. Critical parameters for the comparison of atmospheric pressure surface modification and low pressure standard methods are the thin film and surface properties.

A collection of different configurations is presented, including a modular RF capillary jet along with its application for plasma enhanced CVD, plasma cleaning, plasma activation and biomedical appliances. A critical comparison of thin film and surface properties achieved with standard low pressure methods is attempted for selected applications. Concluding remarks address the evaluation of the different discharges, their chances and potential for surface treatment at atmospheric pressure.

35 I2.010

Interaction and Control of mm-Waves with Microplasmas

Kunihide Tachibana and Osamu Sakai Department of Electronic Science and Engineering, Kyoto University Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Microplasma of mm to sub-mm size, which can have plasma density of 1013 to 1016 cm-3, is an interesting media for studying the interaction with microwaves of 100 to 1000 GHz. Since the plasma size becomes comparable to the wavelength of microwaves of that range, the mutual interaction can be applied to the diagnostics of plasma density and also the new concept of microwave controlling devices can be developed. In order to realize such ideas, the plasma frequency given by the square root of the plasma density should be close enough to the frequency range of microwaves although the situation is collision dominant. As the size shrinks, the operating pressure range is going to be increased up to or more than the atmospheric pressure. Therefore, the plasma density more than 1013 cm-3 can be attained easily even though the ionization degree is moderate, say of the order of 10-6 to 10-4. We have manufactured a microplasma-integrated device with a stacked metal-mesh structure of which surfaces are coated by ceramic films [1]. The coaxial opening area of unit microdischarge is 200 x 1700 �m. This mesh-type device is driven by a bipolar-pulse power source in a dielectric barrier discharge (DBD) scheme. When the discharge was operated in

He or N2 gas at atmospheric pressure and the microwaves of 50 to 75 GHz was transmitted through the plasma region perpendicularly to the mesh surface, a signal waveform with a peak attenuation of a few % was observed according to the growth and decay of the plasma density. From the transmittance characteristics, the plasma density can be estimated to be 1012 to 1013 cm-3 [2]. In order to increase the plasma density and then the modulation depth, we are trying to optimize the mesh sizes, the gas mixtures and the operating conditions. On the other hand, we have been studying the microwave transmission characteristics parallel to the substrate with coplanar plasma generated on it. For an example, when a strip line was shunted by a T-junction made of a plasma channel, the transmittance of 10 G Hz microwaves was attenuated by about 10 % according to the finite plasma density. With a set of the T-junctions placed at a distance of 1/�g, where �g is the wavelength along the strip line, and with a sufficient plasma density, we can realize a device such like a dynamic band-pass filter. We are also thinking of the idea of “plasma photonic crystals” with two-dimensionally arrayed microplasmas.

[1] O. Sakai, Y. Kishimoto and K. Tachibana, J. Phys. D: Appl. Phys. 38 (2005). [2] K. tachibana, Y. Kishimoto, S. Kawai, T. Sakaguchi and O. Sakai, Plasma Phys. Control. Fusion, 47 (2005) in press.

36 I2.011

��������������������������������������������������������� ���������������������� Françoise Massines1, Nicolas Gherardi1, Pierre Ségur2 1 Laboratoire de Génie Electrique CNRS-UPS, 118 route de Narbonne, 31062 Toulouse Cedex4, France 2 Centre de Physique des Plasmas et de leurs Applications, CNRS-UPS, 118 route de Narbonne, 31062 Toulouse Cedex4, France

Dielectric barrier discharge (DBD) is an easy way to produce cold plasma at atmospheric pressure: the dielectric avoids safely the transition to arc. However, at atmospheric pressure, for gas gap of the order of millimetres or larger, the large value of the product Pd (Pressure X gas gap) usually limits each discharge radius to a value lower than some hundreds of microns. Nevertheless, recently it was shown that in different atmospheres an appropriate choice of the excitation allows to realise large radius discharges. This is of great interest for application in gas chemistry, sterilization, surface activation and of course thin film deposition which is a very promising field. But the development of a new process based on this discharge needs a clear understanding of the discharge physics and chemistry including the powder formation and transport when C or Si are introduced in the gas phase. ����������������������������� ������ � ����� ����������� �� ��� ��������� ����������� �������� ���������� ������� ��������� �� ����� ������ ���� �� ������ ����� �� ���� ����� �� ����� ��� �� � �������� ��������� ������� ���� ���� ��� ����������� �������� ���� ��������� ������ �� ����� ��� ��� ����������� �������� �������� ��������� ������ �� ��������� ��� ��������� ��������� ���� �� ��������� �� ��� ����� �� ������ ������������ ���������������� ������� �� ����������������������������������������� ������������������������������������� ��������������������������������������������� � ��� ��� ���� ��� ���� ��� ���� �������� �� �������� ���������� ��� ��� �� ������� ����������������� � ���� �� ��� ����� �� ��������� �� ��� ��������� ������� ������� �� ����� ���������� ��� ����������������������������������������� ����������������������������������������������������������������������������

37 I2.012

The project ,,Plasmakristall - 4” (PK-4) – a dusty plasma experiment in a combined dc/rf(i) discharge plasma under microgravity conditions: first results and future plans. [email protected] A. Usachev, A. Zobnin, O. Petrov, and V. Fortov. Institute for High Energy Densities Russian Academy of Sciences Izhorskaya, 13/19, 127412, Moscow, Russia M. Thoma, M. Kretschmer, R. Quinn, S.Ratynskaya, H. Hoefner, and G. Morfill. Max-Planck-Institut für extraterrestrische Physik P.O. Box 1312, 85471 Garching, Germany

The PK-4 experiment is a continuation of the successful dusty plasma experiments PK- 1, PK-2 and PK-3 conducted on board of the orbital space stations Mir and ISS (International Space Station). The aim of the PK-4 experiment is an investigation of physical processes in complex (dusty) plasmas under microgravity conditions in a combined dc/rf discharge plasma. For all these experiments it is important to avoid the strong influence of gravity, exerting an external stress on the system. Microgravity conditions can be achieved during a plane parabolic flight or on the Earth orbit. Whereas PK-3 and PK-3 Plus experiments are using a planar rf capacitive discharge, PK-4 studies complex plasmas in a chamber with a combined dc/rf discharge. The PK-4 chamber will provide a particular advantage for investigation of different dynamical phenomena in complex plasmas such as sheared laminar flow of a highly nonideal dusty liquid and its transition to the turbulent regime, nozzle flow, boundary layers and instabilities, shock waves (solitons) formation and propagation, dust particle lane formation, and space dust grain separation by their size. Presently, within a predevelopment phase of the PK-4 Project (August 2002 - December 2004) supported by DLR, we have designed the experimental setup, performed calibrations, test experiments during parabolic flights on a special plane, and identified relevant and interesting experiments, which shall be conducted on the ISS in 2007/2008. Such a chamber will also be used as an insert for the "International Microgravity Plasma Facility" (IMPF), which shall be realized on board of the ISS within the joint project IMPF/ICAPS after 2008. In present review the next topics will be briefly reported: • physical concept of the PK-4 experiment; • probe diagnostics of the background discharge plasma; • spectral control of plasma pollutions; • preliminary results of dusty plasma experiments performed during parabolic flights from the Bordeaux Airbase (France, October 2003 and March 2004); • ion drag measurements on test particles in a uniform positive column of a dc discharge.

As in the case of PK-3 and PK-3 Plus, PK-4 is developed within a close collaboration of the MPE (Garching, Germany) and IHED (Moscow, Russia) scientific Teams.

38 I2.013

Dusty Plasma Liquid: Structure and Transfer Phenomena   

                                                                          �               ��                                         

39 I2.014

Dust as fine electrostatic probes for plasma diagnostic

A.A. Samarian, J. Khachan, B.W. James School of Physics, University of Sydney, NSW 2006, Australia

Here we present a novel use of small dust for plasma diagnostic in the Inertial Electrostatic Confinement (IEC) plasma and sheath of a planar rf-discharge. Because the dust charge is a function of multiple plasma parameters, and the dust charge adjusts itself upon changes in plasma conditions instantaneously, dust particles are an ideal diagnostic tool. The main advantage of such diagnostic system is its simplicity. This is because the key measurements in such diagnostic system are the position of the dust particle or its motion following a perturbation. This technique only requires access to the discharge chamber, dust particles, a laser to illuminate them and a camera to capture the motion of the dust. The use of electrostatic fields to confine fusion plasma was invented by Farnsworth in the 1960’s [1]. Nuclear fusion in such case can be achieved by injecting ions into a spherically or cylindrically symmetric electrostatic potential well where ions converge to the centre, resulting in a core of increased ion density. The technique where particles are ensnared in an electrostatic well is called IEC and is being used for fusion with large neutron counts readily being achieved. The profile of electrostatic potential well is a key factor for the whole process, but the electrical potential in the plasma in such devices has not been mapped properly. Analyzing the trajectories of charged dust particles has given useful quantitative information about the shape of the potential well in the ion beam and in the future promises to be able to give qualitative measurements of the electric field as theories of the IEC and the dust charge develop. When plasma comes into contact with material surface, a layer of net space charge called plasma sheath establishes itself between the surface and the bulk plasma. Despite decades of investigation in dc and rf sheaths, there are still uncertainties about aspects of sheath structure which remains a topic of contemporary theoretical and experimental interest. We report here simultaneous measurements of sheath electric field and dust charge using various sizes of dust particle. It is well known that dust of different sizes is levitated in positions within the sheath corresponding to their values of non-uniform sheath electric field [2]. By measuring the equilibrium position and resonant oscillation frequencies of particles of various sizes, the values of E and ZE` were obtained as a function of position within the sheath from which Z can also be determined as a function of position within the sheath. The E profiles obtained have been compared with sheath models. It was found that electric field is indeed linear in the middle of the sheath for a wide range of pressure. A non-linear dependence for E in the region near sheath boundary was found for the pressures under 50 mTorr.

References 1. T. Farnsworth, U.S. Patent No. 3 258 402 (1966). 2. A.A. Samarian, S.V. Vladimirov, Phys. Rev. E 67, 66404 (2003)

40 I2.015

���������������������������������� ���������������������������� ������������������

José A. Font1 1 Departamento de Astronomía y Astrofísica, Universidad de Valencia Dr. Moliner 50, 46100 Burjassot (Valencia), Spain

We report on a general procedure to solve numerically the equations of (inviscid) general relativistic hydrodynamics (GRHD) and (GRMHD) within the framework of the 3 + 1 formalism. Infinite electric conductivity is assumed in the latter case, i.e. ideal MHD. Upon the explicit choice of an appropriate (Eulerian) observer adapted to the spacelike spacetime foliation (with an associated coordinate chart) and suitable fluid and magnetic field variables, it is possible to cast the equations of both GRHD and GRMHD as first-order, hyperbolic systems of conservation laws for a state- vector comprising the densities of mass, momentum, energy, and magnetic field components. Hyperbolicity of those systems of partial differential equations allows the use of their characteristic information (i.e. the wave structure) to build up stable and accurate numerical schemes for their solution. In recent years, the so-called (upwind) high-resolution shock-capturing schemes (or Godunov-type methods), based upon approximate Riemann solvers, have been successfully extended from classical to relativistic fluid dynamics (both special and general). While such advances also hold true in the case of the MHD equations, the development still awaits here for a thorough numerical exploration. The talk will include a brief overview of such numerical techniques with emphasis in their applicability to general relativistic fluids and magneto-fluids. A number of tests and applications in the field of relativistic astrophysics will be presented. These will include simulations of magnetized shock tubes in curved spacetimes, spherical accretion of a magnetized fluid onto a Schwarzshild black hole, thick accretion disks orbiting around black holes, and gravitational stellar core collapse.

41 I2.016

�������������������� ����������������

Peter Duffy

Department of Mathematical Physics, University College Dublin, Belfield, Dublin 4, Ireland

We review the theory of cosmic ray transport and acceleration with an emphasis on the underlying plasma physics. Magnetic fluctuations on either side of a supernova remnant shock cause energetic particles to undergo multiple shock crossings, gaining a small amount of energy at each cycle. This process is known as diffusive shock acceleration and is the most likely mechanism behind the production of cosmic rays. The main appeal of this model is that it produces a power law distribution of energetic particles, with differential energy spectrum N(E) � E-q, where the spectral index depends solely on the shock compression ratio, q = (r+2)/(r–1). However, the production of upstream magnetic fluctuations capable of efficiently scattering particles across the shock is a problem that can only be overcome by the particles themselves. The cosmic ray current excites, in the linear regime, resonant Alfvén waves which induce scattering. We review the extension of this picture to the nonlinear case where the fluctuating magnetic fields exceed the ambient values and the consequences for the maximum cosmic ray energy. The role of magnetic field structure and braiding on the spectral index is also discussed. We review recent developments in the theory of energetic particle transport in the interstellar medium.

42 I2.017

�������������������� ���������������� Interrelated experiments in laboratory and space plasmas M. E. Koepke Peter Duffy Department of Physics, West Virginia University, Morgantown, WV 26506-6315 USA Department of Mathematical Physics, University College Dublin, Belfield, Dublin 4, Ireland Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed

We review the theory of cosmic ray transport and acceleration with an emphasis on the advances for which laboratory experiments played an important role. How the underlying plasma physics. Magnetic fluctuations on either side of a supernova remnant interpretation of the space plasma data was influenced by one or more laboratory shock cause energetic particles to undergo multiple shock crossings, gaining a small experiments is described. The space-motivation of laboratory investigations and the scaling amount of energy at each cycle. This process is known as diffusive shock acceleration and of laboratory plasma parameters to space plasma conditions are discussed. Examples is the most likely mechanism behind the production of cosmic rays. The main appeal of this demonstrating how laboratory experiments develop physical insight, benchmark theoretical model is that it produces a power law distribution of energetic particles, with differential models, discover unexpected behaviour, establish observational signatures, and pioneer energy spectrum N(E) � E-q, where the spectral index depends solely on the shock diagnostic methods for the space community are presented. The various device compression ratio, q = (r+2)/(r–1). However, the production of upstream magnetic fluctuations capable of efficiently scattering particles across the shock is a problem that can configurations found in space-related laboratory investigations are outlined. A primary only be overcome by the particles themselves. The cosmic ray current excites, in the linear objective of this review is to articulate the overlapping scientific issues that are addressable regime, resonant Alfvén waves which induce scattering. We review the extension of this in space and lab experiments. A secondary objective is to convey the wide range of picture to the nonlinear case where the fluctuating magnetic fields exceed the ambient laboratory and space plasma experiments involved in this interdisciplinary alliance. The values and the consequences for the maximum cosmic ray energy. The role of magnetic interrelationship between plasma experiments in the laboratory and in space has a long field structure and braiding on the spectral index is also discussed. We review recent history, with numerous demonstrations of the benefits afforded the space community by developments in the theory of energetic particle transport in the interstellar medium. laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modellers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalist awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific issues is widening. This increasing overlap between diverse issues addressable in laboratory and space plasma experiments is responsible for closer interactions that yield improvements in interpretation and more publications that contain both space and lab data. Discussions with members of the space, laboratory, and theory plasma communities are gratefully acknowledged. This work is supported by NASA and the NSF.

43 I2.018

������������������������������������������

M. Koenig1, A.�Benuzzi-Mounaix1, T. Vinci1, N. Ozaki1, D. Batani2, P. Loubeyre3, E. Henry3, G.Huser3, T. Hall4, P. Celliers5, G. Collins5, D. Hicks5, D. Bradley5, A. MacKinnon5, P. Patel5, J. Eggert5, ����������� D. Neely7, M. Notley7, R. Heathcote7, M. Borghesi8, L. Romagnani8, �� ����

1�Laboratoire pour l’Utilisation des Lasers Intenses, UMR7605, CNRS – CEA - Université Paris VI - Ecole Polytechnique,, 91128 Palaiseau Cedex, FRANCE 2Dipartimento di Fisica ‘G. Occhialini’, Università di Milano-Bicocca and INFM, Piazza Della Scienze 3, 20126 Milano, Italy 3CEA DRIF, BP 12, 91680 Bruyères-le-Châtel, FRANCE 4University of Essex, Colchester CO4 3SQ, United Kingdom 5Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 6Laboratory for Laser Energetics, University of Rochester, USA 7 Central Laser Facility, Rutherford Appleton laboratory, Didcot, UK 8 Queen's University of Belfast, UK 9 University of California, Berkeley, USA

In the last few years, high power lasers have demonstrated the possibility to explore new state of matter the so-called Warm Dense Matter. Among the possible techniques utilized to generate this state, we present more particularly the coupling between static, using DAC (diamond anvil cell), and dynamic compression. It allows to move away from the principal Hugoniot curve and reach states which are closer to planetary isentropes. In this context, I shall present some recent direct applications to giant planetary cores experiments on water performed at various European laser facilities. Also knowledge of iron melting line at multimegabar pressures is fundamental for understanding the Earth’s interior. Pressure-temperature measurements were obtained by studying partially released states of iron into a transparent lithium fluoride (LiF) window. The Fe/LiF interface velocity served as a pressure gauge while optical radiation through the window is fitted to a greybody function in order to deduce temperature. Experimental results related to iron fusion temperature at high pressures will be shown. Finally novel diagnostic techniques combining long pulses and short ultra intense beam will be discussed.

44 I2.019

������������������������������������������������������������������� ���������

������������������������������������������������������������� ������������������������ ���������������������������������������� ������������������������������������ ������������

1School of Mathematics and Physics, Queen’s University of Belfast, BT7 1NN, UK 2Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau, France 3Central Laser Facility, Rutherford-Appleton Laboratory, Chilton Didcot, OX11 OQX, UK 4Department of Physics, University of York, Heslington YO10 5DD

���� ��� ���� ��� ����� ��� ��� �� ����� ���������� �� � ������ ���������� ��� ���� ���������� ����������� ���� ���� ��������� ��������� ���������� ���������� ���������� �� ���� �� ���������� �������� ����� ������� ������� ���� ���� ���������� ��� ������ �� ������ � ���� ��� ������� ��������� �� ��� ������� �� ������� �� ��� ������ ��������� ������ ��� ��� ������ ��� ����������� ����� ��� ��� ����������� ��� ������� ��� �� ��������� ��� ������ �� ������ ������� ��� ������� �������� �� ������� �� ��� ��������� ���� �������� ��������� ������ ��� ����������� ����� �������� ������� ��� ����������� ��� �� ������� �� ���� ���� � ���� ������� ����������� �� ���� ��������� ��������� ��� ���� ��������� �� ����� ���� ��������� ��������������������������������������������������������

45 I2.020

�������������������������������������������������������������������� ������������������

S. V. Lebedev1, A. Ciardi1, D. Ampleford1, S.N. Bland1, S.C. Bott, J.P. Chittenden1, G. Hall1, J. Rapley1 A. Frank2,3, E. G. Blackman2,3

��������������������������������������������������������������� �������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������

We will present experimental results on formation of supersonic radiatively cooled plasma jets with dimensionless parameters (Mach number ~20, cooling parameter ~1 and density contrast �j/�a ~10) similar to those in YSO jets. Two different experimental configurations are used. In the first [1,2] the produced jets are purely hydrodynamic and are used to study deflection of the jets by the cross-wind. The “cross wind” leads to deflection of the jet through formation of internal oblique shocks in the jet and we will discuss the relevance of these observations to the astrophysical systems. In the second configuration [3] the jets have toroidal magnetic field and the plasma beta in these jets is of the order of unity. We will present experimental data on the dynamics of “magnetic bubble” surrounding the jet and on the development of m=0,1 instabilities in the jet. Although at later times the jet column is observed to go unstable, we observe that the jet retains its collimation. Modifications of the experimental configuration allowing addition of the poloidal magnetic field and angular momentum to the jet will be also discussed. The experiments are scalable to astrophysical flows in that critical dimensionless numbers such as the plasma collisionality, the plasma beta and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes.

References: Lebedev S. V. �����., Astrophys. J. ���, 113 (2002) Lebedev S. V. �����., Astrophys. J. ���, 988 (2004) Ciardi A. �����., Astrophysics and Space Science (2005 –to be published)

46 I2.021

��������������������������������������������������������������������� ���������������������

S J Rose

Department of Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Values of the radiative opacity, and in particular the Rosseland mean, of stellar material are used in calculations of stellar structure and evolution. These values come exclusively from theory. Measurements of the radiative opacity of plasmas at temperatures of up to approximately 100eV and densities of approximately 10-2gcm-3 (corresponding to plasma conditions found in the outer radiative flow region of the Sun) have been made using high-power lasers over the last ten years. These measurements have given us confidence in our opacity calculations for these plasma conditions. However, for plasma conditions closer to the Sun’s centre, experiments to test our opacity models are only just starting to be performed. We shall look at these new experiments (which employ laser pulses of less than a picosecond duration) as well as discussing other possible ways in which high-power lasers may be able to provide experimental access to conditions in the Sun’s interior.

47 I3.001

INERTIAL FUSION WITH THE LMJ

C. Cavailler LMJ Program Manager CEA/DAM/Ile de France, BP12, 91680 Bruyères-le-Châtel (FRANCE)

The progress of the construction of very large laser facilities LMJ and NIF enables the prediction of inertial fusion achievement. These facilities will open new fields for research : the High Energy Density Physics. Pressures of several 100 Mbars and temperatures of several 100 eV will be reached. Measurements of materiel properties (EOS and opacities) wich have been demonstrated on current or former facilities will be possible at these never reached conditions. Pure hydrodynamics (instabilities) and radiative hydrodynamics astrophysical issues will be addressed. But ignition and gain as a first proof of Inertial Confinement Fusion, is a primary goal. The indirect drive route to inertial fusion has been prepared for many years by CEA (French, Commissariat à l’Energie Atomique). The last ten years were imprinted by a close collaboration between CEA and US-DOE in both areas of facilities R&D and ignition target physics. Scientific issues are well known : the propagation of laser light through the very long plasma created inside the hohlraum has to be understood and mastered to be sure that less than 10% of laser energy will be backscattered by parametric instabilities. On the other hand the stability of the capsule implosion has to be matched with the fabrication surface finish so to avoid shell destruction and extinction of the central hot spot. Recent advances at CEA allowed a better confidence to reach ignition using the facility previously specified. These works used the CEA computing capability combined with plasma experiments on existing lasers facilities. Ignition achievement suppose also the realization of suitable cryogenic targets. CEA began the construction of the Laser Megajoule (LMJ), a 240-beam laser facility, at the CEA Laboratory CESTA near Bordeaux. The LMJ is designed to deliver 2 MJ of 0.35 µm light to targets for high energy density physics experiments . Four beams are operated for plasma experiments on the Ligne d’Integration Laser (LIL) at CESTA, for the end of 2004, meeting the specifications for LMJ. The realization phase of the LMJ facility was initiated in March of 2003 with the start of construction of the building and of the target chamber.

