L4, Kinetoplastid 1

Total Page:16

File Type:pdf, Size:1020Kb

L4, Kinetoplastid 1 Class Kinetoplasta Phylum Euglenozoa: large and diverse group of protists including photosynthetic, heterotrophic, and parasitic species. Kinetoplasta are relatively basal species in the group. Euglenozoa Kinetoplastida Trypanosoma Cryptobia • Bodonids: free living or parasitic. – Ichthyobodo spp., Cryptobia spp. Blood pathogens of fish. • Trypanosomatids: parasitic in intestine of arthropods and/or in blood of vertebrates. – Human parasites: Trypanosoma gambiense, T. rhodesiense, T. cruzi; Leishmania spp. – Parasites of livestock: T. evansi, T. equinum, T. equiperdum. “African” Trypanosomes • Trypanosoma brucei, T. rhodesiense, T. gambiense. Sleeping sickness restricted to “fly belt” where vectors, Glossina spp. occur. Sleeping sickness • A wasting disease associated with successive waves of fevers. Parasite numbers in blood (parasitemia) increase dramatically during bouts. • Lymph nodes swell accompanied by pain, headache, weight loss, anemia, eventually death. • T. rhodesiense kills within months; T. gambiense is slower; invades CNS giving rise to sleeping sickness. VSG switching • One expression site active at a time. • Large archive of VSG genes throughout genome (some full genes, some pseudogenes). • Can switch from one full gene to another or produce mosaics of genes and pseudogenes. • Can switch active expression site. Epidemiology • Only certain species of Glossina transmit so distribution spotty through the fly belt. • Situation complicated by reservoir hosts which maintain the parasite even in the absence of man (T. rhodesiense > T. gambiense) Treatment and control • Key to control is surveillance of at-risk population and treatment: suramin or pentamidine (blood forms), melarsoprol (late stage, CNS); drugs have serious side effects which must be monitored. • Vectors control: remove scrub every year; control reservoirs, DDT Trypanosoma cruzi Vectors: Panstrongylus spp., Rhodnius spp., Triatoma spp. (Heteroptera; Reduviidae). Many potential reservoirs. Posterior station transmission. Parasites live in blood (trypomastigotes) and intracellularly (amastigotes) in vertebrate host. Pathogenesis-early • Small sore at bite site. Trypomastigotes enter cells, transform to amastigotes and divide producing a new crop of cells which are disseminated throughout body. Eventually host will destroy trypomastigates and other extracellular stages leaving pseudocysts in smooth and cardiac muscle. Cell Entry • parasite attaches to cell membrane and recruits lysosomes to the region. • Once in lysosome, acid environment stimulates parasite to produce a hole-making molecule that it uses to leave the lysosome. Pathogenesis-later • Variable: many cases resolve and present as symptomless throughout life of individuals; a few result in death during the acute phase; most often infections result in a chronic disease involving some level of cardiopathy. • Often autonomic ganglia are destroyed resulting in loss of tonus: megaoesophagus, megacolon Epidemiology • Enzootic • Separate strains infect humans and animals • Vector may inhabit houses and palms mixing sylvatic and domestic strains Treatment and Control • No cure exists and treatments affect only blood stream forms leaving pseudocysts intact. Treat cardiac symptoms. • Vector control cost effective: build houses less attractive to Triatomes and spray to kill insects. .
Recommended publications
  • And Wildlife, 1928-72
    Bibliography of Research Publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF SPORT FISHERIES AND WILDLIFE RESOURCE PUBLICATION 120 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 Edited by Paul H. Eschmeyer, Division of Fishery Research Van T. Harris, Division of Wildlife Research Resource Publication 120 Published by the Bureau of Sport Fisheries and Wildlife Washington, B.C. 1974 Library of Congress Cataloging in Publication Data Eschmeyer, Paul Henry, 1916 Bibliography of research publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72. (Bureau of Sport Fisheries and Wildlife. Kesource publication 120) Supt. of Docs. no.: 1.49.66:120 1. Fishes Bibliography. 2. Game and game-birds Bibliography. 3. Fish-culture Bibliography. 4. Fishery management Bibliogra­ phy. 5. Wildlife management Bibliography. I. Harris, Van Thomas, 1915- joint author. II. United States. Bureau of Sport Fisheries and Wildlife. III. Title. IV. Series: United States Bureau of Sport Fisheries and Wildlife. Resource publication 120. S914.A3 no. 120 [Z7996.F5] 639'.9'08s [016.639*9] 74-8411 For sale by the Superintendent of Documents, U.S. Government Printing OfTie Washington, D.C. Price $2.30 Stock Number 2410-00366 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 INTRODUCTION This bibliography comprises publications in fishery and wildlife research au­ thored or coauthored by research scientists of the Bureau of Sport Fisheries and Wildlife and certain predecessor agencies. Separate lists, arranged alphabetically by author, are given for each of 17 fishery research and 6 wildlife research labora­ tories, stations, investigations, or centers.