48 I3.002

Shear flows generated by plasma turbulence and their influence on transport

V.Antoni

Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy

Turbulence plays a fundamental role in the physics of magnetically confined plasmas for research as it is proved to drive most of the particle and energy trans- port ultimately determining the confinement properties of fusion grade plasmas. Understanding turbulence origin and relationship with plasma parameters is a scientific challenge of primary importance in the route towards a fusion reactor. On this respect, plasma flows, mainly due to electric drift in a magnetic field, are found to manifest several indications of a strong link with turbulence. In particular highly sheared flows are proved to be effective in reducing turbulent losses and in some cases can act so as to suppress instabilities, leading to improved plasma confinement through the formation of transport barriers. The formation of such barriers can be externally driven or self generated by the plasma. In the latter case turbulence has been proposed as a possible driving mechanism for the generation of highly sheared flow, so that a complicated coupling between flows and turbulence has been envisaged, ultimately leading to a self-organization process. In this contribution experimental evidence from several differ- ent fusion devices of the interplay between flows and turbulence is reviewed. In particular the process underlying momentum transport in the plasma is addressed focusing on the balance be- tween turbulence driving and viscous damping terms. The role of the flow shear in both terms is discussed. The energy transfer from turbulence to mean flows is addressed by comparing experimental results and numerical simulations. A consequent energy transfer from scale to scale is expected to occur through a cascade process. A feature supporting this mechanism is the observation reported from several experiments of coherent structures emerging from the turbulent background. The process leading to the formation of coherent structures, their rela- tionship with plasma flows and their effect on transport are discussed on comparing the results with the predictions of numerical simulations. Finally the relationship between momentum and energy transport is addressed focusing on the terms which rule the transfer from mean to turbu- lent components. In presenting the experimental results, the role played by different magnetic configurations in the study of plasma turbulence as well as the analogies with non fusion exper- iments will be highlighted.

49 I3.003

Laser plasma sources of ions - physics and future applications K. Krushelnick1, A. E. Dangor1, Z. Najmudin1, P. Norreys3, E. Clark3 and M. Zepf4 1Blackett Laboratory, Imperial College London, London UK 2 Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK 3 Plasma Physics Department, AWE plc, Aldermaston, Reading, UK 4Department of Physics, Queenʼs University, Belfast, UK

Intense laser plasma interactions have long been shown to be a source of very energetic ions – from the first experiments in the 1970ʼs. However, there has been a recent revival of interest in the production of protons and ions from the such plasmas – primarily from the observation of collimated beams of protons and heavier ions which were observed at the rear thin foil targets irradiated by ultra-high intensity laser pulses (such that I > 1018 W/cm2). These ion beams have unique properties which may make them suitable for a variety of applications such as for probing high density plasmas, for fast ignition in inertial confinement fusion, as an ion source for subsequent acceleration stages in a particle accelerator or potentially for medical applications. Recent experimental results will be reviewed and the potential for such future applications will be highlighted.

50 I3.004

������������������������������������������������������ A. Kallenbach, R. Neu, R. Dux, O. Gruber, A. Herrmann, P.T. Lang, C.F. Maggi, J. Neuhauser, T. Pütterich, I. Radivojevic, V. Rohde, A. Sips, ASDEX Upgrade Team

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany

Due to wall lifetime requirements and the problem of tritium co-deposition in hydrocarbon layers, a future burning plasma will most probably have a full high-Z wall. The prime candidate material is tungsten, which exhibits good thermo-mechanical properties and has a high energy threshold for physical sputtering. To investigate the reactor-compatibility of this wall material, ASDEX Upgrade is being converted into a full-tungsten coated tokamak in a step-by-step approach, with presently almost 70 % of W wall coverage. The effect of the reduction of primary carbon coverage on the plasma is so far moderate. Under tokamak conditions, carbon behaves like a recycling impurity, due to the deposition and re-erosion of soft hydrocarbon layers on the tungsten surface. During high density H-mode operation, the central tungsten concentrations remain typically low, i.e. well under 10-5. The situation is more critical in the improved H-mode or hybrid scenario. Here, the combination of hot edge conditions and peaked central density profiles result in high central tungsten concentrations of up to 10-4, which would be critical in a reactor. However, core electron density peaking is reduced by use of central ICR or ECR heating and thus in turn suppresses central tungsten accumulation. For extrapolation to reactor conditions, we need to separate the effects of the tungsten wall source, the penetration over the edge transport barrier (ETB) and the core transport with its strong neoclassical contribution. These issues are addressed by inspecting the tungsten behaviour in various discharge scenarios and parameters in ASDEX Upgrade. These include radiative cooling by medium-Z seed impurities and ELM frequency control by pellet injection to simulate a reactor plasma with small edge and divertor impurity radiation levels and a separatrix power flux close to the H-L threshold. Fast ions produced by NBI and ICR heating at the low field side appear to be an important tungsten erosion mechanism, as observed by spectroscopic influx measurements of WI. The penetration of tungsten over the ETB is highly affected by ELMs, showing a clear reduction of the core tungsten content with rising ELM frequency. This effect is explained by the fact that the ELMs expel a major fraction of the tungsten ions which accumulate inside the ETB during the inter-ELM phase. Core neoclassical ion transport acts as a multiplier for the pedestal density, which depends on the temperature and density gradients in the core plasma. The ASDEX Upgrade results will be complemented by results obtained with molybdenum in Alcator C-Mod and with a tungsten limiter in TEXTOR.

51 I3.005

The Dynamic Ergodic Divertor

M. Lehnen1, S. Abdullaev1, W. Biel1, M.F.M. de Bock2, S. Brezinsek1, C. Busch1, I. Classen2, K. H. Finken1, D. Harting1, M. von Hellermann2, S. Jachmich3, M. Jakubowski1, R. Jaspers2, H.R. Koslowski1, A. Krämer-Flecken1, Y. Kikuchi1, Y. Liang1, X. Loozen1, A. Pospieszczyk1, T. Van Rompuy4, D. Reiter1, U. Samm1, O. Schmitz1, G. Sergienko1, M. Tokar1, B. Unterberg1, R. Wolf1, O. Zimmermann1 and the TEXTOR team 1 Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich, Germany 2 FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, The Netherlands, www.rijnh.nl 3 Laboratory for Plasma Physics, Association EURATOM - Belgian State, KMS - ERM, Trilateral Euregio Cluster, B-1000 Brussels, Belgium 4 Department of Applied Physics, Ghent University, Rozier 44, B-9000 Ghent, Belgium

The concept of the Dynamic Ergodic Divertor (DED) is based on plasma edge ergodisation by a resonant perturbation. Such a divertor concept is closely related to helical or island divertors in stellerators. The base mode of the DED perturbation field can be m/n = 12 /4, 6/2 or 3/1. The 3/1 base mode with its deep penetration of the perturbation field provides the excitation of tearing modes. This topic was presented elsewhere. In this contribution we concentrate on the divertor properties of the DED. We report on the characterisation of the topology, transport properties in ergodic fields, divertor regimes, impurity transport and density limit behaviour. The 12/4 base mode where the perturbation is restricted to the plasma edge is suitable for divertor operation. With increasing perturbation field island chains are built up at the resonance layers. Overlapping islands lead to ergodisation. The plasma is guided in the laminar region via open field lines of short connection length to the divertor target. The magnetic topology is not only controlled by the coil current but especially by the edge safety factor. For appropriate edge safety factor we observe a strong temperature drop in the plasma edge, indicating an expand- ing laminar region, which is necessary to decouple the divertor plasma from the core plasma. This temperature drop is accompanied by a redistribution of the heat and particle flux on the divertor target which is measured by thermography, visible spectroscopy and Langmuir probes. The modifications of the magnetic topology by the DED are reflected in the distribution of the plasma edge density and temperature measured by atomic beams and can be directly seen for example from carbon emission lines. The magnetic structure is calculated by the ATLAS code and shows good agreement with the experimental findings. The particle and energy transport is modelled with the EMC3-EIRENE code package and is in qualitative agreement with the measured densities and temperatures.

52 I3.006

A component test facility based on the * Y.-K.M. Peng1, P. Fogarty1, B. Nelson1, R. Maingi1, J. Menard2, E. Fredrickson2, R. Bell2, B. LeBlanc2, S. Medley2, D. Gates2, S. Kaye2, J. Schmidt2, C. Neumeyer2, A. Field3, I. Cook3, H. Wilson3, G. Voss3, Y. Takase4, S. Sabbagh5, F. Levinton6, O. Mitarai7 1 Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. 2 Princeton Plasma Physics laboratory, Princeton, New Jersey, U.S.A. 3 EURATOM/UKAEA Fusion Association, Abingdon, U.K. 4 University of Tokyo, Tokyo, Japan 5 Columbia University, New York, New York, U.S.A. 6 Photonics, Inc., Princeton, New Jersey, U.S.A. 7 Kyushu-Tokai University, Japan Recent progress on the National Spherical Torus Experiment (NSTX) and the Mega-Amp Spherical Tokamak (MAST) has indicated that, without active feedback control of global MHD instabilities, a robust neutral beam-heated operating regime is available for fusion application. This regime is characterized by toroidal average beta �T � 25%, normalized beta �N � 5, “bootstrap” current fraction fBS � 0.6, “Greenwald” density nGW � 0.6, well confined plasma ion energy, and an electron energy confinement that can be improved via modifications of the safety factor q profile. This progress has encouraged refinement of the projected plasma science and fusion engineering conditions of a Component Test Facility (CTF) [1,2], which aims to reduce time, cost, and risk in the development of practical fusion power [3,4]. Physics and design assessments show that, for aspect ratio A = 1.5, the remote-handling enabled, steady-state CTF would produce high fusion 13 2 2 neutron fluxes �n = 4.4-8.8�10 n/s/cm (fusion WL = 1-2 MW/m ), with R0

= 1.0-1.2 m, elongation ~ 3, Ip ~ 7-13 MA, BT ~ 2.5 T, and combined neutral beam (with energy � 160 kV) and RF power to operate in the Q range of 1-4. Dependence of CTF parameters on increased A up to 2.5 were calculated and will also be reported. *Work supported by DOE and EURATOM/UKAEA. [1] H.R. Wilson et al, http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/ft_3-1ra.pdf. [2] Y.K.-M. Peng et al, http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/ft_3-1rb.pdf. [3] R.J. Goldston et al, J. Fusion Energy, 21, 61 (2002). [4] I. Cook et al, “Accelerated Development of Fusion Power,” EURATOM/UKAEA Fusion Association (UKAEA FUS 521, February 2005).

53 I3.007

������������������������������������������������������������������� B. LaBombard, M. Greenwald, A.E. Hubbard, J.W. Hughes, J.H. Irby, Y. Lin, B. Lipschultz, E.S. Marmar, J.E. Rice, N. Smick, J.L. Terry, S.M. Wolfe, S.J. Wukitch and the Alcator C-Mod Team �����������������������������������������������������������

Plasma flow at near-sonic speed is observed in the high-field region of the scrape-off layer (SOL) in Alcator C-Mod [1]. The principal drive is identified as a ballooning-like cross-field transport mechanism: plasma streams along magnetic field lines from low- to high-field regions in response to poloidal pressure variations; these are maintained by poloidally asymmetric cross-field transport. Thus, the largest component of the parallel flow is a ���������������� ����. As a result of the drive mechanism, the poloidal location of an X-point or limiter contact point determines the magnitude and direction of the transport-driven flow. In single-null discharges with ���� pointing toward (away from) the X-point, the flow circulates the confined plasma toroidally in the co-current (counter-current) direction. Consequently, the SOL possesses co-current (or counter-current) volume-averaged toroidal momentum. Depending on discharge conditions, the momentum couples across the separatrix and affects the toroidal rotation of the confined plasma. Thus the SOL imposes a ‘flow boundary condition,’ accounting for a positive (negative) increment in central plasma co-rotation in L-mode discharges when ���� is toward (away from) the x-point. Experiments in ICRF-heated discharges suggest that this boundary condition and its X- point dependence may explain the sensitivity of L-H power threshold to X-point location: in a set of otherwise similar discharges, the L-H transition is seen to be coincident with central rotation achieving roughly the same value, ����������� of X- point location. For discharges with ���� pointing away from the X-point (i.e., with the flow boundary condition �������� co-current rotation), the same characteristic rotation can be achieved only with ������ auxiliary input power. Remarkably, L-H power thresholds in lower-limited discharges are identical to those in lower X-point discharges; SOL flows are also similar, suggesting a connection [2].

[1] B. LaBombard, ������, Nucl. Fusion �� (2004) 1047. [2] B. LaBombard, ������, to be published in Physics of Plasmas.

54 I3.008

Synthesis of carbon nanotubes in atmospheric pressure microwave torch L. Zajíková, O. Jašek, M. Eliáš, M. Bublan, V. Kudrle, J. Matjková2, J. Buršík3, M. Kadleíková4 1 Department of Physical Electronics, Masaryk University, Brno, Czech Republic 2 Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic 3 Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, Czech Republic 4 Department of Microelectronics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovak Republic

The synthesis of carbon nanotubes in microwave plasma torch is reported at atmospheric pressure from the mixture of methane, hydrogen and argon. The plasma torch was generated at the frequency of 2.45 GHz using an iron hollow electrode. Argon flowing through the hollow electrode was used to stabilize the torch. Methane and hydrogen were added to the expanding torch from outside. The CNTs were grown on substrates placed at various distances from the torch electrode either in direct contact with the torch or in remote plasma conditions. Substrate temperature was measured by pyrometer from the backside of the substrate. Optical emission spectra were recorded along the discharge axis. The samples were imaged by scanning and transmission electron microscopes. Further information about the chemical structure was obtained from Raman spectroscopy. The substrates for the CNT growth were specially prepared silicon pieces. A thin layer of metal catalyst was vacuum evaporated on the top of the silicon oxide layer. A significant difference in the CNT growth was found when nickel instead of iron was used. A thick silicon oxide layer served as a barrier against metal catalyst diffusion into the silicon substrate. Besides the substrate preparation other parameters, such as the position of the substrate with respect to the torch electrode and the substrate temperature were found critical for the growth of high quality CNTs. The best results were achieved in remote plasma conditions where optical emission of excited species rapidly decreased. Using iron catalyst and the temperature about 700 oC well aligned CNTs with the length of 75 µm were prepared during 5 min. This research was supported by the Czech Science Foundation under the contract GAR 202/05/0607.

55 I3.009

������������������������������������������������������������������������ ������������������������������ ��������������������������������������� ���������������������������������������������������������������������

��� �������� �� ��� ����� ������ ����� �������� ��������� �� �� ��� ��� ����� ����� �������� ��� ��� ���������� ��������� ���� �������� ��� ����������� �� ���������� ������ ������� �� ��� ����� �� ������� ������������ ����������� ��� ������������������ ��������� ���������� �� �� �������� ��� ��� �������� ���� �������� �� �� ���� �������� ��� ������������������������������������ ��� ���������� �� ����� ���������� ��������� �� ��� �� ��� ��������� �������� �� ��� ��������������� ��������� �� � ����� �������� �� �������� ������ �� ���� ��� ��������� ������������ ����� ���� ��� ������� ���� ����������� �� ��� ����� ���� ����� ��� ��� ���������� ��� ����� ��� ����������� ��������� �� ����� ��������� ������ ������� ���� ��� �������� ������ ��� ��������� �� ��� ������� ������������ ���������� �� ��� ������� ������� ���� �� �������� �� ������ ��� ��� ��� ����������� �������� ���� �� � � �� � ���� ����� �������������������������� ��� ����� ��� �������� ����� ��������� ��� ��������� �� ��� ���� �� ��� ������ ������ ��� ��� ����������� �������� ��� ������� ��� �� ����� ��� ������� �� �������� ����� ���������� �� ��� ����� ���� ��� �������� ����������� �� ��� ������ ������ ��� ��� ��������� �� ����� ���������� �� ��� ����� ��� ���� ��� ������� �� ��������� ��� ���� ��� ����� ���� ��� ����������� ������ �� �� ��� ��������� ����� ���� ���� ��� �������� �� ����� �� ����� �� ��� ������ �� ����� ���������� �� ��� ������ ���� ������ ��� ��������������� ������������� ��� ����������������������������������������������������������������������������������������� �� ��� ����������� ��� ����� ������ ��� ������� �� ��� ������������������ ��������� ��

�������� ������ �� ��� �� ��� �� ����� �� ����������� ��������� ��� ��������� �� ������ ����� ���������� ����������� �������� ��� ��������� ����� ���� ��������� ��� ������ �� ���������� �� ��� ���������� ���������� ��� ����� ��������� ��� ������� ���� ��������� �� ��������� ������� ��� ������ ������� �������� �� ��������� ��� ���������� ���������� ��� ����� ��������� ��� ��������������� ������������� �������� �� ��������� ��� ��������� ������ ��� ��������� ����� �� ������ ������� �������� ��������� ���� ��� �������� ��������� ����� ���� �������� �� ��� ���������� ������ ��� ��� ������� ������� ������� ������ ��� ������� ������ ���������� �� ���������� ����� ������������ ������� ������ ��� ������� �������� ���� ��� ��������������������������������������������������������������������

56 I3.010

Plasma Photonic Devices for High Energy Density Science R. Kodama Faculty of Engineering and Institute of Laser Engineering, Osaka University 2-6 Yamada-oka, Suita 565-0871, Japan

High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called “high energy plasma device”.

One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5�m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called “plasma photonic device”.

1. R. Kodama et al., Nature 412, 798 (2001) ; R. Kodama et al., Nature 418, 933 (2002). 2. R. Kodama et al., Nature 432, 1005 (2004).

57 I3.011

Electron energy transport studies in a recent PW laser experiment

K. L. Lancaster1, P. A. Norreys1, C. D. Murphy1,2, J. S. Green1,2, K. U. Akli3,4, R. R. Freeman3,5, H. Habara6, D. S. Hey3,4, R. Kodama6, M. H. Key4, K. Krushelnick2, M. Nakatsutsumi7, P. Simpson8, R. Snavely4, R. Stephens9, C. Stoeckl10, T. Yabuuchi7,

1) Central Laser Facility, CCLRC Rutherford Appleton Laboratory, UK. 2) Blackett Laboratory, Imperial College, UK 3) Department of Applied Science, University of California, Davis, CA, USA. 4) Lawrence Livermore National Laboratory, CA, USA 5) Ohio State University, Columbus, Ohio 43210, USA 6) Institute of Laser Engineering, Osaka University, Japan 7) Graduate School of Engineering, Osaka University, Japan 8) Department of Pure and Applied Physics, Queens University of Belfast, UK 9) General Atomics, San Diego, CA, USA 10)Laboratory of Laser Energetics, University of Rochester, NY, USA

Energy transport experiments have been performed using the Petawatt arm of the facility at Rutherford Appleton Laboratory. Electron transport has been investigated by irradiating planar Cu, Al, and Al-Cu-Al sandwich targets. Transport was diagnosed using transverse optical probing images, imaging of rear-side Kα and XUV emission, and x-ray spectroscopy of front and rear side emission. The angular pattern of electron transport will be discussed in detail. Divergent transport has been observed from the Kα images. Additional information is inferred from the flow pattern observed with transverse optical probing. Computational modelling of the experimental results, incorporating density profiles measured interferometrically during the experiment, will be presented.

58 I3.012



 

   

             

 

  

59 I3.013

Use of few-cycle PW-range laser pulses in fusion research J. Meyer-ter-Vehn Max-Planck-Institut fuer Quantenoptik, D-85748 Garching, Germany

This talk refers to recent developments of ultrashort TW laser pulses having pulse durations in the order of 10 femto-seconds and less [1]. It describes plans at MPQ to upgrade these pulses to few-Joule energies with PW power. These pulses will be ideally suited for wakefield acceleration, producing very efficiently ultra-bright low-emittance mono- energetic electron beams in the bubble wakefield regime [2]. In this ultra-relativistic regime of laser plasma coupling, the laser pulse drives the wake so strongly that it breaks after the first oscillation and forms a solitary wake, which contains the driving laser pulse in its front-half and traps plasma electrons in its rear-half, accelerating them up to GeV energies [3]. These electron bunches may be converted into secondary beams of X-rays, ions, and other nuclear species.

Here we discuss applications to fast ignition research. Fast ignition of precompressed ICF targets depends on efficient coupling of beam energy to the precompressed fuel core through strongly overdense plasma. This transport involves currents in the order of 100 MA which is dominated by strong magnetic fields and plasma instabilities, in particur current filamentation and coalescence [4]. Also for cone-guided fast ignition, this transport problem arises, be it on a reduced spatial scale.

Understanding and control of these nonlinear dynamics is of central importance to make the fast ignition scheme work. The dynamics occur on femtosecond timescales and smaller. Ultrabright X-ray bunches (duration 100 as - 10 fs) produced from bubble electron bunches or also via high harmonics generation from plasma surfaces may open a possibility to time- resolve the FI transport instabilities in pump-probe experiments.

[1] I.N. Ross et al., J. Opt. Soc. Am. B19, 2945 (2002). [2] J. Faure et al., Nature 431, 541 (2004). [3] A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B74, 355 (2002). [4] M. Honda, J. Meyer-ter-Vehn, A. Pukhov, Phys. Rev. Lett. 85, 2128 (2000).

60 I3.014

Fast ignition Studies at Sandia National Laboratories

S. A. Slutz, R.A. Vesey, D. L. Hanson, R. B. Campbell, T.A. Mehlhorn, M. E. Cuneo, and J. L. Porter Sandia National Laboratories, Albuquerque, N. M. 87185-1186

Sandia National Laboratories is developing a combination of experimental and theoretical capabilites useful for the study of fast ignition physics. Pulsed power machines such as the present Z machine have demonstrated the ability to drive inertial fusion implosions. The Z- beamlet Laser is currently being used to create multi-keV photons for backlighting, which can be used to diagnose the compression of deuterium/tritium to high densities. A high-energy petawatt capablitiy is presently being added to Z-beamlet to extend the backlighting x-ray energy up to 10-50 keV and to enable integrated fast ignitor experiments. We are also developing a capability to implode capsules filled with liquid deuterium/tritium, which avoids the stringent temperature control required for β -layered capsules.