    [Show full text]
  • Trypanosoma Cruzi Genome 15 Years Later: What Has Been Accomplished?
    Tropical Medicine and Infectious Disease Review Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Jose Luis Ramirez Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela; [email protected] Received: 27 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: On 15 July 2020 was the 15th anniversary of the Science Magazine issue that reported three trypanosomatid genomes, namely Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. That publication was a milestone for the research community working with trypanosomatids, even more so, when considering that the first draft of the human genome was published only four years earlier after 15 years of research. Although nowadays, genome sequencing has become commonplace, the work done by researchers before that publication represented a huge challenge and a good example of international cooperation. Research in neglected diseases often faces obstacles, not only because of the unique characteristics of each biological model but also due to the lower funds the research projects receive. In the case of Trypanosoma cruzi the etiologic agent of Chagas disease, the first genome draft published in 2005 was not complete, and even after the implementation of more advanced sequencing strategies, to this date no final chromosomal map is available. However, the first genome draft enabled researchers to pick genes a la carte, produce proteins in vitro for immunological studies, and predict drug targets for the treatment of the disease or to be used in PCR diagnostic protocols. Besides, the analysis of the T. cruzi genome is revealing unique features about its organization and dynamics.
    [Show full text]
  • Biology with Medical Genetics Course
    1 FEDERAL STATE BUDGETARY EDUCATIONAL INSTITUTION OF HIGHER EDUCATION KUBAN STATE MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF THE RUSSIAN FEDERATION (FGBOU IN Kubsmu of the Ministry of health of Russia) _________________________________________________________________________ Department of biology with medical genetics course BIOLOGY Workbook and guidelines to practical classes for 1st year students of the medical faculty bilingual form of education student__________________________ group №________________________ 2019 / 2020 academic year Krasnodar-2020 2 УДК: 576:378.61-057.875 ББК:28.03 Б 63 Compilers: Employees of the Department of biology with the course of medical genetics FGBOU IN Kubsmu of the Ministry of health of Russia: Head of the Department, Professor I. I. Pavlyuchenko, associate Professor E.V Sapsay, associate Professor L. R. Gusaruk, associate Professor L.N. Shipkova, senior laboratory assistant Kolesnikova S. A. Reviewers: I. M. Bykov-doctor of medical Sciences, Professor, head of the Department of fundamental and clinical biochemistry of the RUSSIAN Ministry OF health; I.V Uvarova - head of the Department of Linguistics, associate Professor; Study guide (workbook and methodological instructions for practical classes) under the heading "Biology" compiled and reworked on the basis of the Working program on biology in accordance with FGOS3 + Higher Vocational Education of the Russian Federation. It is intended for foreign students of all faculties of medical University. Recommended for publication of the CMS FGBOU IN
    [Show full text]
  • The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma Brucei in the Mammalian Bloodstream
    pathogens Review The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream Eleanor Silvester †, Kirsty R. McWilliam † and Keith R. Matthews * Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, King’s Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; [email protected] (E.S.); [email protected] (K.R.McW.) * Correspondence: [email protected]; Tel.: +44-131-651-3639 † These authors contributed equally to this work. Received: 23 May 2017; Accepted: 22 June 2017; Published: 28 June 2017 Abstract: African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts.