In preparation for such experiments, the theory group at Sandia is modeling various aspects of fast ignition physics. Numerical simulations of laser/plasma interaction, electron transport, and ion generation are being performed using the LSP code. Lasnex simulations of the compression of deuterium/tritium fuel in various reentrant cone geometries are being performed. Analytic and numerical modelling has been performed to determine the conditions required for fast ignition breakeven scaling. These results indicate that breakeven will require about 5% of the laser energy needed for ignition and might be an achievable goal with an upgraded Z-beamlet laser in short pulse mode.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

61 I3.015

Generation of particle beams and X-ray pulses in ultra-relativistic laser-plasma interactions

A. Pukhov1, S. Gordienko1,2, T. Baeva1, S. Kiselev1, O. Shorokhov1, I. Kostyukov3,

1 Institut für Theoretische Physik I, Universität Düsseldorf, Germany 2 L.D.Landau Institute for Theoretical Physics, Moscow, Russia 3 Institute for Applied Physics, Nizhni Novgorod, Russia

A similarity theory is developed for ultra-relativistic laser-plasma interactions. It is shown that the laser-plasma dynamics is similar if the dimensionless number S = = 2 ne/a0nc is kept constant, where a0 eA0/mc is the initial laser amplitude, ne ia the = 2 2 electron density, nc ω0 m/4πe is the critical plasma density for the laser pulse with − the carrier frequency ω0. The S number reflects the fundamental symmetry of the laser-plasma dynamics described by the Vlasov Eq. and the Maxwell Eqs. in the ultra- � relativistic regime a0 1. The similarity theory allows us to derive simple scalings for the energy and the number of laser-accelerated electrons as well as for the density of the electron bunch. We are particularly interested in the so-called “Bubble” acceleration [1, 2]. The S−similarity is valid both for under- and overdense plasmas. In the case of overdense plasmas the S−similarity leads to the scalability of high harmonics from sharp plasma surfaces. We show that the high harmonics are phase-locked and coher- ent. They appear in the form of (sub-)attosecond pulses of X-rays [3]. Employing con- cave plasma surfaces one can focus these harmonics. The coherent harmonic focusing opens a new way to the extremely high intensities reaching the vacuum breakdown limit at 1029 W/cm2. The ion acceleration in laser-plasma interactions has its own similarity group that is also discussed in the present work.

References [1] A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002). [2] J. Faure, Y. Glinec, A. Pukhov, et al., Nature 431, 541 (2004). [3] S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett., 93, 115002 (2004).

62 I3.016



 

 

 

 

        

63 I3.017





  

                                                          

64 I3.018

   

                  

65 I4.001

��������������������������������������������������

���������������� �������������������������������������������

�������� ������ ������� ��� ������������� ������� ���� ������� ������������ �������� ��������� ������� �� ��������� ����� ������ ������������� ��� ������ ������ �� ��� ��������� �� ���� �������� ������������ ������������� ��������� ������� �� � ������� � ����������� ������������� �� ������������ ������������� �� ��������� �� ���������� ����� ��������� �� ��������� ������������������� ���������� �������� ��� ��� �������� ��� �� ���� �� ������� ��� ������������ ����� ��� ������������� ������������� ���������� �� ���� ����� � ���� ������� ��� ������������� ���� ������ �� ������������ ��� ��� ���� ��� ������ ����������� �� ��� ����� ���������� �� ����� �������� ���� �� ����� ���� ����������� ����� �� ���� ���� ������������� �������� ��� ���� ����������������������������������������������������������������

��� ������������������� �������� ���������� �� ����� ��� ���������� ����� ��� ����������� ������� �� �������� �� ���������� ����� ��� ����� ��� ���� ���� �������� �� ������������ ����� ��� ��� ��� ������� ��������� ��� ����� � ������� ����������� ����� ��������� �� ��� ��������� ��� ��� �� ����������� ����� ����� ���������� ���� ������� ����� ������� ������� ���� ������� ��� �� ������ ����������� ����� �������� �� ��������� ������� ���� �� ��� �������� ������ ����������� �� �� �������� ������� �� �� �� �������� ��������� ���� �� ������������� ��� ���������� ������� ��������� �� ������� ����������� ��� ��� ���������������� ����������� �� ����� ������ ��� ���� ���� ������� �������� �� ���� ��������� ���� ��� ���������� ��� ���� ������������� ��� ���������������������������������������

��� ��� ���� �� ��� ������ ��� ���� ��������� �� ��� ���� ��� ������� ��� �������� ������� �������� �������������� ����� ������ ������������������ �� ���� ���� ������� ��� ����� ������ ��� ��������� ��� ������� ��� ����� �������� ����������� �� ��� �������� �������������� ����� ��� ���� ������������ ������������ ���� ��� ������������������������������������������������������

66 I4.002

ELMs: MHD instabilities at the transport barrier G.T.A. Huysmans Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache 13108 Saint Paul lez Durance, France

Edge localized modes (ELMs) occur naturally in tokamak plasma with a transport barrier at the plasma boundary. ELMs are characterized by a significant loss of energy and particles on a very short timescale (~ 200 µs). The high degree of interest in ELM studies can be explained by their possible impact on ITER due to the high heat loads on the plasma facing components. The edge transport barrier combines the two driving forces of ideal MHD instabilities: a large pressure gradient and an edge current density (induced by the pressure gradient, the bootstrap current). The observed limit to the pressure gradient appears to be consistent with the ideal MHD limits due to the pressure driven ballooning modes and the current driven kink (peeling) modes. The shaping of the plasma boundary including the separatrix has an important influence on the stability limits. Increasing the triangularity can significantly increase the stability limits and have an impact on the type of ELM that occurs. The exact influence of the presence of the separatrix on the MHD stability limits is still under investigation. In recent years, non-linear MHD models of the ELM have been developed. The models are either based on the transport of the linear MHD instabilities or on the early non-linear evolution of the ballooning modes and the formation of localized structures. The second approach appears to find some confirmation in the recent detailed images of ELM events. An important question is whether ELMs can be controlled or even avoided altogether in H- mode plasmas (without a significant degradation of the confinement). Several options are being considered. ELMs can be triggered (at a lower amplitude) by an external disturbance such as a pellet, a displacement of the plasma or a change in the edge current profile. Another option is the control of the pressure gradient in the transport barrier for example by applying a magnetic field perturbation at the edge of the plasma. The increased transport in the barrier region could limit the edge pressure gradient below MHD stability limits.

67 I4.003

Plasma-Based Ion Beam Sources Horst W. Loeb 1st Institute of Physics, Giessen University, Giessen, Germany

Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality- determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2. Bucket-sources with multi-cusp magnetic field and rf-sources for positive ions, ITER- sources for negative ions. 3. Kaufman- and rf-ion thrusters, gridless Hall-effect and HEMP-engines.

68 I4.004

Role of anomalous transport in onset and evolution of neoclassical tearing modes

S.V. Konovalov1,2, A.B. Mikhailovskii1, T. Ozeki2, T. Takizuka2, M.S. Shirokov1, N. Hayashi2 1 Kurchatov Institute, Moscow, Russia 2 Japan Atomic Energy Research Institute, Naka, Japan

Neoclassical Tearing Modes, NTMs, are known to limit the maximum attainable plasma pressure, degrade confinement and, at worst, culminate in disruption of the tokamak discharges. Possible algorithms of control as well as quantitative predictions of the auxiliary power needed for NTM suppression in a fusion reactor substantially depend on the physical mechanisms responsible for onset and early evolution of the mode. Key role in NTM evolution belongs to the radial profiles of the plasma flow, temperature and density which are determined by the conjunction of the longitudinal and cross-filed transport arising from thermal conduction, particle diffusion, and viscosity. In a tokamak, the perpendicular transport of particles, heat and momentum is typically anomalous. In this report the influence of anomalous perpendicular heat transport and anomalous ion perpendicular viscosity on early stage of the NTM evolution is studied theoretically. Several parallel transport mechanisms competitive to anomalous cross-island heat transport in formation of the perturbed electron and ion temperature profiles within the island are considered. The perturbed electron temperature profile is established in competition between anomalous perpendicular electron heat conductivity and parallel electron heat convection. Formation of the ion perturbed temperature profile was found to be dependent on the island rotation frequency. Perpendicular ion heat conductivity is balanced by the parallel transport associated with ion inertia for an island rotating with subsonic frequency or with island rotation with respect to plasma for supersonic islands. The partial contributions from the plasma electron and ion temperature perturbations in the bootstrap drive of the mode and magnetic curvature effect were taken into account in construction of a generalized transport threshold model of NTMs. This model gives more favourable predictions for NTM stability and qualitatively modifies scaling law for �onset. The anomalous perpendicular ion viscosity is shown to modify collisionality dependence of polarization current effect reducing it to the low collisionality limit. In its turn viscous contribution to the bootstrap drive of NTM is found to be of the same order as conventional bootstrap drive for the islands of width close to characteristic one of the transport threshold model. Viscous contribution to perturbed bootstrap current is destabilizing for the island rotating in the ion diamagnetic drift direction. In this case, an alternative threshold mechanism should be considered.

69 I4.005

�������������������������������������������������������������������������

F. Castejón1, A. Fujisawa2, K. Ida2, J.N. Talmadge3, T. Estrada1, D. López-Bruna1, and C. Hidalgo1

1) Laboratorio Nacional de Fusión –Asociación Euratom/Ciemat, 28040-Madrid, Spain 2) National Institute for Fusion Science Oroshi-cho, Toki-shi, Gifu, 509-5292 Japan 3) University of Wisconsin-Madison, Madison, Wisconsin 53706 USA.

The influence of magnetic topology on transport and stability has been studied in four different stellarators: An almost shearless medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasihelically symmetric device (HSX) with moderate shear. All of them can vary their rotational transform profiles, especially TJ-II that can do it by a factor of more than 2. LHD and HSX can vary their confinement properties by modifying their respective magnetic ripples. CHS has proven that the electric field can jump between the electron and ion roots. Experiments in these stellarators have allowed us to determine how transport and stability are modified when the magnetic topology is changed, and to understand better the mechanisms that act in the different devices. Low rational values of �/2� can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. This has been done either by scanning the rotational transform, driving currents using ECCD, or inducing OH currents. In this way it is demonstrated that low order rationals are not always deleterious for confinement but can be beneficial. The key ingredient to understand this fact is the appearance of a positive and sheared electric field in these plasmas, which is created by the additional non-ambipolar fluxes that appear due to the presence of the rationals. Moreover, the electric field approximately vanishes inside the island, which creates a sheared flow in its vicinity. LHD and TJ-II experiments indicate that it is possible to create ITBs in the plasma without the presence of low order rationals. This occurs when the electric field is created by neoclassical mechanisms and the electron root appears in the plasma core. ITBs also appear in CHS but the role of rationals is not clear yet in this device. The time evolution of the electric field has been studied and fast transitions have been found between high and low confinement regimes, showing the onset of a bifurcation triggered either by the rational or by the presence of the ion and electron roots. The electric potential inside ITBs follows ECE-temperature profile and the electric field is developed on a fast time scale (tens of µs). The plasma stability properties and its effect on viscosity are also studied in the HSX and TJ-II stellarators.

70 I4.006

Active control of multiple resistive wall modes

P. R. Brunsell1, D. Yadikin1, D. Gregoratto3, R. Paccagnella3, Y. Q. Liu4, T. Bolzonella3, M. Cecconello1, J. R. Drake1, M. Kuldkepp2, G. Manduchi3, G. Marchiori3, L. Marrelli3, P. Martin3, S. Menmuir2, S. Ortolani3, E. Rachlew2, S. Spizzo3, P. Zanca3 1 Alfvén Laboratory, Royal Inst. of Tech., EURATOM-VR Association, Stockholm, Sweden 2Dept of Physics, Royal Inst. of Tech., EURATOM-VR Association, Stockholm, Sweden 3Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, Padova, Italy 4Chalmers Univ. of Technology, EURATOM-VR Association, Göteborg, Sweden

Active magnetic feedback suppression of resistive wall modes is of common interest for several fusion concepts relying on close conducting walls for stabilization of ideal magnetohydrodynamic (MHD) modes. In the advanced tokamak without plasma rotation the kink mode is not completely stabilized, but rather converted into an unstable resistive wall mode (RWM) with a growth time comparable to the wall magnetic flux penetration time. The (RFP) is similar to the advanced tokamak in the sense that it uses a conducting wall for kink mode stabilization. Also both configurations are susceptible to resonant field error amplification of marginally stable modes. However, the RFP has a different RWM spectrum and, in general, a range of modes is unstable. Hence, the requirement for simultaneous feedback stabilization of multiple independent RWMs arises for the RFP configuration. Recent experiments on RWM feedback stabilization, performed in the RFP device EXTRAP T2R [1], are presented. The experimental results obtained are the first demonstration of simultaneous feedback control of multiple independent RWMs [2]. Using an array of active magnetic coils, a reproducible suppression of several RWMs is achieved for the duration of the discharge, 3-5 wall times, through feedback action. An array with 64 active saddle coils at 4 poloidal times 16 toroidal positions is used. The important issues of side band generation by the active coil array and the accompanying coupling of different unstable modes through the feedback action are addressed in this study. Open loop control experiments have been carried out to quantitatively study resonant field error amplification.

[1] P. R. Brunsell, et al., Plasma Phys. Control. Fusion 43 (2001) 1457 [2] P. R. Brunsell, et al., Phys. Rev. Lett. 93, 225001 (2004)

71 I4.007

Sawtooth control in fusion plasmas

J. P. Graves1, R. V. Budny2, R. J. Buttery3, S. Coda1, L.-G. Eriksson4, C. G. Gimblett3, R. J. Hastie3, H. R. Koslowski5, M. J. Mantsinen6, M.-L. Mayoral3, A. Mueck1, 7 1 M. F. F. Nave , O. Sauter , and JET-EFDA Contributors∗

1Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, EPFL, 1015 Lausanne, Switzerland 2Princeton Plasma Physics Laboratory, Princeton, NJ, 08543, USA 3UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, UK 4Association EURATOM-CEA, CEA-Cadarache, F-13108 St. Paul lez Durance, France 5Association EURATOM-FZ-Juelich, Institut fuer Plasmaphysik, Trilateral Euregio Cluster, D-52425 Juelich, Germany 6Association Euratom-Tekes, Helsinki University of Technology, Finland 7Associação EURATOM/IST, Centro de Fusão Nuclear, Lisbon, Portugal

The control of sawteeth is likely to be paramount to the optimal operation of baseline scenario burning plasmas. Advances in this field have identified various means of competing against the expected strong stabilising role of a fusion alpha population. Reproducible experiments in JET demonstrate the destabilisation of sawteeth via modification of the current profile, and crucially, also in the presence of energetic ions which lengthened the sawteeth prior to localised RF cur- rent drive [1]. Furthermore, a recent reversed toroidal field campaign at JET demonstrates that counter-NBI injection results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and orientation also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based NBI heating (NNBI) planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted [2] that a finite orbit effect of asymmet- rically distributed circulating ions could be exploited as another means to control sawteeth. Furthermore, recent TRANSP Monte Carlo simulations of the NNBI current drive predicts that the safety factor will evolve very slowly in the core, thereby significantly delaying or suppress- ing sawteeth. This presentation will overview some of the latest developments in the theoretical and experimental progress on the control of sawteeth, and summarise the outstanding related issues to ITER.

References [1] L-G. Eriksson, et al Phys. Rev. Lett. 92, 235004 (2004) [2] J P. Graves, Phys. Rev. Lett. 92, 185003 (2004)

∗See appendix in J. Pamela et al., Fusion Energy 2004 (Proc. 20th IAEA Conf., Vilamoura, Portugal, 2004)

72 I4.008

������������������������������������������������� ������������������������������������������������������������������������������������� 1Institute for Surface Modification, Leipzig, Germany 2Institute of Low Temperature Plasma Physics, Greifswald, Germany 3Roth & Rau AG, Wüstenbrand, Germany 4OSTEC GmbH, Meißen, Germany

������ ���������� �������������� ��� ������� ��� ������ ���� �� �������� ��� ������� ���������� ������������� ����������� ��� ��������� ��� ���� ���������� ����� ��� ��� ������� ������� �������� ��� �������� ������� �� ��� ����������� �� � ���� ��������� �� ��� ����������������������������������������� ����� �� ��������� ��� ������� ����� �� ��������� ������ ���������� ���������� �������� �� �������� �� ������ ������ ��� ��� ���� ����������� ������� ������� ����� ���� ��� ��������� �������� ���� ���� ������� ��������� ����� ��������� ���������� ����� ��� ��� ���������� �� ��� ������� �� ������� ��� ������������ �� � ����� ��� ��� ���� ������� ������ �������������� ����������� ������������� ��� �� ���� ��� �� ���� ���� ������� ������� ��� ������������� ���� � ������� ������ ��� �� ���� ������� �� � ������ ��� ������ ���� �������� � ���� ������������ ��� �������� ���� ������� ������ ��� � ������� ��������� ��� ����� ���� �������� �� ����� �� �������������������������������������������������������������������������������� �������� �� ����� ���� ������ ����������� �� ��� ���� �������� �� ������� ��������� ������������ �� ��������� ������ ����� ������� ��������� ��� ���������� �� ��������������� �����������������������������

73 I4.009

��������������������������������������������������������� 1,2 2,3 2,4 5 6 K. Becker , A. Koutsospyros , C. Christodoulatos , N. Abramzon , G. Brelles-Marinio � �������������������������������������������������������������������������� ���������������������� � ������������������������������������������������������������������ ���������������������� � ������������������������������������������������������������������ ������������������������ ��������������������������������������������������������������������������������������� ���������������������� �������������������������������������������������������������������������� � �����������������������������������������������������������������������������������

Discharge plasmas at high pressures, where single collision conditions no longer prevail and collisional and radiative processes beyond binary collisions involving ground-state species become important, are used in many applications such as high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, medical sterilization and biological decontamination, and excimer lamps and other non-coherent vacuum-ultraviolet (VUV) light sources. However, self-sustained diffuse discharges tend to be unstable at high pressure due to their susceptibility to filamentation and transition to an arc. Stable glow-type discharge plasmas at elevated pressures can be generated and maintained easily when the plasma is spatially confined to cavities with critical dimensions below 1 mm (“microplasmas”). We studied the properties of several stable atmospheric-pressure microplasmas and their use in applications such as the remediation of gaseous pollutants, biological decontamination, and surface cleaning. This talk describes the properties of the microplasmas that we used in these studies and reports on the results of their application to environmental and biological applications. In particular, we present some preliminary data on the interaction of plasmas with bacterial biofilms. Biofilms are highly structured communities of bacteria with complex structures that are very resistant to antibiotics, germicides, and other conventional forms of destruction and that can adhere to surfaces in interfaces.

We thank our colleagues S.-M. Yin and J.C. Joaquin for their contributions to this work and acknowledge the financial support from NASA, NSF, ARO, and AFOSR.

74 I4.010

������������������������������������������������� ���������������� ������������������������������������������������������������� ��������������������������������������� ���������������������

��� ��������� �� ���� ���� ��� ��� �������� ������� ��������� ������ ���������

������������� �� ��� ���������� ��������� ������� ��� ������������ ��� ��� ��� �������

�� ��� ���������� ��� ��� ����� ����� �� ���� ������ ����� ��� ��� ���� ��������� ����� ��� ���������� ������ ����� ����� �� �������� ������ ������� �� ��� ���������� ��� �������� �� �� � ����������� ��������� ����� ���� ����� ������� ����������� ���������� ��������������������������������������������������������������� � ��� ���������� ����� ���� ��� ������ ��������� ������� �� ��������� ���������� ������� �� ��� �� ��� ���� ��������� ������� �� �������� �������������� �� ��� ������� ������� ����������� ������� ������ ���������� ���� ���� ������ ��� ������� ��������� �������� ��� �������� ���� ����������� ��� ����� �� �� ���������� ��� ������������

��������� ��� ��� ��� ��� ��������� �� ��� ������� ����� ���� ���������� ��� ���� ����� ������� ��� ���������� �� ��� ����������� �������� �������� �� ����������� �������� ���������� ����������� ��� ������������� �� ��� ������� ���������� ��� ���� ������ ������� ����� ����������� �������� ���������� ���������� ��� ���������� ������� ����������� ������ ��� �� ������ ���������� ��� ��� �������� ���� ��� ��������������� ������������� ��� ���������� ����������� �� ��� �������� ���� ���� ���������� ������ ����� ��� ������ ������� �������� ������� ����������� ����������� ������� �������������� ����������� �� ������� ����������� �� ���������� �� ��� ������ ��� ��������� ��� ��������� ����� ����������� �� ���� ������ ����� ��������� ��� ������� ��� ������� ���� ��� ��������� ��� ���� ������� ������� ��� ������� ��������� �������� ���� ������� �� ��� ���������� �����������

�� ��� ������ ��������� �� ���� ��� ��� ������� ���� ���� �� ���������� �������� �� � ���������� �� ��� ������ ���������� ��� ������������ ���� ���� ������� �������� �� ��� ������������ ���� �� ������ ������� ����� �������� ������������ �� ��� ��������� ������ ������������������������������������������������������������������

75 I4.011

     

           

                          

                                                               

                                     

                         

                                                                                                                                                     

           

                                                      

                                      

76 I4.012

MHD turbulence in the solar wind: evolution and anisotropy T. S. Horbury1, M. A. Forman2, S. Oughton3 1 Imperial College, London, U.K. 2 State University of New York, Stony Brook, U.S.A. 3 University of Waikato, Hamilton, New Zealand

Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfvén waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and intermittency similar to that in neutral fluids. The presence of a magnetic field leads to anisotropy of the fluctuations, which are predominantly perpendicular to this direction, as well as anisotropy of the spectrum. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wavevectors either parallel to the magnetic field (“slab” fluctuations”) or approximately perpendicular to it (“2D”). We present results of a new, wavelet-based analysis of magnetic field fluctuations in the solar wind, and demonstrate that the 2D component has a spectral index near the Kolmogorov value of 5/3, while slab fluctuations have a spectral index near 2. We also estimate the relative power levels in slab and 2D fluctuations, as well as the level of compressive fluctuations. Deviations of the data from the simple slab/2D model suggest the presence of power in intermediate directions and we compare our data with “critical balance” models.

77 I4.013

����������� ���� ���������� ���������������

S. Galtier1, A. Bhattacharjee2

1 Institut d’Astrophysique Spatiale, Université Paris-Sud, Bât. 121, 91405 Orsay, France 2 University of New Hampshire, Durham, New Hampshire, USA

Astrophysical plasmas are generally well described by the MHD approximation. However, as soon as we are dealing with small scales it is necessary to include new effects. For example, in the small scale plasma limit, ions do not have time to follow electrons and provide a static homogeneous background on which electrons move. Such a fluid model where the dynamics is entirely governed by electrons is called Electron MHD [1]. The electron MHD approximation is particularly relevant in the context of collisionless magnetic reconnection where the diffusion region develops multiscale structures corresponding to ion and electron characteristic lengths [2]. For example, it is often considered that whistler turbulence may act as a detector for magnetic reconnection at the magnetopause. It is also relevant to understand the high frequency observations of the solar wind turbulence where a strong mean magnetic field is present [3]. In that context, we have developed a whistler wave turbulence theory for electron MHD in the presence of a strong and uniform external magnetic field [4]. Using helicity decomposition, the wave kinetic equations for energy and magnetic helicity are derived at the level of three-wave interactions between whistler waves. It is shown that nonlinear interactions of whistler waves transfer energy and magnetic helicity mainly in the direction perpendicular to the external magnetic field. The anisotropic turbulence thus generated has –5/2 –1/2 exact stationary power law solutions which scale as k� k|| for the energy spectrum and –7/2 –1/2 k� k|| for the magnetic helicity spectrum. A strong analogy is found with the problem of rotating turbulence for incompressible neutral flows which share almost all the same properties [5]. ���������� [1] A.S. Kingsep, K.V. Chukbar and V.V. Yankov, in Reviews of Plasma Physics (Consultant Bureau, New York, 1990), Vol. ��. [2] See, for instance, A. Bhattacharjee, Z.W. Ma and X. Wang, Phys. Plasmas �, 1829 (2001). [3] O. Stawicki, P.S. Gary and H. Li, J. Geophys. Res. ���, 8273 (2001). [4] S. Galtier and A. Bhattacharjee, Phys. Plasmas ��, 3065 (2003). [5] S. Galtier, Phys. Rev. E ��, 015301 (2003).

78 I4.014

����������� ���� ���������� ��������������� Anomalous particle diffusion and Lévy random walk of magnetic field lines in three dimensional solar wind turbulence S. Galtier1, A. Bhattacharjee2 G. Zimbardo 1 Institut d’Astrophysique Spatiale, Université Paris-Sud, Bât. 121, 91405 Orsay, France 2 University of New Hampshire, Durham, New Hampshire, USA Universitá della Calabria, Arcavacata di Rende, Italy

Plasma transport in the presence of turbulence depends on a variety of parameters like

the fluctuation level δB/B0, the ratio between the particle Larmor radius and the turbu- Astrophysical plasmas are generally well described by the MHD approximation. However, lence correlation lengths, and the turbulence anisotropy. In this presentaion, we review the as soon as we are dealing with small scales it is necessary to include new effects. For example, in the small scale plasma limit, ions do not have time to follow electrons and results of numerical simulations of plasma and magnetic field line transport in the case provide a static homogeneous background on which electrons move. Such a fluid model of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. where the dynamics is entirely governed by electrons is called Electron MHD [1]. The We assume a uniform background magnetic field B0 = B0ez and a Fourier representa- electron MHD approximation is particularly relevant in the context of collisionless tion for magnetic fluctuations, with wavectors forming any angle with respect to B0. The magnetic reconnection where the diffusion region develops multiscale structures energy density spectrum is a power law, and in k space the constant amplitude surfaces corresponding to ion and electron characteristic lengths [2]. For example, it is often are ellipsoids, described by the correlation lengths lx,ly,lz, which quantify the anisotropy considered that whistler turbulence may act as a detector for magnetic reconnection at the magnetopause. It is also relevant to understand the high frequency observations of the solar of turbulence. For magnetic field lines, we find that transport perpendicular to the back- ground field depends on the Kubo number R = δB lz . For small Kubo numbers, R 1, wind turbulence where a strong mean magnetic field is present [3]. B0 lx  In that context, we have developed a whistler wave turbulence theory for electron we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which MHD in the presence of a strong and uniform external magnetic field [4]. Using helicity can be described as a Lévy random walk. Increasing the Kubo number, i.e., the fluctuation decomposition, the wave kinetic equations for energy and magnetic helicity are derived at level δB/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, the level of three-wave interactions between whistler waves. It is shown that nonlinear both corresponding to Gaussian diffusion. interactions of whistler waves transfer energy and magnetic helicity mainly in the direction For particles, we find that transport parallel and perpendicular to the background mag- perpendicular to the external magnetic field. The anisotropic turbulence thus generated has –5/2 –1/2 netic field heavily depends on the turbulence anisotropy and on the particle Larmor ra- exact stationary power law solutions which scale as k� k|| for the energy spectrum and –7/2 –1/2 dius. For turbulence levels tipical of the solar wind, δB/B0 0.5 1, when the ratio be- k� k|| for the magnetic helicity spectrum. A strong analogy is found with the problem  − of rotating turbulence for incompressible neutral flows which share almost all the same tween the particle Larmor radius and the turbulence correlation lengths is small, anoma- lous regimes are found in the case l /l 1, with Lévy random walk (superdiffusion) properties [5]. z x ≤ ���������� along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for

[1] A.S. Kingsep, K.V. Chukbar and V.V. Yankov, in Reviews of Plasma Physics lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle (Consultant Bureau, New York, 1990), Vol. ��. Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is gradu- [2] See, for instance, A. Bhattacharjee, Z.W. Ma and X. Wang, Phys. Plasmas �, 1829 ally changed into normal diffusion, and normal, Gaussian transport is found for all kinds (2001). of turbulence anisotropy. We will compare our results to other recent studies, and discuss [3] O. Stawicki, P.S. Gary and H. Li, J. Geophys. Res. ���, 8273 (2001). [4] S. Galtier and A. Bhattacharjee, Phys. Plasmas ��, 3065 (2003). the applications to energetic particle transport in the solar wind. [5] S. Galtier, Phys. Rev. E ��, 015301 (2003).

79 I4.015

��������������������������������������

B. Ph. van Milligen1, B.A. Carreras2, R. Sánchez3 1 Asociación EURATOM-CIEMAT para Fusión, Avda. Complutense 22, 28040 Madrid, Spain 2 Fusion Energy Division, Oak Ridge National Laboratory, P.O. Box 2001, Oak Ridge TN 37831-2001, USA 3 Departamento de Física, Universidad Carlos III, Avda. de la Universidad 30, 28911 Leganés, Spain

Fick’s Law lies at the basis of the study of particle and heat transport in many fields of physics. The detailed analysis of transport in magnetically confined plasmas has revealed a very rich phenomenology, including some rather unusual behaviour, such as an unexpected scaling of confinement with system size, power degradation, stiff profiles, rapid transient phenomena (cold and heat pulses) and non-local behaviour, and profile peaking during off- axis fueling. It has been extremely difficult to capture these phenomena in the standard transport modelling framework, i.e. local Fickian transport. Ad-hoc modifications of the standard transport paradigm have been proposed, but no unified framework has emerged that is capable of reproducing all phenomena. In the present talk, we review the foundations of the diffusive transport paradigm in terms of the Continuous Time Random Walk (CTRW), which is a generalization of standard Brownian motion. Using a simplified one-dimensional single-field model that incorporates a critical gradient mechanism, we will present a number of highly suggestive results, demonstrating that all mentioned phenomena arise in a natural fashion in this type of model. In addition, we discuss the fluid limit and show that the model produces a radially increasing effective diffusion and an inward directed pinch, very similar to the actual situation in confined plasmas. Finally, we will discuss the general relevance of this type of model for a more profound understanding of transport in magnetic confinement systems, while indicating future developments in this line of investigation.

80 I4.016

 

  

    

                

                                  

81 I4.017

Recent experimental progress in the study of electron and proton heating for fast ignition

M. H. Key1, K. Akli2, F. Beg5, M.H. Chen1, Z. Chen8, H-K Chung1, K. Fournier1, R.R. Freeman2,3, J. S. Green6,7 , P. Gu2, J. Gregori1, H. Habara8, S.P. Hatchett1, D. Hey2, J.M. Hill2, Y. Izawa8, J.A. King2, Y. Kitagawa, 8 R. Kodama8, J.A. Koch1, K. Lancaster6, B.F. Lasinski1, B. Langdon1, A.J. MacKinnon1, A. Lei8, S.J. Moon1, C.D. Murphy6,7, P.A. Norreys6, H-S. Park1, N. Patel2, P. Patel1, J. Pasley5, R.A. Snavely1, R.B. Stephens4, C Stoeckl10, M Tabak1, M. Tampo8, W. Theobold10, K.A. Tanaka 8, R.J.P. Town1, Y. Toyama8, T. Tsutsumi8, S.C. Wilks1, T. Yabuuchi9, B Zhang2,, J. Zheng8

1Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2Department of Applied Sciences, University of California Davis, Davis, CA 95616, USA 3Ohio State University, Columbus Ohio, 43210 USA 4General Atomics, San Diego, CA, 92186, USA 5 University of California, San Diego, San Diego, CA, 92186, USA 6Central Laser Facility, CCLRC Rutherford Appleton Laboratory, UK 7 Blackett Laboratory, Imperial College, UK 8 Institute of Laser Energetics, Osaka University, Suita Osaka, Japan 9Graduate School of Engineering, Osaka University, Japan 10Laboratory of Laser Energetics, University of Rochester, NY, USA

The results of recent collaborative experimental campaigns at the RAL PW and 100 TW and Gekko PW laser facilities, which have extended our understanding of electron and proton heating for fast ignition are presented.

Heating by electrons has been measured by imaging Cu Ka fluorescence, from crystal and single hit CCD spectroscopy of Cu K shell emission, from two color XUV imaging (68eV and 270 eV) and from streaked 68eV imaging. Heating in solid foil targets, ultra- low mass foil targets and cone targets coupled to fibers and other FI surrogates has been studied using 0.5 to 10 ps pulse duration and powers up to 1 PW. Cone coupling to an imploded plasma has been examined using Cu Ka to diagnose the electron flux in the imploded material.

Heating by focused proton beams generated at the concave inside surface of a hemi- shell has been studied with similar diagnostic methods. Temperatures at the rear surface of proton heated solid foils have exceeded those produced by direct electron heating. Variation of heating with depth and the transverse pattern of heating have been measured. The spatial distribution of electron flux in a Cu hemi- shell used as a proton source has been determined by imaging Ka fluorescence. Conversion efficiency to protons has been measured from radio-chromic film data.

Conclusions from the experiments, links to theoretical understanding and relevance to fast ignition are outlined.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

82 I4.018

 



 

                                               



83 I4.019

 

  

   

                



84 I4.020



  

     

                                                                    

                                                �                         

                                           

                                                                                                           

 

85 I5.001

“Burning Plasma” Diagnostics for the Physics of JET and ITER.

A.Murari1, L.Bertalot2, S.Conroy3, G.Ericsson3, K.Lawson, V.Kiptily4, S.Popovichev4, K- D.Zastrow et al and JET-EFDA Contributors

1 Consorzio RFX Assoc. EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4, I-35127 Padova, Italy 2 Associazione EURATOM-ENEA sulla Fusione ENEA Frascati, Roma, Italy 3 Department of Neutron Research , Uppsala University, Euratom-VR Association, Uppsala, Sweden 4 Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon, OX14 3DB,UK

The international fusion program is progressively more focused on producing plasmas of reactor relevance, requiring major progress in “burning plasma” diagnostics i.e. neutron, alpha particle, He ash, Tritium retention and Isotopic Composition measurements. In the last years it has emerged very clearly at JET that these diagnostics also provide crucial information about critical physical phenomena. First of all, several burning plasma measurements can improve significantly the diagnostic capability of the ion fluid. Neutron spectroscopy provides clear and direct measurements of, e.g., plasma rotation and fuel ion supra-thermal components, beside the ion temperature. During the JET Trace Tritium Experimental (TTE) campaign, spatially resolved neutron measurements were essential in obtaining the isotopic composition, the transport of the hydrogen isotopes and in assessing the merits of various heating schemes and their current drive capability. Burning plasma diagnostics can also strongly contribute to the physics of energetic particles and their interaction with the main plasma. Gamma ray spectroscopy is now an established method to determine the spatial localisation and to visualise the trajectories of α particles and fast deuterons. During TTE the slowing down of fusion born alphas was measured for the first time with this approach in various plasma configurations and the effect of the q profile on the energetic particle confinement was studied in detail. Completely new measuring techniques are also being developed at JET to determine the distribution function of the energetic particles, using high Z impurities, and to detect the He ash. These new approaches require new research in atomic physics, to derive the necessary cross sections. Significant efforts are also devoted to the refinement of the fuel composition and tritium retention measurements. JET “burning plasma” diagnostics can therefore provide essential data for the study of reactor relevant issues and for the design of such measurements in ITER. They can also promote interesting new research in other related fields, from atomic physics to detector technology, and are likely to create interesting spin-off.

86 I5.002 �

Particle acceleration : the laser plasma approach

V. Malka, J. Faure, Y. Glinec

Laboratoire dʼOptique Appliquée – ENSTA, CNRS UMR 7639, Ecole Polytechnique,

Chemin de la Humiére, 91761 Palaiseau, France

With the achievement of the chirped pulse amplification technique, laser intensities have been increased by several orders of magnitude, permitting now to reach the relativistic regime (e.g. electrons oscillate in the laser field with relativistic velocities). The interaction of such powerful lasers with underdense plasmas has allowed studies of various new phenomena. In particular, extremely high electric fields, several orders of magnitude greater than those obtained in conventional accelerators, have been measured. These high fields are able to trap plasma background electrons and accelerate them to relativistic energies. As a consequence, relativistic electron beams are now routinely being produced using lasers in the laboratory. A review of the processes involved as well as the evolution of compact laser plasma accelerators will be presented. Some already identified applications of these new particle beams with unique parameters will be also presented.

[email protected]

87 I5.003

The effect of non-inductive current drive on tokamak transport P. Helander and R. J. Akers Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, U.K.

The toroidal electric field used to drive Ohmic current in tokamaks is associated with inward particle transport through the well known Ware pinch. This talk discusses the less well known circumstance that non-inductive current drive also produces neoclassical particle and heat pinches. They can be either inward or outward and can affect plasma behaviour significantly.

The first application concerns transport in neutral-beam heated plasmas. The beam-driven current is accompanied by a radial particle flux that is outward if the beam is in the same direction as the plasma current and inward otherwise, while the opposite holds for the heat flux. Other interesting effects associated with counter-current neutral beams will also be discussed.

These predictions correlate nicely with a large body of experimental data. Over the years, several tokamaks, including ISX-B, JFT-2M, ASDEX and MAST, have reported dramatically different plasma behaviour depending on whether beams are injected parallel or anti-parallel to the plasma current. On MAST, this difference is even greater than that between L-mode and H-mode. The density profile is more peaked in discharges with counter-current beam injection than with co-current injection, while the reverse holds for the temperature profile. On the other hand, no such obvious effects are observed on JET. Both types of behaviour are consistent with the theory since the beam-driven transport, like all neoclassical transport, becomes very small in hot plasmas. Extrapolating results from small experiments to larger ones should thus be done with caution.

The second application concerns plasmas with wave-driven currents. It is shown that both lower-hybrid current drive (LHCD) and electron-cyclotron current drive (ECCD) give rise to convective transport of particles and energy. This transport depends on the direction of the driven current and is reversed during counter-current drive. There is currently great interest in particle pinches associated with plasma turbulence (whose existence could be of great benefit to ITER), and the transport caused by current drive will be discussed against this background. It may be necessary to account for RF-driven transport when interpreting experiments aimed at detecting the turbulence-driven pinch. Unlike the latter, however, the transport from current drive vanishes in the limit of low collisionality, and therefore becomes very small when only highly energetic electrons interact with the waves.

This work was funded by EURATOM and the UK Engineering and Physical Sciences Research Council.

88 I5.004

����������������������������������������������������� Presented by A. A. Tuccillo Associazione EURATOM-ENEA, CR ENEA-Frascati, C.P. 65, 00044 Frascati, Rome, Italy

Since the early ‘80s, Lower Hybrid (LH) waves have driven plasma current non-inductively in tokamak experiments with efficiency far higher than other auxiliary systems, especially at low plasma temperature. The latter aspect makes LH the natural candidate for off axis current drive (CD) in ITER where current profile control will be required to maintain burning performance on a long time scale. The difficulties in coupling LH waves in high performance H-mode plasmas led in the ‘90s to the decision, by the ITER JCT, of not supporting directly the development of a LH system, with subsequent exclusion of LH from ITER initial H&CD systems. Nevertheless, the LH activity continued in all areas: theory, experiments, modelling and R&D. Recently, in JET, the problem of coupling LH waves in severe edge conditions (ELMy plasmas and very low SOL densities) has been solved by localised gas injection. LH has then boosted the research on advanced scenarios allowing a variety of current profiles, from peaked to deeply hollow, to be used in generating Internal Transport Barriers (ITBs). In JET, long ITBs (~11s) have been sustained for times close to the resistive time scale in full CD conditions, additionally pulses lasting minutes, relying on LHCD, are routinely obtained in Tore Supra. Advanced scenarios have also been obtained in conditions of dominant electron heating (FTU, Tore Supra) and efficient CD has been demonstrated at ITER relevant densities on FTU. In these experiments, an improvement of the Electron Cyclotron (EC) CD efficiency (up to 4�) due to synergy with LH is also observed both in normal operation and with EC resonating at a down shifted frequency. Modelling all these experiments has been a good test bench for LH codes and has increased the confidence in their use to predict future experiments. The use of LH as an actuator for Real Time Control of the plasma current profile has become a powerful tool to optimise ITB dynamics in JET and JT-60U. An LH system for ITER has been designed based on a new concept of launcher, the PAM, consisting of Passive waveguides inserted between every other Active one of a Multijunction. A first successful test of the PAM has been conducted on FTU, one is in preparation on Tore Supra and a possible test on an ITER relevant plasma scenario in JET has also been envisaged. A new carbon mouth is undergoing tests on JT-60U launcher and a new LH system has recently been installed on Alcator C-Mod. Finally a 500kW-CW klystron at 5GHz, the frequency foreseen for ITER, is under development for the LH system of KSTAR in Korea.

89 I5.006

��������������������������������������������������������������������� V. Pericoli Ridolfini, FTU team, 1ECRH team ������������������������������������������������������������������������������������ �����������������������������������������������������������������������������

One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0·1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range

20 -3 (ne0�1.5·10 m ) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron

2 diffusivity inside the ITB to very low values, �e<0.5 m /s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually

- + �Ti0/Ti0 does not exceed 40%, because the e -i equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account

for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is affected mostly by the total current, while its strength by varying the amount of the ECH power delivered inside the ITB. The density profile remains enough peaked despite the inward particle Ware pinch is negligible, while no evidence of impurity accumulation is observed.

90 I5.007

��������������������������������������������������������������������� V. Pericoli Ridolfini, FTU team, 1ECRH team ������������������������������������������������������������������������������������ �������������������������������������������������� ����������������������������������������������������������������������������� ����������������������������������������������������������������������������������� ����������������������������������������������� One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport CRPP – EPFL barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more EPFL - Lausanne , Switzerland stringent requests are: the ITB must be sustained with electron heating only with no or very small Association EURATOM – Confédération Suisse external momentum source, the strong collisional coupling at the envisaged density (line average >1.0·1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large ��� ��������� ������������ �� ���� �� �������� �������� ���� ���� ���������� ���� ������ induced gradients must have a radial profile consistent with that requested by the barrier creation � ����� ���������� ���������� �� � ��� ����� �������� ������� ���� ���� �� ���� ���� �� and sustainment. To all these items the studies carried out in FTU in the same density range �������� ������ ���� �� ���� �������� ���� ������� ��� �� ������ ������ � �������

20 -3 (ne0�1.5·10 m ) provide encouraging prospects. With pure electron heating and current drive ��������� ���� � ��������� ������ �� ������ ������� ������� ����� ��� �������� ��������� ��� - (LH+ECH) steady electron barrier are generated and maintained with central e temperature >5.0 ���� ��������� ��� ��������� ������ ������� ������ ��� ������� ���� ��������� �� ����� keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total ��������� �� ���������� ���� ��� ���������� �� � ����� ������� �� ��� ���������� ����� �� �� and well aligned with that driven by the LH waves and responsible for the barrier building. The ����� �������� ���� ��� ������� �� � ������� �� � ��� ����� ��������� ����� ����� ��� clear change in the density fluctuations close to the ITB radius, observed by reflectometry, ��������� �� ��������������� ������ ������� ����� ��� ��������� �������� ����� ��� ������� indicates stabilization of turbulence that is consistent with the drop of the thermal electron �� ��� ������� ����������� �� ���� ��������� ����� ���� ��� ��� ���������� ��������� ��� ���

2 diffusivity inside the ITB to very low values, �e<0.5 m /s estimated by the transport analysis. The ����� ��� ������� ������� �������������� ������ ������� ���� �� ��� ����� ������ �� ��� 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ���������� ����� ��� ������� �� ������� ��� ����������� ���� ��� �� ���� �� � ������� ��� ����

- + �Ti0/Ti0 does not exceed 40%, because the e -i equipartition time, always 4-5 times longer than ������� ������ ���� ���������� ������������ ����� ������ ��� ���� ����������� ��� �� the energy confinement time, does not allow thermal equilibrium with electrons to be attained. �������� ���������� �� �������� ������ ��� ������� �� ���������� ���� �������� ���������� The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account ��������� ������� �� ������� ��� ������� ������� ������� ��������� ����������� ��������� �� � �������� �������� �������� ����� �� ���� ��� ���� ��� ��������� �������� ��� ������ ���� for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be ����� ����� ����������� ������� � ������ ����� �� ���� ��������� ��� ����������� controlled by varying the LH power deposition profile that is affected mostly by the total current, ������������������������������������������������������������������������������������ while its strength by varying the amount of the ECH power delivered inside the ITB. The density profile remains enough peaked despite the inward particle Ware pinch is negligible, while no ����������� ���������������������������������������������������������������������������������������������� evidence of impurity accumulation is observed. �������������������������������������������������������� ����������et al������������������������������������������������������������������������������ ����������������������������������������������������������������� ���������������et al��������������������������������������������������������������� ������������������������������������������������������������������������

91 I5.008

Overview of ignition conditions and gain curves for the fast ignitor

S. Atzeni1, M. Tabak2

1 Dipartimento di Energetica, Universitá di Roma "La Sapienza" and INFM, Roma, Italy 2 Lawrence Livermore National Laboratory, Livermore, CA, U.S.A. In the fast ignitor, an ultraintense driver creates the ignition hot spot in a fuel precom- pressed to high density by a conventional implosion. The fast ignitor requires lower den- sity than the standard ICF central ignition scheme; as a consequence, it can achieve higher gain at given driver energy, and requires lower driver energy for a given gain. Also, it re- quires smaller implosion velocity and hence smaller in-fligh-aspect ratio, which increases robustness to instabilities. Symmetry requirements are also relaxed, since no central hot spot is needed. On the other hand, the crucial issue for fast ignitor is the availaiblity of an ultraintense driver, and its efficient coupling to the precompressed fuel. Accurate evaluation of fast ignitor performance demands accurate integrated simulations of the im- plosion, heating and burn stages, which are not yet feasible. However, one can extract interesting indications from analytic gain models, which include simple descriptions of both the compression and the ignition stage. Unresolved issues, such as the efficiency of the coupling of ignition driver energy to the fuel, and focussabilty of the igniting beam, can be accounted for by introducing suitable parametrizations. In this talk, we first review the ignition conditions for fast ignition driven by fast par- ticles (electrons or protons), and extend [1] a previous criterion [2] to non-optimal con- ditions. We also discuss schemes that have been suggested to reduce ignition energy. Furthermore, we briefly address ignition by macro-particle impact. We then describe a gain model [1, 3] that includes the above ignition condition as well as models of the compression stage. We consider various compression and ignition drivers. We discuss the dependence of the gain curves on the coupling efficiency from ignition driver to fuel, al- lowed in-flight-aspect-ratio, compressed fuel density, ignition spot radius, and fraction of the total driver energy devoted to the ignition driver.