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • Cryptobia Neghmei Sp. N. (Protozoa: Kinetoplastida) in Two Species of Flounder, Paralichthys Spp
    Revista Chilena de Historia Natural 74:763-767, 2001 Cryptobia neghmei sp. n. (Protozoa: Kinetoplastida) in two species of flounder, Paralichthys spp. (Pisces: Paralichthydae) off Chile Cryptobia neghmei sp. n (Protozoa: Kinetoplastida) en dos especies de lenguados Paralichthys spp. (Pisces: Paralichthydae) de la costa de Chile 1 2 2 RASUL A. KHAN , VICTOR LOBOS , FÉLIX GARCÍAS², GABRIELA MUNOZ², VERÓNICA VALDEBENIT0 & MARIO GEORGE-NASCIMENTO² 1Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, AlB 3X9 2Facultad de Ciencias, Universidad Catolica de Ia Santfsima Concepcion, Casilla 297, Concepcion, Chile ABSTRACT Cryptobia neghmei sp.n. is described from the blood oftwo species of flounder, Paralichthys microps and P. adspersus, inhabiting the Chilean coast in the southern Pacific Ocean. Flagellates were elongate, slender, with two flagella and a conspicuous undulating membrane. It was distinguished from previously described species on the basis of its unusual shape and dimensions. All of 97 flounder were infected upon examination. Developmental stages of kinetoplastid protozoans, perhaps C. neghmei sp. n., were observed in some leeches Glyptonotobdella sp. that were found attached to flounder, which probably represent a mode for transmission among piscine hosts. Key words: Cryptobia neghmei, hemoflagellate, flounder, Paralichthys microps, Paralichthys adspersus, coastal Chile. RESUMEN Se describe a Cryptobia neghmei sp.n., un protozoa sangufneo de dos especies de lenguados, Paralichthys micropsy P. adspersus, habitantes de Ia costa de Chile en el sur-este del oceano Pacífico. Los protozoos flagelados son de forma elongada, delgados con dos flagelos y una membrana ondulante conspicua. Esta especie se distingue de aquellas descritas previamente en base a su forma y dimensiones inusuales.
    [Show full text]
  • Massive Mitochondrial DNA Content in Diplonemid and Kinetoplastid Protists
    Research Communication Massive Mitochondrial DNA Content in Julius Lukes1,2*† Richard Wheeler3† Diplonemid and Kinetoplastid Protists Dagmar Jirsová1 Vojtech David4 John M. Archibald4* 1Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceské Budejovice (Budweis), Czech Republic 2Faculty of Science, University of South Bohemia, Ceské Budejovice (Budweis), Czech Republic 3Sir William Dunn School of Pathology, University of Oxford, Oxford, UK 4Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada Summary The mitochondrial DNA of diplonemid and kinetoplastid protists is known 260 Mbp of DNA in the mitochondrion of Diplonema, which greatly for its suite of bizarre features, including the presence of concatenated cir- exceeds that in its nucleus; this is, to our knowledge, the largest amount cular molecules, extensive trans-splicing and various forms of RNA edit- of DNA described in any organelle. Perkinsela sp. has a total mitochon- ing. Here we report on the existence of another remarkable characteristic: drial DNA content ~6.6× greater than its nuclear genome. This mass of hyper-inflated DNA content. We estimated the total amount of mitochon- DNA occupies most of the volume of the Perkinsela cell, despite the fact drial DNA in four kinetoplastid species (Trypanosoma brucei, Trypano- that it contains only six protein-coding genes. Why so much DNA? We plasma borreli, Cryptobia helicis,andPerkinsela sp.) and the diplonemid propose that these bloated mitochondrial DNAs accumulated by a Diplonema papillatum. Staining with 40,6-diamidino-2-phenylindole and ratchet-like process. Despite their excessive nature, the synthesis and RedDot1 followed by color deconvolution and quantification revealed maintenance of these mtDNAs must incur a relatively low cost, consider- massive inflation in the total amount of DNA in their organelles.