References [1] M. Tabak, S. Atzeni, E. Campbell, K. Tanaka, Fusion Science and Technology, in press. [2] S. Atzeni, Phys. Plasmas 6, 3336 (1999) [3] M. Tabak and D. Callahan, Nucl. Instr. Methods A, in press.

92 I5.009

      

               

93 I5.010

Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

J. A. Delettrez, J. Myatt, P.B. Radha, C. Stoeckl, S. Skupsky, D. D. Meyerhofer

Laboratory for Laser Energetics, University of Rochester 250 East River Road, Rochester, NY 14623-1299, U.S.A.

Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to ~1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core.

This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

1. C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004)

94 I5.011

Basic Physics Issues in Fast Ignition

J. R. Davies, J. T. Mendon¸ca

February 15, 2005

Some basic issues for fast ignition using a laser generated electron beam are considered. Lasers are known to generate electrons with a broad energy distribution, so collisional energy deposition by a beam containing electrons with a range of energies is considered using a simple analytic model, which allows the ideal mean energy to be estimated and puts an upper limit on the efficiency of a given energy distribution. The electron current required for ignition clearly greatly exceeds the Alfv´en limit, so can only propagate if a high degree of current neutralization is provided. Some simple models of current neutralization are considered, and it is shown that the required degree of current neutralization cannot be achieved. Possible solutions to this problem are considered, including spherical illumination and the use of a higher mean energy. An alternative scheme in which energy deposition in the core is achieved by driving instabilities is considered. The laser param- eters required to generate the ignition beam are also estimated, based on experimental results.

1

95 I5.012

      

      

           

                                                                                                                

                                                                                                                               

96 I5.013

           

                       

      

          

       

         

     

      

                                                                                                                       

                                                                                                                                                  

97 I5.014

����������������������������������������������� �������������������������

������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������� �������������������������������������������������������

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Dept. of Applied Sciences, University of California Davis, Davis, CA 95616, USA 3 Dept. of Physics, Ohio State University, OH 43210, USA 4 Laboratory of Laser Energetics, University of Rochester, Rochester, NY 14623, USA 5 AWE, Aldermaston, Reading, RG7 4PR, UK 6 Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK 7 General Atomics, P.O. Box 85608, San Diego, CA 92186, USA 8 University of California San Diego, San Diego, CA 92186, USA 9 Dept. of Physics, Queen’s University of Belfast, Belfast, BT7 1NN, UK

�� ������ �� ��� ������ ������������ ��������� ��������� �� ��� ��� �������� ����� �� ��� ���������� �������� ���������� �� ��� ��� ��� ����� ��� �������� ������������ ����������� ��������������� �� ��� � �� ����� ������ ����� ��������� �� ������ �� � ��� ��� �� ������ �������� � ���� ����� ��������� �� ��� ����� �� ���� ������ ��� ����������� ������� �������� ����� �� ������������� ��������� ��� �������� ��������� �� ������ ���� ��� ���� ����� ����������� ������������ ����������� ������������� ������ ���� �������� ��� �������� ��� ���� ������ ������� ���������� ��� ������������ � �������� ����� �������� ��� ����� �� ��� ����������� �� ���� ��� �� ��� ����������� �������� ��� ��� ��������� ����� �� ����� ���� ������� �������������� ��� �������� �� ��� ������ ����� �� ���� ���� �� ������ ��������� ���� �� ������������ �� � ����������� ����� ����� �������� ����������� ������� �� ��� �������������������������������������������������������������������������������

98 I5.015

Laser Accelerated Ions in ICF Research Prospects and Experiments 1 2 2 3 4 5 6 M. Roth , E. Brambrink , P. Audebert , A. Blazevic , R. Clarke , J. Cobble , T. E. Cowan , 5 2 5 7 8 4 9 J. Fernandez , J. Fuchs , M. Hegelich , K. Ledingham , B.G. Logan , D. Neely , H. Ruhl

1 University of Technology Darmstadt, Darmstadt, Germany 2 Laboratoire pour l’Utilisation des Lasers Intenses, Palaiseau, France 3 Gesellschaft für Schwerionenforschung, Darmstadt, Germany 4 Rutherford Appleton Laboratory, Chilton, Great Britain 5 Los Alamos National Laboratory, Los, Alamos, USA 6 University of Nevada, Reno, USA 7 University of Strathclyde, Glasgow, Great, Britain 8Lawrence Berkeley National Laboratory, Berkeley, USA 9 Ruhr- Universität Bochum, Germany

The acceleration of ions by ultra-intense lasers has attracted great attention due to the unique properties and the unmatched intensities of the ions beams. Already in the early days the prospects for applications were studied and first experiments have identified some of the areas where laser accelerated ions can contribute to the ongoing ICF research. In addition to the idea of laser driven proton fast ignition and the use as a novel diagnostic tool for radiography the strong dependence on the electron transport in the target can help investigating the energy transport by electrons in fast ignitor scenarios. More recently an additional idea has been presented to use laser accelerated ion beams as the next generation ion sources and taking advantage of the luminosity of the beams to develop a test bed for heavy ion beam driven inertial confinement fusion physics. We will summarize some of the experimental results with respect to ICF research and present some new ideas for fusion related experiments using laser driven ions.

99 I5.016

Bulk acceleration of ions in intense laser interaction with foams

J. Zhang,1 Y.T. Li1, Z.L. Chen2, R. Kodama2, Z.M. Sheng1, Y.Y. Ma1, Z. Jin1, T. Matsuoka2, M. Tampo2, K.A. Tanaka2, T. Tsutsumi2, T. Yabuuchi2

1 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China 2 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Enhancement of neutron generation using low-density deuterated foam targets irradiated by ultraintense laser pulses has been observed. This is found to be closely correlated with the suppressed hot electron transport inside the targets. Particle-in-cell simulations suggest that localized electrostatic fields with multi-peaks around the surfaces of lamellar layers inside the tagets are induced. These fields inhibit hot electron transport and meanwhile accelerate ions inside the target, forming bulk acceleration in contrast to the surface acceleration at the rear side of a thin solid target. Simulations demonstrate that a large number of deuteron ions can be accelerated to MeV levels through the bulk acceleration. This results in an enhanced neutron yield with the foam targets.

Contribution ID: 1000071

100 ���������������������� �������������� ����������������� ���������������������������������� ��������������������������

List of Contributions

101 �������������

I1.001 J. Sánchez Keeping the options open: concept improvements and stellarator physics I1.002 J.G. Kirk Relativistic plasmas in pulsar winds I1.003 M.K. Matzen Overview of recent ICF and HEDP related experiments on the Z- machine I1.004 O. Gruber ITER operation beyond its baseline scenarios I1.005 Y. Sakamoto Enhanced performance and control issues in JT-60U long pulse discharges I1.006 G. Giruzzi Advances in the physics of steady-state plasmas by long pulse experiments on Tore Supra I1.007 D.A. Callahan Advances in target design for heavy-ion fusion I1.008 S.H. Glenzer The first experiments on the National Ignition Facility I1.009 K. Rohlena Characteristics and applications of ion streams produced by long- pulse lasers

I2.001 R.A. Pitts Material erosion and migration in tokamaks I2.002 J.G. Eden Microcavity plasma devices and arrays fabricated in Semiconductor, Ceramic, or Metal/Polymer structures: A new realm of plasma physics and photonics applications I2.003 K. Mima Recent results and future prospects on fast ignition research: theory and experiment I2.004 L. Chen Nonlinear mode coupling: a new paradigm for drift wave turbulent spectra in toroidal plasmas I2.005 F. Imbeaux Multi-machine transport analysis of hybrid discharges from the ITPA Profile Database I2.006 C.M. Roach Micro-instability physics as illuminated by the ST I2.007 F. Jenko Heat and particle transport in tokamaks: advances in nonlinear gyrokinetic simulations I2.008 J.P. Boeuf Physics and applications of micro-discharges in dielectric barrier and hollow cathode configurations I2.009 R. Foest Non-thermal atmospheric discharges for surface modification I2.010 K. Tachibana and Interaction and control of mm-waves with microplasmas O. Sakai I2.011 F. Massines Glow dielectric barrier discharges in various atmospheres and particle formation I2.012 A. Usachev "The project ""Plasmakristall - 4"" PK-4 – a dusty plasma experiment in a combined DC/RF I discharge plasma under microgravity conditions. First results and future plans." I2.013 O Petrov Dusty Plasma Liquid Structure and Transfer Phenomena I2.014 A.A. Samarian Dust as fine electrostatic probes for plasma diagnostic I2.015 J.A. Font General relativistic hydrodynamics and magnetohydrodynamics and their applications I2.016 P. Duffy Cosmic ray transport and acceleration I2.017 M.E. Koepke Interrelated laboratory and space plasma experiments I2.018 M. Koenig Progress in the study of warm dense matter I2.019 D. Riley X-ray scattering from warm dense matter with relevance to planetary interiors

102 I2.020 S.V. Lebedev Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets I2.021 S.J. Rose New experimental possibilities for measuring opacity under conditions in the Sun's interior

I3.001 C. Cavailler Inertial fusion with the LMJ I3.002 V. Antoni Shear flows generated by plasma turbulence and their influence on transport I3.003 K. Krushelnick Laser-plasma sources of ions - Physics and future applications I3.004 A. Kallenbach Tokamak operation with high-Z plasma facing components I3.005 M. Lehnen The Dynamic Ergodic Divertor I3.006 Y.-K.M. Peng A component test facility based on the spherical tokamak I3.007 B. Labombard Transport-driven scrape-off layer flows and the role of the X-point I3.008 L. Zajícková Synthesis of carbon nanotubes in atmospheric pressure microwave torch I3.009 A.F. Pal The experimental and theoretical study of the high-pressure dusty plasma created by a stationary e-beam I3.010 R. Kodama Plasma Photonic Devices for High Energy Density Science I3.011 K.L. Lancaster Electron energy transport studies in a recent PW laser experiment I3.012 A.J. Mackinnon Opportunities for integrated fast Ignition programs I3.013 J. Meyer-ter-Vehn Use of few-cycle PW-range laser pulses in fusion research I3.014 S.A. Slutz Fast Ignition Studies at Sandia National Laboratories I3.015 A. Pukhov Generation of particle beams and X-ray pulses in ultra-relativistic laser-plasma interactions I3.016 C. Ren A global simulation for laser driven MeV electrons in fast ignition I3.017 V.T. Tikhonchuk Ion acceleration in short-laser-pulse interaction with solid foils I3.018 J.T. Mendonca A coupled two-step plasma instability in PW laser plasma Interactions

I4.001 P. Drake Hydrodynamic instabilities in astrophysics and ICF I4.002 G. Huysmans ELMs: MHD instabilities at a transport barrier I4.003 H.W. Loeb Plasma-based ion beam sources I4.004 S.V. Konovalov Role of anomalous transport in onset and evolution of Neoclassical Tearing Modes I4.005 F. Castejón Influence of magnetic topology on transport and stability in stellarators I4.006 P.R. Brunsell Active control of multiple resistive wall modes I4.007 J.P. Graves Sawtooth control in fusion plasmas I4.008 H. Neumann Broad beam ion sources and some surface processes I4.009 K. Becker Environmental and biological applications of microplasmas I4.010 J. Mizeraczyk Hazardous gas treatment by atmospheric discharges I4.011 H.-E. Wagner Investigations of DBDs by cross-correlation spectroscopy I4.012 T.S. Horbury MHD turbulence in the solar wind: evolution and anisotropy I4.013 S. Galtier Anisotropic wave turbulence in electron MHD I4.014 G. Zimbardo Anomalous particle diffusion and Lévy random walk of magnetic field lines in three dimensional solar wind turbulence I4.015 B. Ph. van Milligen The foundations of diffusion revisited I4.016 C. Stoeckl Fuel-assembly experiments with gas-filled cone-in-shell fast-ignitor targets on OMEGA

103 I4.017 M.H. Key Recent experimental progress in the study of electron and proton heating for fast ignition I4.018 S.D. Baton Review of experiments on electron transport in high-intensity laser matter interaction I4.019 S. Karsch High ion temperatures from buried layers irradiated with Vulcan Petawatt I4.020 R.A. Snavely Advanced Plasma Diagnostics in the Petawatt-Fast Ignition Regime

I5.001 A. Murari “Burning Plasma” Diagnostics for the Physics of JET and ITER I5.002 V. Malka Particle acceleration: the laser plasma approach I5.003 P. Helander The effect of non-inductive current drive on tokamak transport I5.004 A.A. Tuccillo Progress in LHCD: a tool for advanced regimes on ITER I5.006 V. Pericoli Ridolfini High density internal transport barriers for burning plasma operation I5.007 T.P. Goodman q-Profile requirements for electron ITB formation I5.008 S. Atzeni Overview of ignition conditions and gain curves for the fast ignitor I5.009 S.P. Hatchett Hydrodynamics of Conically-Guided Fast-Ignition Targets I5.010 J.A. Delettrez Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems I5.011 J.R. Davies Basic Physics Issues in Fast Ignition I5.012 M. Murakami Toward realization of hyper-velocities for Impact Ignition I5.013 H. Nishimura Study of Fast Electron Transport in Hot Dense Matter Using X-ray Spectroscopy I5.014 P.K. Patel Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser I5.015 M. Roth Laser Accelerated Ions in ICF Research - Prospects and Experiments I5.016 J. Zhang Bulk acceleration of ions in intense laser interaction with foams

104 ������������������

O1.001 P.A. Politzer The Role of the m/n 3/2 Tearing Mode in the Hybrid Scenario and Extension of the Hybrid Operating Regime O1.002 B. Kuteev Study of MHD events initiated by pellet injection into T-10 plasmas O1.003 H. KPark Self-organized temperature redistribution of m 1 mode sawtooth oscillation on TEXTOR O1.004 P. Buratti MHD Studies in JET Hybrid Plasmas with Electron Heating O1.005 J. Giorla Progress on indirect drive target design for the Laser Mégajoule Facility O1.006 W. Rozmus Theoretical description of high order harmonic propagation in overdense relativistic plasmas O1.007 Z.-M. Sheng Powerful terahertz emission from a laser wakefield in inhomogeneous underdense plasma through linear mode conversion O1.008 H. Kuroda Brilliant Highly Directive Higher Harmonics and Soft X-Ray Lasers from Solid Target Plasma Pumped by Tabletop Ti S Laser

O2.001 D.L. Brower Observation of Fast-Electron-Driven Alfvenic Modes in the HSX Stellarator O2.002 P. Maget First observation of electron fishbones associated to the double-kink mode in Tore Supra O2.003 M. Schneider Self-consistent Simulations of the Interaction between Fusion Alpha Particles and Lower Hybrid Waves in a Tokamak O2.004 V. Yavorskij Relaxation of Fusion Alpha Distributions in Tritium NBI Experiments O2.005 C. Konz Modelling of Power Fluxes during Thermal Quenches O2.006 K. Ida Transient transport analysis of improved confinement plasmas in LHD O2.007 M.E. Puiatti Analysis of metallic impurity density profiles in low collisionality JET H-mode plasmas O2.008 V. Parail Effect of Ripple-Induced Ion Thermal Transport on H-mode Performance O2.009 A.V. Ivlev Kinetics of particle ensembles with variable charges O2.010 S.V. Vladimirov Theory of dust and dust-void structures O2.011 A. Gavrikov Viscosity Properties of Dusty Plasma Liquid O2.012 S.A. Maiorov Modelling of Grain Kinetics in Dusty Plasmas O2.014 B. Coppi “Crystal” Magnetic Structure in Axisymmetric Plasma Accretion Disks O2.015 A.A. Schekochihin Plasma instabilities and magnetic-field growth in clusters of galaxies O2.016 A. Ciardi The Evolution of Magnetic Tower Jets in the Laboratory O2.017 P.-L. Sulem Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics O2.018 C. Tsironis Nonlinear and self-consistent treatment of ECRH O2.019 L. Gargaté Hybrid simulations of coronal mass ejection shock structures O2.020 R.G.L. Vann Modelling frequency splitting of TAEs in JET O2.021 T. Vinci Radiative Shocks New Experiments for Laboratory Astrophysics O2.022 J. Limpouch Laser Interactions with Foam-Foil Layered Targets O2.023 R. Ramis Implosion Symmetry of Laser-Irradiated Cylindrical Targets O2.024 J.M. Perlado High density plasmas formation in Inertial Confinement Fusion and Astrophysics O2.025 F. Pegoraro Nonlinear interaction of an ultraintense electromagnetic wave and the self-created electron-positron plasma O2.026 A.A. Andreev Generation and amplification of ultra-short light pulses in a strongly coupled regime of the stimulated Brillouin scattering in plasma O2.027 S. Depierreux Effect of imposed density modulations on the growth of stimulated Raman and Brillouin scattering instabilities O2.028 C. Labaune New results on saturation of stimulated Brillouin scattering

O3.001 R. Betti High Density and Areal Density Fuel Assembly for Fast Ignition Inertial Confinement Fusion O3.002 P.A. Norreys Observation of Ion Temperatures Exceeding Electron Temperatures in PetaWatt Laser-Solid Experiments O3.003 P. Antici Application of laser-accelerated high-energy protons for isochoric heating of matter

105 O3.004 L. Romagnani Charge dynamics and proton acceleration in ultrashort laser-solid interactions O3.005 J.J. Santos Direct Diagnostic of Multi-Temperature Fast Electrons Beams on UHI Laser-Solid Interactions by Optical Transition Radiation Diagnostics O3.006 R.R. Freeman Experiment vs Theory on Electric Inhibition of Fast Electron Penetration of Targets

O4.001 A. Kirk A comparison of the spatial structure of ELMs at the mid-plane in ASDEX Upgrade and MAST O4.002 P.B. Snyder Nonlinear Dynamics and Energy Loss Mechanisms in ELMs O4.003 P.T. Lang ELM mitigation by externally induced ELMs - Physics and Prospects O4.004 J. Horacek Plasma density turbulence in TCV tokamak edge direct comparison of experiment with 2D simulation O4.005 J. Bucalossi Particle control in high power, high density long pulse operation on Tore Supra O4.006 A.M. Garofalo Sustained High Beta Plasmas With Flat q-Profile in DIII-D O4.007 J.E. Menard Physics of integrated high-performance NSTX plasmas O4.009 S.A. Khrapak Trampoline effect and the force field inside the void in complex plasma under microgravity conditions O4.010 A.A. Samarian Dust interactions in a flowing plasma O4.011 A.V. Chernyshev Experimental Study of Strongly Coupled Dusty Plasmas on Kinetic Level O4.012 V. Yaroshenko Coupled dust lattice modes in dust-plasma crystals O4.013 S. Ratynskaia Non-locality and memory effects in grain dynamics on a 2D dust plasma quasi-crystal O4.014 I.A. Shakhova Heat Transfer in Dusty Plasma O4.015 D. Samsonov Wave phenomena in complex dusty plasmas with low damping O4.016 B. Klumov Crystallization waves in complex plasma numerical simulations O4.017 T.A. Carter Suppression of turbulent particle flux during biased rotation in a laboratory plasma O4.018 D. del-Castillo- Fractional diffusion models of transport in magnetically confined Negrete plasmas O4.019 B.D. Dudson Statistical analysis of plasma edge fluctuations on MAST and comparison with BOUT simulations O4.020 F. Spineanu Statistical properties of a turbulent plasma of vortices interacting with random waves O4.021 V.T. Tikhonchuk Plasma cavitation and standing solitons due to stimulated Brillouin pulsations O4.022 A. Das Sausage and Kink EMHD Instabilities and Fast Electron transport O4.023 F. Califano Three dimensional structure of the magnetic field generated by counter-streaming relativistic electron beams O4.024 N.F. Loureiro Nonlinear Explosive Evolution of the Tearing Mode O4.026 J. Myatt Hybrid-implicit PIC calculations of laser-generated MeV electrons in copper targets O4.025 R.P.J. Town LSP Calculations of Cone-Wire Experiments O4.027 A.P.L. Robinson Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration O4.028 M. Sherlock Absorption of ultrashort laser pulses and particle transport in dense targets O4.029 J. Honrubia Resistive filamentation of laser-driven fast electron beams O4.030 S.I. Intense electron beam propagation through insulators ionization Krasheninnikov front corrugation instability O4.031 P. Mora Thin foil expansion into a vacuum O4.032 S. Betti Expansion of a finite size plasma in vacuum O4.033 D. Patin Stochastic heating in ultra high intensity laser-plasma interaction theory and pic code simulations O4.034 C.K. Li Stopping, Straggling, and Blooming of Directed Energetic Electrons in Hydrogenic Plasmas O4.035 A. Bret Characterization of the initial filamentation of a relativistic electron beam passing through a plasma O4.036 L. Robson High Intensity Laser Driven Photo-Proton Reactions