    [Show full text]
  • Phylum Protozoa Or Protista Class Kinetoplastida – Have Kinetoplast
    WEEK 3. Paper of the week: Lima, L.; Espinosa-Álvarez, O.; Hamilton, P.B.; Neves, L.; Takata, C.S.; Campaner, M.; Attias, M.; de Souza W.; Camargo, E.P.,; Teixeira, M.M. 2013. Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasit Vectors. Aug 3;6:221. Phylum Protozoa or Protista Class Kinetoplastida – have kinetoplast – a large darkly staining body in the mitochondrion. This is comprised of numerous small rings of interlocking DNA. DISTRIBUTION OF TRYPANOSOMA CRUZI. Endemic in South America, Central America, and North America. *appears that the North American strain – shows less pathogenicity in humans. *South American strains are more pathogenic. Eradication campaign by the World Health Organization decreased number of cases in the Neotropics, still many people living in poverty are at risk. Estimated 120 million people can be infected at any time. -First confirmed case in the US (AUTOCTHONOUOS) in 1955. RESERVIORS – Endemic mammals, carnivores, marsupials, rodents, bats. VECTORS – Various species of Reduviidae. (peridomestic and domestic life cycles) Rhodnius prolixus Triatoma infestans Panstrongylus megistus Common names for these bugs are cone-nosed bugs, kissing bugs, assassin bugs, triatomines, etc. Formerly, biologists thought that there was a good chance that the disease could be eradicated from South America and there was a big program to try to do that funded by WHO and host countries. I worked in Bolivia from 1984 – 2000 and I knew, based on how the people live in the countryside in Bolivia, that this program was going to fail. [Discuss with Slides] P 75.
    [Show full text]
  • Biological Studies on the Hemoflagellates of Oregon Marine Fishes and Their Potential
    AN ABSTRACT OF THE THESIS OF EUGENE M. BURRESONfor the degree DOCTOR OF PHILOSOPHY (Name) (Degree) in ZOOLOGY presented on April 8, 1975 (Major Department) (Date) Title: BIOLOGICAL STUDIES ON THE HEMOFLAGELLATES OF OREGON MARINE FISHES AND THEIR POTENTIAL LEECH VECTORS Redacted for Privacy Abstract approved: . Robert E. Olson Of 2122 marine fishes belonging to 36 species collected in the vicinity of Newport, Oregon, 541 belonging to 8 species were infected with hemoflagellates. Four species of trypanosomes and three species of cryptobias were found in offshore fishes, but no hemoflagellates were observed in fishes from Yaquina Bay. Trypanosoma pacifica was found in 177 of 1102 Parophrys vetulus, 3 of 84 Citharichthys sordidus, and 1 of 35 Lyopsetta exilis, and survived in 10 other species after intraperitoneal injection.The host-specificity observed in nature was probably the result of selective feeding by the leech vector, possibly Oceanobdella sp. or Johanssonia sp.Division stages of T. pacifica were observed in the fish host and described.The growth rate of juvenile P. vetulus injected with T. pacifica was less than that of uninfected individuals for a 10 week period, after which the growth rates of the two groups were equivalent. Trypanosoma gargantua was found in 3 of 7 Raja binoculata and the vector was shown to be the leech Orientobdella sp. Two unidentified trypanosomes were observed, one from 21 of 1102 P. vetulus, 24 of 303 Eopsetta jordani, and 6 of 61 Microstomus pacificus, and the other from 4 of 35 L. exilis. A small, active cryptobiid was found in 106 of 303 E.
    [Show full text]
  • A Cryptobia Salmositica (Kinetoplastida: Sarcomastigophora) Species-Specific DNA Probe and Its Uses in Salmonid Cryptobiosis
    DISEASES OF AQUATIC ORGANISMS Vol. 25: 9-14, 1996 Published May 9 Dis Aquat Ory ~ A Cryptobia salmositica (Kinetoplastida: Sarcomastigophora) species-specific DNA probe and its uses in salmonid cryptobiosis S. Li, P. T. K. Woo* Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 ABSTRACT A Cryptobia salmositica DNA probe (CS-Vl),of approxiinately 12 k~lobase-pairs (kb) was developed from an avirulent strain of the pathogen Nuclear DNA of C salmosltica was Isolated cleaved with Hind 111, cloned and labelled with non-radioactive digoxigenin CS-V1 hybndized spe- cifically with C salmositica DNA and there were no cross-hybr~dizationsbetween the probe and DNA from C borreli C bullockj and C catostom~A potentially useful identif~cation/diagnostictechnique for C salmosit~cawas developed using blood dned on filter paper The dried blood DNA dot blot (DBDB) technique distlngu~shedC salmosihca from C catostomi, C bullocki and C borreli and it was also used for the diagnosis of C salmontica infection in fish The technique does not require DNA purification and the probe does not cross-hybndize with rainbow trout blood DNA Less than 20 p1 of fish blood (which contains approximately 100000 organisms inl-l) is required using the DBDB tech- nique KEY WORDS Cr~iptobiasalmositica DNA probe Cryptobiosis Diagnosis Rainbow trout INTRODUCTION present study was to develop a C. salmositica-specific DNA probe to distinguish C, salmositica from other Cryptobia salmositica is a pathogenic haemoflagel- Cryptobia spp. and perhaps also to use it for diagnosis late of salmonids in western North America (Woo 1987, of infections in fishes.