O5.001 I.V. Moskalenko Laser Spectroscopy Measurements Methods of Divertor

106 O5.002 N. Lemoine Lévy distributions in plasma diffusion across a magnetic field experimental evidence O5.003 O. Grulke Turbulence Imaging of Spatiotemporal Fluctuation Structures in the Scrape-Off Layer of Alcator C-Mod O5.004 V. Naulin Turbulent Transport of Plasma Edge Impurities

107 ��������������������

P1.001 P. Träskelin Molecular dynamics simulation of erosion of tungsten carbide by deuterium bombardment P1.002 B.N. Bazylev Erosion of dome armour after multiple disruptions and ELMs in ITER P1.003 I.S. Landman Contamination and radiation losses in post-ELM tokamak plasma P1.004 T. Lunt Experimental Investigation on the Plasma-Wall Transition P1.005 T. Lunt Ion temperature measurements by means of a combined force - Mach - Langmuir probe P1.006 A. Herrmann Filamentary heat deposition to the first wall in ASDEX Upgrade P1.007 B. Kurzan Fine Structure of Type-I Edge Localized Modes in the Steep Gradient Region in ASDEX Upgrade P1.008 D.P. Coster Edge simulations of an ASDEX Upgrade Ohmic shot P1.009 H.W. Mueller Plasma flow in the scrape-off layer of ASDEX Upgrade P1.010 R. Dux Tungsten Erosion at Auxiliary Limiters in ASDEX Upgrade P1.011 V. Rohde Carbon migration at the divertor of ASDEX Upgrade P1.012 Y. Feng Role of recycling in W7-AS divertor plasmas P1.013 A. Kirschner Modelling of tritium retention and target lifetime of the ITER divertor P1.014 A. Kreter Investigation of carbon transport by 13CH4 injection through graphite and tungsten test limiters in TEXTOR P1.015 A. Litnovsky Carbon deposition and fuel accumulation in castellated limiters exposed in the SOL of TEXTOR P1.016 C. Busch Impact of the DED on ion transport and poloidal rotation in TEXTOR P1.017 D. Borodin Modelling of hydrocarbon transport and emission after methane injection into the TEXTOR boundary plasma using the ERO code P1.018 G. Sergienko High temperature erosion of tungsten exposed to the TEXTOR edge plasma P1.019 G. Sergienko Tungsten melting under high power load in the TEXTOR edge plasma P1.020 G. Telesca Screening and radiation efficiency of carbon with Dynamic Ergodic Divertor on TEXTOR P1.021 M.W. Jakubowski On the influence of the magnetic resonances on the heat flux structure of the Dynamic Ergodic Divertor P1.022 O. Schmitz Impact of the Dynamic Ergodic Divertor on the Structure of the Plasma Edge at TEXTOR P1.023 S.S. Abdullaev Structure of stochastic field lines near the separatrix in poloidal divertor tokamaks P1.024 V. Philipps Removal of carbon layers by oxygen treatment of TEXTOR P1.025 A.S. Kukushkin Improved modelling of neutrals and consequences for the divertor performance in ITER P1.026 O.V. Simulation of brittle destruction of different types of graphite using Ogorodnikova PEGASUS-3D code P1.027 O.V. Parametric investigation of temperature and stress evolution in Ogorodnikova actively cooled plasma-facing components during high heat fluxes P1.028 M.K. Salem The Influence of Resonant Helical Field on The Zeff in IR-T1 Tokamak P1.029 M. Kuldkepp Oxygen impurity profile studies in the EXTRAP T2R reversed field pinch P1.030 J.J. Rasmussen Turbulent Transport and Mixing of Impurities in the Plasma Edge P1.031 M. Priego Clustering and pinch of impurities in plasma edge turbulence P1.032 F.G. Rimini High Power ICRH scenarios in Tore-Supra a potential route towards improved core confinement at high density P1.033 D. Elbèze Scaling of confinement in the ITPA L-mode database with dimensionless variables P1.034 F. Imbeaux Giant Oscillations of Electron Temperature during zero loop voltage discharges on Tore Supra P1.035 J-F. Artaud Predictive integrated modelling for ITER scenario P1.036 P. Devynck The origin of the long time correlations of the density fluctuations in the Scrape off Layer of the Tore Supra Tokamak P1.037 V.S. Udintsev Electron Temperature Fluctuation Studies in Different Confinement Regimes by Means of Correlation ECE on Tore Supra P1.038 G. Fuhr Zero Dimensional Model for Transport Barrier Oscillations in Tokamak Edge Plasmas P1.039 R. Jha Study of nonlinear phenomena in a tokamak plasma using a novel Hilbert transform technique

108 P1.040 J. Chutia Long range time correlations in the electrostatic fluctuations of a low temperature dc magnetised plasma P1.041 M. Aizawa Transport Properties of Low Aspect Ratio L 1 Helical Systems P1.042 H. Takenaga Transient electron heat transport and reduced density fluctuation after pellet injection in JT-60U reversed shear plasmas P1.043 M. Kikuchi Measurement of local electrical conductivity and thermodynamical coefficients in JT-60U P1.044 Y. Idomura Comparisons of gyrokinetic PIC and CIP codes P1.045 N. Ohno Intermittent Fluctuation Property of JT-60U Edge Plasmas P1.046 Y. Yagi First results of the Gas Puffing Imaging Diagnostics in a reversed- field pinch plasma P1.047 J. Miyazawa Weak temperature dependence of the thermal diffusivity in high- collisionality regimes in LHD P1.048 M. ElMouden 3D Simulation of the Magnetic Shear contribution on the Improvement of the Confinement in Plasma of Tokamak P1.049 A. Scarabosio Momentum transport and plasma rotation spin up in TCV P1.050 Ch. Schlatter Simulation of the Absolute TCV Compact Neutral Particle Analyser Charge-Exchange Spectrum P1.051 E. Fable Density behavior during eITBs in TCV discharges experimental observations and theoretical calculations via transport simulations P1.052 Y. Camenen Electron heat transport dependence on plasma shape and collisionality in EC heated L-mode TCV plasmas P1.053 R.O. Dendy Analysis of dissipation in MHD turbulence simulations in two and three dimensions P1.054 S. Saarelma Numerical Plasma Edge MHD Stability Analysis Revisited P1.055 S.S. Kim Effects of radio frequency waves on dissipative low frequency instabilities in mirror plasmas P1.056 R. Jiménez-Gómez Studies of MHD instabilities in TJ-II plasmas P1.057 T.S. Pedersen First results from the Columbia Non-neutral Torus P1.058 X. Sarasola Field Line Mapping Results in the CNT Stellarator P1.059 J.F. Lyon Recent developments in quasi-poloidal stellarator physics P1.060 B. Stratton Fast soft x-ray camera observation of fast and slow reconnection events on NSTX P1.061 E.D. Fredrickson Scaling of kinetic instability induced fast ion losses in NSTX P1.062 M.C. Zarnstorff Equilibrium of High-Beta Plasmas in W7-AS P1.063 N.N. Gorelenkov Resonant kinetic ballooning modes in burning plasma P1.064 R. Raman Transient CHI Solenoid-free Plasma Startup in NSTX P1.065 Q. Yang Investigations of disruption on the HL-2A tokamak P1.066 H. Jhang A Toroidal Shell Model for Active Stabilization of Resistive Wall Modes and Its Application to KSTAR Plasmas P1.067 Y.M. Jeon Design of Optimal Plasma Position and Shape Controller for KSTAR P1.068 E.J. Strait Feedback Stabilization of Resistive Wall Modes in DIII-D P1.069 J.R. Ferron Control of DIII-D Advanced Tokamak Discharges P1.070 T.A. Casper Operational Enhancements in DIII-D Quiescent H-Mode Plasmas P1.071 R. Raman Fueling Requirements for Advanced Tokamak operation P1.072 B.E. Chapman Initial exploration of the density limit in the MST RFP P1.073 R. Cavazzana Optical Investigation of Edge Turbulence on RFX-mod P1.074 E. Gazza Fast optical spectrometer for the charge exchange diagnostic on RFX-mod P1.075 C. Mazzotta Study of Plasma density profiles evolution using the new scanning interferometer for FTU P1.076 G. DeTemmerman Mirror Test for ITER Optical Characterisation of Metal Mirrors in Divertor Tokamaks P1.077 E. Gauthier Design of a wide-angle infrared thermography diagnostic for JET P1.078 L. Bertalot Neutron energy measurements of Trace Tritium plasmas with NE213 compact spectrometer at JET P1.079 A. Hjalmarsson Development of new neutron emission spectrometry diagnostics for fusion experiments at JET P1.080 M. Gatu-Johnson Diagnosis of high-energy fuel ions on ITER with neutron emission spectroscopy NES Monte Carlo calculations based on NES measurements on JET DT plasmas P1.081 M. Tardocchi MPR neutron emission spectroscopy of fast tritons from T D ion cyclotron heating in JET plasmas

109 P1.082 V. Stancalie New method to calculate the Gaunt factor for the refinement of Zeff evaluation in fusion plasmas P1.083 G. Bonheure First study of 2-D spatial distribution of D-D and D-T neutron emission in JET Elmy H-mode plasmas with Tritium puff P1.084 M.E. Notkin Absorption experiments on the CASTOR tokamak P1.085 A.A. Lizunov MSE-diagnostic for multi-chord measurents of plasma beta in GDT P1.086 P.A. Bagryansky Dispersion Interferometer based on CO2 - laser P1.087 E.Z. Gusakov Investigation of the Upper Hybrid Resonance Cross-Polarization Scattering Effect at the FT-2 Tokamak P1.088 A. Popov Spatial Resolution of Poloidal Correlation Reflectometry P1.089 I.I. Orlovskiy Hilbert Spectrum Analysis of Mirnov Signals P1.090 K.Yu. Vukolov Mitigation of hydrocarbon film deposition on in-vessel mirrors P1.091 Yu.V. Gott A Vacuum Photoemission Detector for X-ray Tomography P1.092 D.P. Kostomarov Calculation of Plasma Boundary Using Video Images P1.093 V.Yu. Sergeev FAST ELECTRON STUDIES IN T-10 PLASMAS BY MEANS OF CARBON PELLET INJECTION P1.094 G. Study of the ICRH antenna coupling at TEXTOR VanWassenhove P1.095 S. Nowak Electron Cyclotron Current Drive experiments in the FTU tokamak P1.096 E. Barbato Interpretation od LHCD efficiency scaling with the electron temperature P1.097 E. Giovannozzi Plasmoid drift during vertical pellet injection in FTU discharges P1.098 G. Granucci Quantification of suprathermal current drive on FTU P1.099 A.V. Voronin Injection of intense plasma jet in the spherical tokamak Globus-M P1.100 I. Jenkins Off-Axis NBI fast ion dynamics in Trace Tritium Experiment P1.101 N.V. Sakharov Behavior of Ions in Auxiliary Heating Experiments in Globus-M Spherical Tokamak P1.102 V.A. Kornev First experiments on NBI in the TUMAN-3M tokamak P1.103 V.B. Minaev Study of the Beam - Plasma Interaction in the Globus-M Spherical Tokamak P1.104 L.N. Khimchenko Radiative power piculiarities during impurity pellet injection into T-10 plasmas P1.105 V.G. Kapralov Recent results of hydrogen pellet injection P1.106 N.B. Rodionov ICRF Heating together with neutral beams in Volume Neutron Sources JUST-T P1.107 T. Bolzonella Overview of global MHD behaviour in the modified RFX Reversed Field Pinch P1.108 G. Cenacchi The scientific program of the Ignitor experiment P1.109 W. Kernbichler Simple criteria for optimization of trapped particle confinement in stellarators P1.110 W. Kernbichler Neoclassical transport for LHD in the 1/ nu regime analyzed by the NEO code P1.111 W. Kernbichler Calculation of neoclassical transport in stellarators with finite collisionality using integration along magnetic field lines P1.112 K. Schoepf Fast Ion Confinement in Tokamak Current Hole Regimes P1.113 A. Nicolai Modelling of Plasma Rotation under the Influence of Helical Perturbations in TEXTOR P1.114 Y. Kikuchi Modelling of the penetration process of externally applied magnetic perturbation of the DED on TEXTOR P1.115 R. Preuss Stellarator scaling considering uncertainties in machine parameters P1.116 D. Sharma Role of stochasticity in W7-X edge transport P1.117 R. Coelho Effect of Alfvén resonances on the penetration of error fields on a rotating viscous plasma P1.118 J.-E. Dahlin Advanced Reversed Field-Pinch Confinement Scaling Laws P1.119 Y.Q. Liu A Uniform Framework to Study Resistive Wall Modes P1.120 A.K. Wang An improved fluid description on toroidal ITG modes P1.121 J. Urban Methodology of electron Bernstein wave emission simulations P1.122 S. Sinman A Novel ST Configurative Events with Controllable and Reproducible Alternative Self-organization Process P1.123 B. Labit Drift waves in the TORPEX toroidal plasma device P1.124 M. Podesta Experimental studies of plasma production and transport mechanisms in the toroidal device TORPEX P1.125 T. Hiraishi Formation of Very Deep Potential Well with Electrode Biasing in a Toroidal Device

110 P1.126 A. Stark Ion dynamics in a collisionless magnetic reconnection experiment P1.127 F.M. Aghamir Eigen Modes of a Dielectric Loaded Coaxial Plasma Waveguide P1.128 A.R. Babazadeh Study of Gas Admixture Influences On The Pinch Dynamics In A 90 kJ Filippov Type Plasma Focus P1.129 V.A. Rantsev- Local Destruction of Magnetic Surfaces and Impurity Distributions in Kartinov Tokamak P1.130 E.A. Evangelidis Angular momentum coupling in tokamaks P1.131 F. Porcelli Long term evolution of 3D collisionless magnetic reconnection P1.132 C. Ionita Qualitative similarities between edge localised modes ELMs in fusion plasmas and complex space charge configurations CSCCs in low- temperature plasmas P1.133 Z.P. Xu Diagnosis of Wire-Array Z-Pinch Implosion Using X-ray Framing Cameras P1.134 S. Dan’ko Elaboration of High-Current Drivers Aimed at the Inertial Fusion Energy P1.135 J.M. Perlado Inertial Fusion Reactor Physics effect of Activation and Radiation Damage of Materials, and Tritium emissions. P1.136 Ph. Nicolaï A practical nonlocal model for electron transport in magnetized laser- plasmas P1.137 W. Zhang Evolution of Rayleigh-Taylor Instability with Arbitrary Density Profiles P1.138 M. Kaluza Self-Generated Magnetic Field Distributions in Multiple-Beam Produced Plasmas P1.139 N. Ozaki Laser-driven flyer impact experiments on LULI 2000 laser facility P1.141 T. Pisarczyk Optical investigation of flyer disk acceleration and collision with massive target on the PALS laser facility P1.142 S. Borodziuk Numerical modelling of strong shock waves and craters for the experiments using single and double solid targets irradiated by high power iodine laser PALS P1.143 G. Gregori Experimental characterization of a strongly coupled solid density plasma generated in a short-pulse laser target interaction P1.144 L. Torrisi Ion energy measurements in laser-generated plasmas at INFN-LNS and PALS research centre P1.145 K.B. Fournier Absolute x-ray yields from laser-irradiated Ge-doped aerogel targets P1.146 B. Sharkov Stopping Power Measurements for 100-keV/u Cu2 Ions P1.147 J. Wolowski Interaction of high-energy laser pulses with plasmas of different density gradients P1.148 S. Depierreux Thomson scattering of electron plasma waves stimulated by Raman backscattering in gasbag plasmas P1.149 S.F. Martins High intensity B field generation in underdense plasmas and the Inverse Faraday Effect P1.150 J.E. Santos Stimulated Raman Scattering with broadband effects P1.151 M.D. Barriga- H2 distributions after traversing plasma targets Carrasco P1.152 R. Fedosejevs Heating of Tantalum Plasma for Studies on the Activation of the 6.238 keV Nuclear Level of Ta-181 P1.153 L.O. Silva Stimulated Brillouin scattering by broadband radiation sources P1.154 K. Lewis Analysis of the propagation of a laser beam through a preformed plasma using imaging diagnostics P1.155 F. Girard Experimental multi-keV x-ray conversion efficiencies from laser exploded germanium foil. P1.156 J. Howe Periodic features modifying the Heb line profile from an aluminium plasma P1.157 N.V. Vvedenskii Generation of Terahertz Radiation during Optical Breakdown of a Gas

P2.001 M. Tsalas Divertor plasma drift patterns at ASDEX Upgrade P2.002 A. Alfier Influence of ELMs on Edge Temperature and Density Profiles in TCV P2.003 L. Carraro Impurity behaviour and radiation pattern in the RFX- mod reversed field pinch P2.004 M. Rubel Material Migration Studies at JET Using Tracer Techniques P2.005 M. Becoulet Comparative Modeling of Type I ELM control by stochastic fields in DIII-D, JET and ITER. P2.006 E. R. Solano ELM calorimetry in JET

111 P2.007 A. Loarte Influence of toroidal field direction and plasma rotation on pedestal and ELM characteristics in JET ELMy H-modes P2.008 D.L. Hillis Tritium pathways in JET trace tritium transport experiments P2.009 T.P. Kiviniemi Ripple-Induced Fast Ion and Thermal Ion Losses P2.010 S. Brezinsek In situ measurement of chemical erosion yields for the production of C2Hy in the JET outer divertor P2.011 A. Pospieszczyk Molecular H/D/T sources in JET P2.012 A.J. Meakins Applying Advanced Statistical Techniques to Tokamak L-H Threshold Data P2.013 W. Fundamenski ELM-limiter interaction on JET P2.014 G.Y. Antar Gas Jets and Their Interaction With Magnetically Confined Plasmas P2.015 S. Jachmich Divertor particle and power deposition profiles in JET ELMy H-mode discharges P2.016 L.N. Khimchenko Fractal growth of dust and globular films in T-10 tokamak. P2.017 V. Rozhansky Impact of Magnetic Configuration on Edge Radial Electric Field MAST- ASDEX Upgrade Simulation with B2SOLPS5.0 P2.018 L.G. Eliseev Investigation of the plasma potential behaviour at the edge of the T- 10 tokamak by HIBP P2.019 A. Kendl Influence of flux surface shape on DALF and ITG edge turbulence P2.020 M.F. Heyn On the Interaction of a Rotating Magnetic Field with the Plasma in the Kinetic Approximation P2.021 V. Yavorskij Modelling of combined effect of TF ripples and MHD perturbations on fast ion behaviour in tokamaks P2.022 T.P. Kiviniemi Full f particle simulation of internal transport barrier formation P2.023 S.V. Henriksson Characteristics of fluctuations in ELMFIRE simulations P2.024 U. Stroth On magnetic fluctuations and parallel dynamics of drift wave turbulence in the torsatron TJ-K P2.025 O. Marchuk Impurity transport studies in TORE SUPRA with He-like spectroscopy P2.026 C.F. Maggi Edge and core confinement in improved H-modes in ASDEX Upgrade P2.027 G.D. Conway Observations on core turbulence and radial electric field transitions in ASDEX Upgrade using Doppler reflectometry P2.028 G. Tardini Ion ITB dynamics in ASDEX Upgrade P2.029 W. Suttrop Machine independent representation of experimental H-mode pedestal and divertor data P2.030 H. Thomsen Pattern recognition techniques in plasma turbulence imaging P2.031 A. K r a e m e r - Edge turbulence studies at TEXTOR during dynymic ergodic divertor Flecken operation by means of reflectometry P2.032 D. Reiser Turbulent transport in the plasma edge in the presence of static stochastic magnetic fields P2.033 S. Jachmich Effects of edge ergodization induced by DED on turbulence and particle transport in TEXTOR P2.034 K.Rypdal Profile robustness and routes to turbulence in the helimak configuration P2.035 T.T. Ribeiro Gyrofluid turbulence computations in the edge and SOL regions of tokamak plasmas using realistic magnetic field geometry P2.036 H. Figueiredo Study of edge flows and transport during emissive electrode biased discharges on ISTTOK P2.037 C. Silva Transport and fluctuations during electrode biasing on TJ-II P2.038 P. Strand Effects of impurities on drift wave particle transport P2.039 M. Ansar Unstable Ion-Temperature-Gradient Modes in ITER Geometry Mahmood P2.040 V.P. Pavlenko Large scale flows and coherent structure phenomena in flute mode turbulence P2.041 I.G.J. Classen 2D temperature profiles of DED structures using ECE-Imaging in TEXTOR P2.042 M. DeBock Influence of an ergodic field in the plasma edge on the global plasma rotation at the TEXTOR tokamak P2.043 H.J. deBlank Temperature gradient effects on magnetic stochastization P2.044 W. Zwingmann Equilibrium reconstruction of tokamak discharges with toroidal variation P2.045 M.-C. Firpo Non-ideal MHD effects on the nonlinear growth of m 1 internal modes P2.046 A. Sen Neoclassical tearing modes in the presence of sheared flows

112 P2.047 A. Sengupta Statistical Analysis of the equilibrium configurations of W7-X stellarator using Function Parametrization P2.048 K. Hayase First Result from a New RFP Device with Very Small Aspect Ratio P2.049 M. Takechi MHD instabilities observed in extreme reversed shear discharges on JT-60U P2.050 T. Ozeki Modeling of MHD Stability Consistent to the Transport P2.051 Y. Nakamura Simulation Modeling of Fully Non-Inductive Buildup Scenario in High Bootstrap Current Tokamaks without Center Solenoids P2.052 S. Sakakibara Configuration Dependence of MHD Activities in high-beta regime of LHD P2.053 Y. Narushima Experimental study of current driven MHD mode in LHD P2.054 Y. Hirano Reproducible Appearance of Quasi Single Helicity State in a Reversed Field Pinch with an Appropriate Control of the Reversed Toroidal Field. P2.055 L. Frassinetti Role of the m 0 magnetic perturbations in the crash phase of the pulsed polidal current drive regime in the TPE-RX device P2.056 S. Shiina Relaxed State of Reversed Field Pinch Equilibrium with Low Aspect Ratio P2.057 K. Saito MHD Stability Analysis and Edge control of the ATRAS-RFP Plasma P2.058 M. Nagata Plasma flow injection into a torus chamber as a new approach to flowing two-fluid plasma generation P2.059 O. Sauter Partial Stabilisation of NTMs with ECCD for standard scenarios in ITER P2.060 C.G. Gimblett A model for the evolution of current-driven ELMs P2.061 D.F. Howell Locked mode thresholds on the MAST spherical tokamak P2.062 I.T. Chapman Stabilisation of Sawteeth in MAST by Toroidal Rotation P2.063 G.W. Pacher Simulation of ITER Improved H-mode Operation with the Integrated Core Pedestal SOL Model Using MMM95 and GLF23 Core Transport Models P2.064 F. Saint-Laurent Disruption Mitigation Experiment on Tore Supra P2.065 R. Guirlet On the stationarity of the intrinsic impurity content in the bulk of Tore Supra long discharges P2.066 H. Utoh Biasing Experiments by a Ti Electrode in the Tohoku University Heliac P2.067 M. Sugihara Extrapolation of Plasma Current Quench Time during Disruptions from Existing Machines to ITER P2.068 Y. Kawano Characteristics of Runaway Plasmas in JT-60U P2.069 Y. Miura Burn control study using burning plasma simulation experiments in JT-60U P2.070 T. Akiyama Edge Transport Barrier Formation and Power Threshold Properties in CHS P2.072 V.E. Lukash Combined DINA-CH and CRONOS Simulations of ITER P2.073 V.N. Dokuka Free Boundary Simulations of ITER Scenarios P2.074 V. Weinzettl Fast bolometry on the CASTOR tokamak P2.075 V. Piffl Temporally and spatially resolved measurements of VUV lines intensity in the CASTOR tokamak P2.076 I. Duran Progress in evaluation of radiation-hard galvanomagnetic devices for use in the ITER magnetic diagnostic P2.077 G. Anda Li-beam developments P2.078 S. Kálvin Investigation of pellet-plasma interaction on ASDEX Upgrade P2.079 K.-S. Chung Effect of ion-neutral collision on the deduction of plasma flow velocity P2.080 J.G. Bak Integrator for the KSTAR magnetic diagnostics P2.081 S.G. Lee Fabrication details for the KSTAR magnetic diagnostics P2.082 M. Kocan A new probe for ion temperature measurements in the tokamak scrape-off layer P2.083 T. Estrada Fluctuation Measurements by Reflectometry in the Stellarator TJ-II P2.084 A. Hidalgo Self-consistent modelling of supersonic He beam attenuation in the TJ-II Edge Plasmas P2.085 B. Zurro Feasibility study for a blow-off technique to real time monitor dust particles in fusion plasmas P2.086 D. Rapisarda An investigation of the relationship between toroidal rotation and bootstrap current in the TJ-II stellarator P2.087 E. Blanco Study of Doppler reflectometry viability in TJ-II stellarator using a 2- dimensional full-wave code

113 P2.088 J. Herranz Influence of the stray light upon TJ-II Thomson scattering profiles measured in different magnetic configurations. P2.089 J.M. Carmona A code to simulate neutral beams across TJ-II for the exploitation of a charge-exchange recombination spectroscopy diagnostic P2.090 J. Vega Application of intelligent classification techniques to the TJ-II Thomson Scattering diagnostic P2.091 M. Sánchez Relevant improvements in the two color interferometer diagnostic in TJ-II Stellarator P2.092 D.L. Brower Laser-Based Polarimetry and Interferometry Measurements in a High-Temperature Plasma P2.093 J.A. King Characterization of Ti Ká radiation resulting from interaction of a highly intense laser pulse with a thin titanium foil P2.094 S. Zhongbing Observations of the cold pulse propagation during multi-pulse molecular beam injection on HL-2A P2.095 V. Petrzilka Electron Acceleration Near ICRF Antennae P2.096 V. Petrzilka Fast Particle Energy Measurements in the Scrape-off Layer During Lower Hybrid Current Drive on Tore Supra P2.097 E. Belonohy High Field Side Penetration Depth Scaling at ASDEX Upgrade P2.098 K. Gál Simulation of Pellet Induced Perturbations in Fusion Plasmas for Fueling and ELM Triggering Scenarios P2.099 A. Cappa Experimental dependence of plasma breakdown on wave polarization in the TJ-II stellarator P2.100 G. Fiksel Neutral Beam Injection and Fast Ion Confinement in the MST Reversed Field Pinch P2.101 V.S. Chan Simulation of Fast Alfven Wave Interactions With Neutral-Beam and Minority Ions in Tokamaks P2.102 L.R. Baylor Pellet Injection From Different Locations on DIII-D and Extrapolation to ITER P2.104 J.A. Goetz Auxiliary Heating and Current Drive Systems for the Reversed Field Pinch P2.105 H.K. Na Poloidal H-alpha monitor and visible TV system design for long diagnostic port of KSTAR P2.106 J. Dies Safety analysis of abnormal fueling in ITER using SAFALY P2.107 G. Vlad Source Regulation of Fast Energetic Particle Driven Alfvén Modes Dynamics P2.108 M. Cavenago A simulation code for the extraction of H- ions P2.109 G. DeTommasi Identification of a dynamic model of plasma current density profile P2.110 X. Bonnin B2-Eirene SOLPS Modelling of JET SOL plasma flow P2.111 S. Sipilä Guiding-centre simulations of ion orbit loss heat loads on JET divertor targets P2.112 A. Huber Modelling JET divertor physics with the EDGE2D Code P2.113 D. Pilipenko Transport balance of RF-heated impurity ions P2.114 K.M. Rantamäki Effect of density fluctuations on lower hybrid ray tracing and q- profile P2.115 A.N. Saveliev Approximate relativistic dispersion relation for electron Bernstein waves in inhomogeneous plasma P2.116 V.A. Rantsev- Radial Electric Field in Toroidal Systems and a Thermoelectric Field of Kartinov Plasma P2.117 A.B. Kukushkin Self-Consistent Simulation of Electron Cyclotron Radiation Transport and Superthermal Electron Kinetics in Hot Tokamak Plasmas P2.118 L.K. Kuznetsova Effect of ECCD/ECRH-Produced Superthermal Electrons on Electron Cyclotron Radiation Transport in Hot Tokamak Plasmas P2.119 V.E. Zhogolev Simulation of Heavy Impurities Transport and Radiation for ITER Scenarios P2.120 A.A. Subbotin Alpha-particle Confinement and Conservation of Second Adiabatic Invariant P2.121 Yu.V. Gott The charged particle distribution P2.122 N.B. Rodionov Numerical study of high-frequency ICRF heating at T11-M and KTM tokamaks P2.123 G.G. Gladush Numerical investigation of a tokamak used as the volumetric neutron source for material tests P2.124 A.V. Tykhyy Influence of electric fields on the energetic particle orbits in stellarators

114 P2.125 V.V. Lutsenko Analysis and interpretation of observations of Alfvénic activity in Wendelstein 7-AS P2.126 S.K. Zhdanov Impact of structural inhomogeneity on waves in a 2D complex plasma P2.127 A.A. Samarian Large-amplitude oscillations of dust particles in a plasma sheath P2.128 A. Zobnin A Boundary Structure of Dusty Cloud P2.129 L. Johnson Experiments with Microrods in an RF Plasma Sheath P2.130 R. Kompaneets Dust-lattice waves Role of charge variations and anisotropy of dust- dust interaction P2.131 S.A. Maiorov The reactive ion-drag force in dusty plasmas P2.132 T. Antonova Attractive force in 3D plasma clusters P2.133 F.M. Cheung Coulomb Clusters Stability and Spectrum of Energy States P2.134 S. Khrapak Effect of ion-neutral collisions on particle charge in gas-discharge plasmas P2.135 M. Kretschmer The trampoline effect - distribution of forces inside the void region of a complex plasma in microgravity P2.136 O.S. Vaulina Study of Relation between Transport Coefficients in Dusty Plasma Systems P2.137 M. Kretschmer Forces and effective potential energy inside the void region of a complex plasma in microgravity P2.138 S.A. Maiorov Interaction between grains in plasma P2.139 S. Sobhanian Reabsorption of Langmuir waves generated by a hot electron beam propagating in a plasma P2.140 D.P. Kostomarov On the transformation of structurally unstable magnetic configuration into structurally stable one P2.141 F. Califano Propagation of finite amplitude disturbances in an inhomogeneous magnetized plasma P2.142 F. Califano Role of numerical dissipative effects in collisionless plasmas simulations P2.143 M. Cercek Sheath formation in a two-electron temperature plasma P2.144 K. Bendib-Kalache Weibel instability due to the inverse bremsstrahlung absorption P2.145 S. Cho Effects of the magnetic field and the thermal electron motion on characteristics of guided-wave-sustained plasmas P2.146 L. Chacón A fully implicit 3D extended MHD algorithm P2.147 N. Jelic Particle in cell simulation of a Tonks-Langmuir model P2.148 Y. Kominis Particle interactions with solitary waves in magnetized plasmas P2.149 L. Vlahos Non-linear excitation of magnetosonic waves through gravitational waves in strongly magnetized plasmas P2.150 G. Bonhomme Selecting, characterizing, and acting on drift waves and flute modes turbulence in a low-beta magnetized plasma column P2.151 S. Teodoru Is the plasma at a plane probe unstable in the presence of fast electrons producing secondary electrons P2.152 B. Coppi Consistency of the Accretion Theory of the Spontaneous Rotation Phenomenon with Recent Experiments P2.153 O. Maj Beam Tracing solution of the weakly nonlinear Burgers' equation P2.154 L. Conde A ionization instability in weakly ionized unmagnetized plasma with negatively charged dust grains P2.155 V.A. Rantsev- Revelation of the Sun Self-Similarity Skeletal Structures Kartinov P2.156 S.-I. Itoh On periodic change of differential rotation and global magneto-fluid structure of the sun P2.157 B. Dromey Bright XUV harmonic generation in the water window. P2.158 D. Dorranian Microwave Emission from Magnetized Wake of Laser Irradiated Gas Jet P2.159 S. Gammino High density ECR plasmas for the production of intense highly charged ion beams P2.160 M. Tanimoto Generation of monoenergetic electron beams in a plasma-wave potential driven by an intense laser pulse P2.161 E. d'Humières Optimization of proton beams created by laser-plasma interaction for various applications P2.162 A. Lifschitz Laser wakefield acceleration of electron bunches in the mildly nonlinear regime P2.163 E. Brambrink Detailed studies of the transverse beam characteristics of laser produced ion beams

115 P2.164 F. Fiuza Detailed study of the photon accelerator P2.165 J.L. Martins Explosion Dynamics of Heterogeneous Nanoplasmas P2.166 J.F. Vieira Optimizing wave breaking and self injection in the laser wake field accelerator P2.167 V.V. Kulagin Controllable generation of a single attosecond relativistic electron bunch by a superintense laser pulse with a sharp rising edge P2.168 H. Suk Generation of relativistic high-energy electrons by laser wakefield acceleration at KERI P2.169 M. Marti Physics of the formation of collisionless shocks P2.170 E. d'Humières New setups to improve proton acceleration with high intensity lasers P2.171 N. Lemos Design and characterization of gas jets for laser-plasma interaction P2.172 C.D. Murphy Laser Wakefield Acceleration of Photons P2.173 M. Schnürer Field-shielding in femto- and picosecond laser accelerated ion beams P2.174 P.V. Nickles Particle acceleration with ultrashort light pulses P2.175 M. Geissler 3D-PIC simulations of laser electron acceleration P2.176 O. Klimo Numerical Study of K-alpha Emission from the Backside of Foil Targets Irradiated by Ultrashort Laser Pulses P2.177 A. Rusanov Interaction of an electron beam with magnetized semiconductor plates in a rectangular waveguide P2.178 M. Grech Laser beam smoothing in plasma at powers below the filamentation threshold

P4.001 J. SHu Erosion/deposition of doped graphite tile with SiC coating under a Long Term plasma operation in HT-7 P4.002 Yu Yang Deuterium inventory evaluation of long discharges in HT-7 superconducting tokamak P4.003 J. Simek Multi-dimensional particle codes for modelling in low-temperature and high-temperature plasmas in the presence of magnetic field P4.004 F. Zacek Radial and toroidal electric field measurements in front of the CASTOR tokamak LH launcher P4.005 V. Fuchs Langmuir probe characteristics in the presence of supra-thermal electrons generated by a lower hybrid grill P4.006 V. Weinzettl Biasing experiments with solid and porous electrodes P4.007 S.W. Yoon The Contribution of Divertor Neutrals to the Main Chamber Neutral flux in KSTAR P4.008 F.L. Tabarés Injection of hydrogen and ethylene at the plasma edge of TJ-II A comparative study P4.009 J.A. Ferreira Particle balance in TJ-II plasmas under boronized wall conditions P4.010 D. Nishijima Behavior of Beryllium Plasma Impurities in the PISCES-B Linear Diverotr Plasma Simulator P4.011 A.H. Boozer Plasma effects on location of outermost magnetic surface P4.012 T.H. Osborne The Role of Type II ELMs in Type I ELM Suppression With Stochastic Magnetic Boundary P4.013 T.W. Petrie Compatibility of the Radiating Divertor With High Performance Plasmas in DIII-D P4.014 M.E. Analysis of Density and B-Field Dependence of ELM Propagation in Fenstermacher the DIII-D SOL/Divertor With Pedestal Stability and Boundary Plasma Models P4.015 M. Groth Comprehensive Measurements and Modeling of SOL, and Core Plasma Fueling and Carbon Sources in DIII-D P4.016 V.A. Particle and power exhaust in high-performance NSTX plasmas Soukhanovskii P4.017 R. Maingi Characteristics and Operational Space of the Type V ELM regime in NSTX P4.018 H. Takahashi Observation of Abrupt- and Fast-Rising SOL Current During Trigger Phase of ELMs in DIII-D Tokamak P4.019 S.I. 3D modelling of dust particle transport in tokamak plasmas with Krasheninnikov newly developed code DUSTT P4.020 S.I. Anomalous radial convection and flows in tokamak scrape off layer Krasheninnikov plasma P4.021 E.M. Hollmann Measurement of the Molecular Deuterium Distribution in the Edge of DIII-D P4.022 D.N. Ruzic ELM Simulating Plasma Gun Development and Experiments

116 P4.024 Y.H. Xu Turbulence intermittency and burst properties in the boundary of TEXTOR tokamak P4.025 I. Sandberg Explicit threshold of the toroidal ion temperature gradient mode instability P4.026 I. Sandberg Generation and saturation of large scale flows in electrostatic turbulence P4.027 A. Canton Density profiles and particle confinement in the modified RFX Reversed Field Pinch P4.028 E. Martines High frequency magnetic field fluctuations measured on the RFX- mod experiment with internal coils P4.029 F. Sattin Scaling of energy confinement time with magnetic fluctuations in RFX comparison of experimental data with turbulent transport models. P4.030 G. Serianni Electrostatic turbulence in the edge region of the modified RFX experiment P4.031 M. Spolaore Relaxation phenomena during edge plasma biasing in the CASTOR tokamak P4.032 R. Lorenzini Dependence of electron density profiles on m 0 modes in the RFX experiment P4.033 D. Marocco Transport analysis of FTU plasmas with multiple pellet injection using neutron-derived Ti profiles and high-resolution ne profiles P4.034 M. DeBenedetti Microstability analysis of e-ITBs in high density FTU plasmas P4.035 M. DeBenedetti Turbulence measurements and improved confinement regimes on FTU P4.036 P. Belo Numerical Simulations of impurity screening in the SOL of JET plasma by the localised Deuterium gas puffing P4.037 H.J. Leggate The Significance of the dimensionless collisionality and the Greenwald fraction in the scaling of confinement. P4.038 B. Gonçalves Turbulence experiments in reversed and standard-B field configurations in the JET tokamak P4.039 G.M.D. Hogeweij Analysis of Electron Internal Transport Barriers in JET low and reversed shear discharges P4.040 J.-S. Lönnroth Analysis of ELM heat pulse propagation in the JET SOL with an integrated fluid-kinetic approach P4.041 C. Angioni Gyrokinetic calculations of particle and impurity transport in AUG and JET P4.042 R.V. Budny GYRO simulations of Core Momentum Transport in DIII-D and JET Plasmas P4.043 G.P. Maddison Edge fluctuations in the absence of large ELMs on JET P4.044 T. Tala Progress in Predictive Transport Modelling of ITBs in JET P4.045 M. Vlad Trajectory structures in turbulent plasmas P4.046 S.I. Lashkul Suppression of the particle fluctuation-induced fluxes and spectral analyses of the plasma oscillations with ITB and ETB formation at FT- 2 experiment P4.047 A.Yu. Chirkov Calculations of two-fluid equilibria and transport for turbulent plasma with sheared flows P4.048 N. Timchenko ECR heating and impurity radiative cooling in Tokamak Plasmas P4.049 V.I. Poznyak Modulating phenomena in T-10 tokamak plasma under EC heating P4.050 V.P. Budaev Waiting-Time Multifractal Statistics of Edge Plasma Turbulence in the T-10 Tokamak and NAGDIS-II Linear Device P4.051 V.A. Rozhansky Revealing of Geodesic Acoustic Mode Oscillations in TUMAN-3M Tokamak via Doppler Reflectometry P4.052 A.V. Melnikov Study of the core plasma potential and turbulence evolution during ECRH in the T-10 tokamak P4.053 O.Yu. Antufyev Electromagnetic Field Effect on Impurity Transport in Helical Plasma P4.054 O. A. Shyshkin Comparative Numerical Analysis of the Tungsten Transport in Drift Optimized Stellarator Ergodic and Nonergodic Plasma Configurations P4.055 T. Kurki-Suonio Fast Ion Distribution in the Presence of Magnetic Ripple and Radial Electric Field P4.056 A. Weller MHD Effects related to High-Beta Operation in WENDELSTEIN W7-AS P4.057 C. Nuehrenberg MHD-Stability studies for a high-beta PIES W7-X equilibrium P4.058 K.H. Finken Development of energetic runaway electrons with operation of the Dynamic Ergodic Divertor

117 P4.059 O. Zimmermann Excitation of Alfven like Modes by large 2/1 Tearing Modes on TEXTOR P4.060 Y. Liang Influence of anisotropic pressure on the locking of 2/1 tearing modes in TEXTOR P4.061 H.R. Koslowski Rotation dependence of tearing mode excitation by external perturbation fields on TEXTOR P4.062 V. Igochine Main Branches of the Error Field Amplification Resonance and their Properties P4.063 P. Khorshid Study of Poloidal Rotation Velocity in the Tokamak Plasma P4.064 A. Hojabri Effect of rotating magnetic helical field on the impurity radiation and the magnetic island in Iran Tokamak 1 IR-T1 P4.065 M. Ghoranneviss Investigation of Tokamak Plasmas as a Non-Rigid Body Plasma P4.066 D. Yadikin Intelligent shell feedback control of resistive wall modes in EXTRAP T2R P4.067 M. Cecconello Rotation evolution of tearing modes during feedback stabilization of resistive wall modes in a reversed field pinch P4.068 C. Wahlberg Effect of toroidal flow and flow shear on the quasi-interchange instability in tokamaks with weak magnetic shear P4.069 O. Agren Theory of the straight field line mirror P4.070 J.W.S. Blokland MHD equilibrium reconstruction for TEXTOR from static to stationary equilibria P4.071 E. Westerhof Suppression of Tearing Modes by Electron Cyclotron Heating and Current Drive P4.072 A.C.C. Sips Extending the operational range of Improved H-modes at ASDEX Upgrade P4.073 A. Manini Optimisation of Sawtooth Control using ECCD in ASDEX Upgrade P4.074 G. Pautasso Plasma shut-down with fast impurity puff on ASDEX Upgrade P4.075 S. Günter Current Profile Modification by off-axis NBI on ASDEX Upgrade P4.076 W. Suttrop Predictive simulation of tokamak discharge behaviour based on simple scalings P4.077 J. Zalach Experimental investigation of the dependence of the dispersion and mode structure of drift waves on plasma collisionality P4.078 V.V. Plyusnin Effect of the plasma geometry evolution on runaway electron generation in tokamak disruptions. P4.079 S. Menmuir Ion and mode rotation in the EXTRAP T2R device during discharges with and without the application of feedback control P4.080 F. Meo Progress on the Ion Millimeter Wave CTS Diagnostics on TEXTOR and ASDEX-Upgrade P4.081 S.K. Nielsen Investigation of fast ion behaviour in the TEXTOR tokamak using collective Thomson scattering CTS P4.082 B. Schunke Modelling of plasma conditions for the mirror exposure study in Tore Supra P4.083 R. Reichle Concept for spectrally resolved ITER divertor thermography with fibres P4.084 Y. Peysson Fast Electron Bremsstrahlung in Arbitrary Tokamak Configuration P4.085 S. Heuraux Amplitude variation and frequency shift of a reflectometer signal propagating in a time-varying plasma P4.086 S. Heuraux On the possibility to measure a PDF of the density fluctuations by using fast swept heterodyne reflectometer data P4.087 M. Koubiti Stark broadening of high-n He I lines P4.088 A. Tonegawa Detached plasma control by H- / D- negative ion in divertor simulator P4.089 M. Sasao Development of ceramic scintillators for lost alpha measurement on ITER P4.090 M. Sato Relativistic downshift frequency effects on ECE measurements of electron temperature and density in torus plasmas P4.091 K. Itami Study of an Erosion Monitor for the ITER Divertor Target Plates P4.092 S. Konoshima Radiated Power Profile Observed by a Tangentially Viewing IR Imaging Bolometer in JT-60U Tokamak P4.093 M. Okamoto Dynamic Behavior of the Disruptive Plasma in the Small Tokamak HYBTOK-II P4.094 T. Oishi BES on Compact Helical System for Density Fluctuations with Edge Transport Barrier Formation