    [Show full text]
  • WOS000297428400012.Pdf
    Acta Tropica 120 (2011) 231–237 Contents lists available at SciVerse ScienceDirect Acta Tropica journa l homepage: www.elsevier.com/locate/actatropica Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats ∗ Fernando Yukio Maeda, Renan Melatto Alves, Cristian Cortez, Fabio Mitsuo Lima, Nobuko Yoshida Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil a r t i c l e i n f o a b s t r a c t Article history: A new genotype of Trypanosoma cruzi, associated with bats from anthropic areas, was recently described. Received 19 July 2011 Here we characterized a T. cruzi strain from this new genetic group, which could be a potential source Received in revised form 23 August 2011 of infection to humans. Metacyclic trypomastigotes (MT) of this strain, herein designated BAT, were Accepted 1 September 2011 compared to MT of well characterized CL and G strains, as regards the surface profile and infectivity Available online 7 September 2011 toward human epithelial HeLa cells. BAT strain MT expressed gp82, the surface molecule recognized by monoclonal antibody 3F6 and known to promote CL strain invasion by inducing lysosomal exocytosis, Keywords: as well as mucin-like molecules, but lacked gp90, which functions as a negative regulator of invasion in Trypanosoma cruzi G strain. A set of experiments indicated that BAT strain internalization is gp82-mediated, and requires New genotype the activation of host cell phosphatidylinositol 3-kinase, protein kinase C and the mammalian target of Metacyclic forms Cell invasion, Bats rapamycin.
    [Show full text]
  • Hemoparasites of the Genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and Hemogregarines in Anurans of the São Paulo and Mato Grosso Do Sul States – Brazil
    “main” — 2009/5/4 — 11:00 — page 199 — #1 Anais da Academia Brasileira de Ciências (2009) 81(2): 199-206 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in Anurans of the São Paulo and Mato Grosso do Sul States – Brazil DENISE D.M. LEAL1, LUCIA H. O’DWYER1, VITOR C. RIBEIRO2, REINALDO J. SILVA1, VANDA L. FERREIRA3 and ROZANGELA B. RODRIGUES3 1Departamento de Parasitologia, Instituto de Biociências, Unesp, Distrito Rubião Júnior s/n 18618-000 Botucatu, SP, Brasil 2Instituto de Biotecnologia Aplicada a Agricultura, UFV, Campus Universitário, Avenida Peter Henry Rolfs s/n 36570-000 Viçosa, MG, Brasil 3Departamento de Biologia-Ecologia, Centro de Ciências Biológicas e da Saúde (CCBS), UFMS, Cidade Universitária 79070-900 Campo Grande, MS, Brasil Manuscript received on March 11, 2008; accepted for publication on October 8, 2008; presented by LUIZ R. TRAVASSOS ABSTRACT Wild animals are exposed to numerous pathogens, including hemoparasites. The Trypanosoma and hemogregarine group are frequently reported as parasites in anurans (frogs, tree frogs and toads). The identification of these hemopar- asites is usually made through stage observation of their morphology in the peripheral blood of the host. There are no studies, however, based on the biological cycle of these hemoparasites. The objective of the present study was to evaluate the presence of hemogregarines and Trypanosoma spp. in anurans captured in the States of São Paulo and Mato Grosso do Sul – Brazil and to perform the morphological and morphometric characterization of these hemopar- asites. The species of anurans examined were: Dendropsophus nanus, D.
    [Show full text]