118 P4.095 H. Nishimura Study of pitch-angle-scattering spectrum of high-energy ions in the P4.096 K. Okada A TOF neutron spectrometer for measurement of the fule ratio on ITER P4.097 A.N. Karpushov Determination of the Radial Profile of Hydrogen Isotope Composition in TCV plasmas P4.098 A. Bortolon Toroidal rotation observation in ohmic TCV discharges P4.099 G. DeTemmerman Direct comparative test of single crystal and polycrystalline diagnostic mirrors exposed in TEXTOR in erosion conditions P4.100 M. Wisse Transport studies in MAST with enhanced Doppler spectrometry P4.101 A. Géraud Combined high RF power and pellet fuelling experiments in Tore Supra P4.102 S. Shimamura Compact Torus Plasma Injector in High Repetition Rate P4.103 T. Asai Initial results of helicity and flow injection on TPE-RX reversed-field pinch P4.104 K. Nagasaki Measurement of Absorption and Scattering of High Power EC Waves in P4.105 Y. Torii Study of poloidal flow driven by ion Bernstein waves in helical confinement device P4.106 T. Yoshinaga Spontaneous Formation of Spherical Tokamak Equilibria under Steady Veritcal Magnetic Field on the LATE device P4.107 K. Saito ICRF Heating for Long Pulse Discharge in LHD P4.108 H. Koguchi Pellet injection on TPE-RX P4.109 H. Sakakita Characteristics of High-Power-Density and Focused Neutral Beam System P4.110 A. Mueck O-X-B Mode Conversion in the TCV Tokamak P4.111 K.N. Sato Development of a Precise Size-Controllable Pellet Injector for the Detailed Studies of Ablation Phenomena P4.112 A. Sykes Non-solenoid start-up in MAST P4.113 G. Veres Ablation rate calculations with a quasi two dimensional pellet code P4.114 Ki Min Kim Predictive Numerical Simulation of ELMy H-mode Discharges for the KSTAR Tokamak P4.115 J.M. Fontdecaba Energy influence on ion confinement in TJ-II stellarator P4.116 L. Garcia Topological instability in plasma turbulence model P4.117 T. Onjun Models for Predicting the Pedestal at the Edge of H-mode Tokamak Plasmas P4.118 A.H.Glasser, V.D. Harmonic Grid Generation for the Tokamak Edge Region Liseikin P4.119 W.W. Lee Steady State Global Particle Simulation of Microturbulence P4.120 J.J. Martinell On the motion of plasma particles in the field of a high-power wave propagating normal to the magnetic field P4.121 H. Smith Nonlinearly driven second harmonics of Alfvén cascades P4.122 A. H. Sari Obstructed Discharge-Created Electron Beam Cathode Materials and Design, Gas Species and Focusing Properties P4.123 H. Kersten Thin film deposition on powder particles using atmospheric pressure discharges P4.124 M. Mozetic Determination of H density in a remote part of a hydrogen plasma reactor P4.125 A. Vesel Interaction between neutral hydrogen atoms and weakly oxidized stainless steel surface P4.126 P. Jelinek Effective modelling of plasma sheath based on improved non self- consistent particle simulation technique P4.127 E.Z. Gusakov Investigation of the Parametric Decay Instability in the Helicon Discharge by Correlation Enhanced-Scattering P4.128 R. Hrach Study of plasma-solid interaction in electronegative gas mixtures at low and medium pressures P4.129 M. Branci Radiation Source Functions for Off-Equilibrium Plasmas P4.130 E. Martines Efficiency enhancement due to kink instability suppression in MPD plasma thrusters P4.131 M. Cercek Double layer formation in a negative ion plasma with a bi-Maxwellian electron distribution P4.132 M.D. Calzada Spectroscopic determination of the electron temperature in non-LTE P4.133 M.D. Calzada Study of a stationary surface-wave sustained neon plasma column at

119 P4.134 M.D. Calzada On the electron densities calculation from computer-simulated Balmeralpha P4.135 M.D. Calzada Hydrogen production from alcoholic hydrocarbons using a surface wave P4.136 M.D. Calzada Analysis of alcoholic hydrocarbons in an argon surface wave sustained P4.137 K.O.E. Henriksson Hydrogen and helium cluster formation in tungsten P4.138 C. Lupu Simulation and theory of floating-sheath formation P4.139 R. Schrittwieser Characterization of a modified hollow-cathode discharge plasma P4.140 B. Zine Modeling of collision in the plasma sheath and the cathode erosion of eletrical arc P4.141 A.P. Matafonov Observation of “pure” neutronless reaction 11B p in picosecond laser plasma P4.142 J. Wolowski Studies on Laser-Driven Generation of Fast High-Density Plasma Blocks for Fast Ignition P4.143 V.S. Belyaev Results of magnetoactive laser produced plasma investigations P4.144 V.S. Belyaev Temperature and directed beams of ions in laser produced plasma P4.145 L.A. Cottrill Optimization of K-alpha Emission Yields for Short-Pulse High Intensity Laser-Solid Interactions P4.146 E.Y. Echkina The intense laser interaction with multicluster plasma P4.147 Z.-M. Sheng Acceleration of electrons and ions in the interaction of high-intensity lasers with dense gaseous targets P4.148 Z.-M. Sheng Hot electrons and protons generated from the interaction of ultrashort laser pulses with micro liquid droplet plasmas P4.149 T.V. Liseykina Laser acceleration of ion bunches by circularly polarized pulses P4.150 R.B. Campbell Scaling of Energy Deposition in Fast Ignition Targets P4.152 F. Peano Controlled Shock Shells and Intracluster Fusion Reactions in the Coulomb Explosion of Very Large Clusters P4.153 P. Guillou Experimental study of fast electron propagation with cone-targets P4.154 M. Fiore Electromagnetic beam plasma instability in fast ignition P4.155 M. Marti Collisionless shocks for fast ignition P4.156 V. Pais Effective Collision Strengths for Electron-Impact Exitation of Li-like Al P4.157 A. Mihailescu Atomic Data for Zn-like W Ion As Related to the Plasma Modeling P4.158 S. Ter-Avetisyan Laser driven neutron yield from heavy water spray target P4.159 J. Kupersztych Energy absorption enhancement in the interaction between ultrashort laser pulses and overdense plasmas via resonant excitation of surface plasma waves P4.160 J. Honrubia Hybrid PIC simulations of heating of solid targets by fast electrons P4.161 K. Krushelnick Petawatt interactions with underdense plasmas P4.162 Lj. Hadzievski Dynamics of Weakly Relativistic Electromagnetic Solitons in Laser- Plasmas P4.163 A.M. Bystrov Excitation of the bulk and surface plasmons at the rapid breakdown of cluster by high-intensity femtosecond laser pulse P4.164 A. Bruno Fluid model of collisionless reconnection in a force-free equilibrium P4.165 J. Fuchs Ion acceleration using high-contrast ultra-intense lasers

P5.001 M. Shoucri Numerical Simulation of the Collisionless Diffusion of Particles Across a Magnetic Field at a Plasma Edge P5.002 E. Dufour Carbon source from the toroidal pumped limiter during long discharge operation in Tore Supra P5.003 Y. Corre Surface layer analysis on the Toroidal Pumped Limiter of Tore Supra using IR data during disruptions P5.004 A. Escarguel Recombining low temperature plasma in the divertor simulator Mistral-B radiative emission study with the SOPHIA code P5.005 M. Sakamoto Impact of a movable limiter on the global wall recycling in TRIAM-1M P5.006 N. Asakura ELM propagation and fluctuations in SOL and divertor on JT-60U Tokamak P5.007 T. Nakano Emission Rates of CH/CD and C2 spectral Bands for Hydrocarbon- Loss-Events Measured in JT-60U Divertor Plasmas P5.008 D. Nishijima High-Density Deuterium Plasma Discharge in NAGDIS-II with Double Anode Configuration P5.009 H. Masuda Optimum Generation of High Heat Flux Toroidal Plasma by RF Ohmic Discharge

120 P5.010 K. Yambe Effect of plasma Biasing on Suppression of Electrostatic Fluctuation in the Edge Region of STP-3 M Reversed Field Pinch P5.011 N. Jelic An analysis of the magnetic presheath entrance in a multi- component plasma with ExB and diamagnetic drifts P5.012 K. Schombourg Synchronisation of ELMs within magnetic perturbation bursts in TCV P5.013 M. Wischmeier Enhanced main chamber wall interaction as an explanation for anomalous divertor detachment on TCV P5.014 S.H. Kim Comparing magnetic triggering of ELMs in ASDEX Upgrade and TCV with the DINA-CH tokamak simulator P5.015 E. Delchambre Issues related to power loading studies in MAST with an infrared camera P5.016 Zh. Yongzhen Studies of Internal Magnetic Fluctuation by runaway transport in the HL-1M P5.017 Y. Huang Statistical Estimate of Long-Range Time Dependency in HL-1M edge Plasma Turbulence P5.018 J. Brotánková Fluctuation measurements with 2D matrix of Langmuir probes on the CASTOR tokamak P5.019 J. Zajac Multifractal analysis of tokamak plasma turbulence in biasing experiments P5.020 R. Panek Anomalous impurity diffusion in an experimentally measured turbulent potential P5.021 G. Pokol Analysis of transient MHD modes of Wendelstein 7-AS by coherence techniques P5.022 M. Berta Detection of radially localized and poloidally symmetric structures in the poloidal flow of tokamak plasmas P5.023 S. Zoletnik Anomalous transport events in the core plasma of the Wendelstein 7-AS stellarator P5.024 D. López-Bruna Effects of magnetic shear on confinement in TJ-II ECRH discharges P5.025 E. Calderón Direct evidence of coupling between density tails and turbulent transport in the scrape-off layer region in the TJ-II stellarator P5.026 F. Medina and Spatial distribution of lost ripple-trapped suprathermal electrons M.A. Ochando P5.027 J.A. Alonso High-speed turbulence imaging in TJ-II edge plasmas. P5.028 L. Krupnik Electron internal transport barriers, rationals and fluctuations in the TJ-II P5.029 M.A. Ochando Effect of suprathermal electrons on impurity ionization state P5.030 M.A. Pedrosa Experimental investigation of ExB sheared flow development in the TJ-II stellarator P5.031 R.O. Orozco Influence of ExB sheared velocities in the statistical properties of fluctuations in the plasma boundary of the TJ-II stellarator P5.032 V.I. Vargas Local transport in density and rotational transform scans in TJ-II ECRH discharges P5.033 E. Anabitarte Dynamical coupling between parallel flows and radial turbulent transport in a linear plasma machine P5.034 J.A. Mier Interpretation of perturbative transport experiments based on modulation techniques in DTEM numerical turbulence P5.035 J.M. Delgado Effect of poloidal flow on fluctuations P5.036 J. Dies Theoretical transport analysis in TJ-II scenarios with enhanced heat confinement P5.037 J. García Internal transport barrier simulation in the LHD P5.038 T.C. Luce Search for Threshold Behavior in DIII-D Electron Transport P5.039 A.N. Simakov Ion and electron viscosity for arbitrary-mean-free-path plasma P5.040 B. Coppi Magnetic Reconnection and Associated Transport of Plasma Thermal Energy P5.041 M.H. Redi Testing Gyrokinetics on C-Mod and NSTX P5.042 S.M. Kaye Confinement and Transport Scaling in NSTX P5.043 W.M. Solomon Neoclassical Poloidal Rotation Studies in High Temperature Plasmas P5.044 P.J. Catto Neoclassical Radial Electric Field and Flows in a Collisional Tokamak P5.045 G.R. Tynan Observation of Turbulent Driven Zonal Flow in a Cylindrical Plasma Device P5.046 C. Holland Studies of Density Fluctuation Dynamics in L-H Transitions and Pedestal Formation in DIII-D Using Beam Emission Spectroscopy P5.047 J.A. Boedo Modification of Intermittency by External Perturbations

121 P5.048 S. Gangadhara Spatially resolved ion heating measurements during a sawtooth crash on the Madison Symmetric Torus P5.049 F. Villone Analysis of RWM with a 3D Model of Conducting Structures P5.050 D. Bonfiglio MHD dynamo and charge separation in Reversed Field Pinch plasmas P5.051 P. Zanca First results on the analysis of magnetic fluctuations in toroidal geometry and comparison with numerical simulations for the RFX reversed field pinch P5.052 P. Piovesan Imaging of magnetic chaos reduction and coherent structures in the MST reversed field pinch P5.053 L. Marrelli Transport properties and magnetic fluctuations in RFX-mod P5.054 S. Martini First Reversed Field Pinch plasmas with new magnetic boundary in the RFX-mod experiment P5.055 P. Buratti Inter-Machine Scaling of Alfvén-like Modes Excited by Magnetic Islands in Tokamaks P5.056 H. Reimerdes Resistive Wall Mode Stability in High Beta Plasmas in DIII-D and JET P5.057 D. Testa Measurement of the Instability Threshold for Toroidal Alfvén Eigenmodes in JET Tokamak Plasmas P5.058 M.K. Zedda Novelty Detection for on-line disruption prediction systems P5.059 C.J. Boswell Experimental Observations of n 0 Mode Driven by Energetic Particles on JET P5.060 R.J. Buttery Interplay of Error Field and Neoclassical Tearing Mode drives and rotation for the 2/1 mode on JET and DIII-D P5.061 A.V. Burdakov Stable operation regimes in the multimirror trap GOL-3 P5.062 V.V. Postupaev Features of MHD activity in beam-heated plasma in multimirror trap GOL-3 P5.063 S.Yu. Medvedev New Adaptive Grid Plasma Evolution Code SPIDER P5.064 S.Yu. Medvedev Magnetic ELM Triggering and Edge Stability of Tokamak Plasma P5.065 A.A. Martynov Reversed Current Density in Tokamaks - Equilibrium and Stability Issues P5.066 I.S. Belbas Investigation of internal transport barrier in sawtooth oscillation OH and sawtooth stabilized by off-axis ECRH heating modes. P5.067 Yu.V. Gott Experimental Studies of the Ion Plasma Component Behavior during P5.068 N.V. Ivanov Irregularity of the Magnetic Island Rotation under External Helical Magnetic Perturbation in T-10 Tokamak P5.069 V.D. Pustovitov Analysis of RWM feedback systems with internal coils P5.070 V. Ilgisonis Sufficient stability condition for axisymmetric equilibrium of flowing magnetized plasma P5.071 L.G. Askinazi Plasma potential structure nearby the magnetic island in the TUMAN- 3M tokamak P5.072 G. Granucci Mitigation of disruption-generated runaways by means of ECRH P5.073 E. Joffrin Steady state and stationary long pulse operation in JET P5.074 L. Laborde A multiple-time-scale approach to the control of ITBs on JET P5.075 Y. Andrew H-mode Threshold Experiments on JET P5.076 V.K. Gusev Comparison of High Density Discharges Heated Ohmically and with NBI in the Globus-M Spherical Tokamak P5.077 A.V. Anikeev The SHIP experiment at GDT First experimental results P5.078 Yu.V. Mitrishkin Simulation of burning plasma in multivariable kinetic feedback control system P5.079 P.V. Savrukhin Analysis of the of the supra-thermal electrons during disruption instability in the T-10 tokamak P5.080 V.N. Dokuka Linearization of ITER plasma equilibrium model on DINA code P5.081 C. Ionita Direct Measurements of the Electron Temperature by a Ball- pen/Langmuir probe P5.082 R. Schrittwieser New Results on the Laser Heated Emissive Probe for Direct Measurements of the Plasma Potential P5.083 A.M.M. Fonseca Rational surfaces determination from ECE radiometry in the TCABR tokamak P5.084 L. Giannone A prototype resistive bolometer for ITER P5.085 M. Garcia-Muñoz Fast Ion Loss Diagnostic in ASDEX Upgrade P5.086 S. Brezinsek Use of a High Resolution Overview Spectrometer for the Visible Range in Fusion Boundary Plasmas P5.087 J. Svensson Bayesian Modelling of Spectrometer Systems and Plasma Profile Inversions from Spectra P5.088 D. Hildebrandt Thermal Properties of the CFC-material BN31 at surface heat loading

122 P5.089 L. Fattorini High spatial and temporal resolution FM-CW reflectometry to study pellet triggered ELMs at ASDEX Upgrade P5.090 I. Nunes Spatial asymmetries in ELM induced pedestal density collapse in ASDEX Upgrade H-modes P5.091 A.C.A. Figueiredo A tool for the parallel calculation and ready visualization of the Choi–Williams distribution application to fusion plasma signals P5.092 T.I. Madeira First results obtained with the real-time PHA diagnostic in the tokamak TCV P5.093 S.K. Varshney Study of core and edge plasma structures in TEXTOR with the burst- mode 10 kHz Thomson scattering system P5.094 G. Kamelander Experimental validation of improved pellet ablation models P5.095 T. Hellsten On Parasitic Absorption in FWCD Experiments in ITB Plasmas P5.096 R. Farengo Current drive with oscillating magnetic fields in RFPs and FRCs P5.097 M. Taguchi Radial diffusion equation for rf-driven current density in tokamaks P5.098 K. Hamamatsu Monte-Calro simulation of electron cyclotron cuurent drive in NTM magnetic islands P5.099 H. Ohwaki Modeling of Plasma Current Decay during the Disruption P5.100 H. Tsutsui Axisymmetric MHD Simulation of Disruption Dynamics in High-beta Reversed Shear Plasmas P5.101 D. Applegate Micro-Tearing Modes in MAST P5.102 G.P. Maddison Analytic approximations of divertor behaviour and application to MAST P5.103 A. Surkov Parametric decay instability accompanying electron Bernstein wave heating in MAST P5.104 V.V. Dyachenko Specific feature of ICR heating on the spherical tokamak Globus-M at high concentration of light ion component P5.105 A. Bendib Effect of electron collisions on nonlocal transport coefficients in laser heated plasmas P5.106 A.V. Brantov Relaxation of the localized temperature perturbation in the collisional plasma P5.107 J. Ramírez Upgraded version of the ICF simulation code MULTI P5.108 B. Dubroca Magnetic Field Generation in Pasmas due to Anisotropic Laser Heating P5.109 R.A. Fonseca OSIRIS 2.0 an integrated framework for parallel PIC simulations P5.110 F. Hamadi Numerical modelling of metallic plasma produced by UV laser beam ablation P5.111 B. Ju Lee Hyperthermal neutral beam for the material processing P5.112 M. Fiore Magnetic field generation in the Weibel instability P5.113 A.V. Kochetov Phase evolution of signals scattered by modified ionosphere P5.114 V.P. Krainov Comparison of various mechanisms of electron heating at the irradiation of dense targets by a super-intense femtosecond laser pulse P5.115 M.V. Goldman Electron holes and Buneman instabilities in nonuniform current- carrying plasma equilibria P5.116 S. Hamaguchi Plasma discharge in supercritical fluids P5.117 M.A. Erukhimova Stimulated emission without inversion in ensembles of classical electrons P5.118 N. Ezumi Electron Temperature Control in a Hot Cathode Arc Discharge Plasma P5.119 M.A. Raadu and Wake potential of a test charge using the stationary phase method M. Shafiq P5.120 R. Ellis Supersonic Rotation Exceeding the Alfven Ionization Limit in the Maryland Centrifugal Experiment P5.121 G. Sorasio Kinetic Theory of Electrostatic Collisionless Shocks in Plasmas P5.122 R. Florido Analysis of the influence of excited configurations and plasma interaction in atomic and plasma magnitudes of interest in NLTE plasmas using an analytical potential P5.123 R. Florido Analytical potential for determining atomic properties of ions in plasmas for a wide range of plasma coupling parameter. An application to calculate total photoionization cross section. P5.124 R. Florido Using sparse matrices techniques and iterative solvers in the calculation of level populations for NLTE plasmas P5.125 J.G. Kwak mm-Wave collective scattering study of density fluctuations in helicon plasmas

123 P5.126 G. Sorasio Orbital motion theory of the shielding around an electron emitting body P5.127 R. Florido Calculation of the radiative opacity of laser-produced plasmas using a relativistic-screened hydrogenic model for ions including plasma effects P5.128 K.N. Sato Development of a new non-diaphragm type shock tube for high density plasmas P5.129 S. Tzortzakis X and XUV time-resolved emission of laser-created hot Xe and Kr plasmas

124 ���������������������������

D1.001 T. Desai Recent results on laser ablation and crater formation in laser- plasmainteraction D1.002 Y. Takemura Space-resolving spectroscopy of X-ray amplifying laser-produced plasma D1.003 D. Desenne LIL Laser-Plasma Experiments Facility D1.004 W. Wang Characteristics of focused flattened Gaussian beams and vacuum electron acceleration D1.005 M. Vergote On the role of Reynolds stress and zonal flows in the formation of edge transport barriers in tokamaks. D1.006 P. Sandquist Fast electron bremsstrahlung in low-density, grassy sawtoothing plasmas on JET

D2.001 S.N. Antipov Super dense dust structures in cryogenic gas discharge plasma D2.002 S.A. Majorov Charging of dust grain in plasma at cryogenic gas temperature

D4.001 J. Kuba High-Energy K-alpha X-ray Source Development at 22 keV: Effects of Irradiation Parameters D4.002 E.M. Giraldez Target Fabrication and Characterization for Fast Ignition Experiments D4.003 A.P. Matafonov Investigation of neutron and -radiation yield as a result of atomic and nuclear processes in lasers plasma depending on spectral distribution of chirped laser pulse

D5.001 S. Petrov First measurements of high-energy charge-exchange neutrals in the TJ-II stellarator using a Compact Neutral Particle Analyser D5.002 S.V. Mirnov The Li-tokamak, as a way towards steady state Volumetric Neutron Source D5.003 K.H. Burrell ELM Suppression in Low Edge Collisionality Discharges Using n=3 Magnetic Perturbations D5.004 Dong Zhiwei 2D MHD description for a helical magnetic flux compression generator D5.005 G.Y. Antar The poloidal distribution of type III Edge Localized Modes and turbulent fluctuations in MAST D5.006 Z.Y. Chen Characteristics of the FEB emission oscillations in the HT-7 Tokamak D5.007 B.J. Ding Sawtooth observations in ramp up experiments assisted by lower hybrid current drive in HT-7 D5.008 L.Q. Hu The estimation of the electron temperature using soft x-ray imaging system in the HT-7 Tokamak D5.009 S.Y. Lin Radial profile of metallic impurities in the HT-7 tokamak D5.010 N.J. Fisch Alpha Channeling in Mirror Machines D5.011 X. Loozen Modeling of transport and profile modifications in tokamaks with Ergodic Divertors

125 NOTES

126 NOTES

127 Cover design by Sara Salas (SIASA S.A.)

128