https://ntrs.nasa.gov/search.jsp?R=19730016139 2020-03-23T04:15:45+00:00Z

If 7 3 24866

NASACR 121104

VOLUME

SPACE VEHICLE INTEGRATED THERMAL PROTECTION/STRUCTURAL/ PROTECTION SYSTEM

APPENDIXES TO FINAL REPORT

by D. H. Bartlett & D. K. Zimmerman

AEROSPACE COMPANY

April 1973

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA LEWIS RESEARCH CENTER

Contract NAS3-13316

J. R. Barber, Project Manager 1 Report No 2 Government Accession No 3 Recipient's Catalog No NASACR-121104

4 Tltle and Submle 5 Report Date Appendixes To Final Report April 1973 Space Vehicle Integrated Thermal Protection/Structural 6 Performing Organization Code Meteoroid Protection System 7 Authors) В Performing Organization Report No D. H. Bartlett, D. K. Zimmerman D180-15172-2 10 Work Unit No 9 Performing Organization Name and Address

Boeing Aerospace Company 11 Contract or Grant No (A division of The Boeing Company) NAS3-13316 P.O. Box 3999 Seattle, Washington 98124 13 Type of Report and Period Covered 12 Sponsoring Agency Name and Address Final Contractor Report National Aeronautics & Space Administration 14 Sponsoring Agency Code Lewis Research Center

15 Supplementary Notes J. R. Barber, Project Manager

16 Abstract

A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic space vehicle propulsion module. Structural concepts were evaluated to identify leastweight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetra- tion experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demon- strate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/ meteoroid protection system.

17 Key Words (Suggested by Authorlsl) 18 Distribution Statement ... . Structural Tests Multilayer Insulation , . ., ,. , '. . _ . DPropulsion Vehicle Meteoroid Protection ^ . . ,. _ ... Desig n cStudies Unclassified - Unlimited Cryogeni 7 а c Propellent r s . . • ~...... _ . .. Structura c l Optimization Composite Structure 19 Security Classif (of this report) 20 Security Classif (of this page) 21 No оf Pages 22 Price* Unclassified Unclassified 2/Ч $3.50

For sale by the National Technical Information Service, Springfield Virginia 22151 PAGE MISSING FROM AVAILABLE VERSION TABLE OF CONTENTS

Page

INTRODUCTION 1

APPENDIX A 3

APPENDIX В 17

APPENDIX С 79

APPENDIX D 129

APPENDIX E ' 179

in INTRODUCTION

This is a companion document to Volume I, NASA CR-121103, "Final Report". The appendixes contained herein supplement the technical discussion in that document.

Appendix A is a description of the TATE (Tank Arrangement Thermal Efficiency) computer program. The results of the TATE analysis were discussed in Sections 1.1.2, 1.2.3, 1.3.2, 1.3.5 and 3.2 of Volume I.

Appendix В contains the detailed results of the Vehicle Structure Evaluation for the ten preliminary designs. Vehicle configurations and dimensions are shown. Tabulated weights for various construction methods and materials are presented. Structural concept weights are summarized in tables which include end attach- ment weight adjustments. The material in this appendix supplements the discus- sion and summary charts of Section 1.2.3 of Volume I.

Appendix С presents a description of the meteoroid environment, derivation of the earth-mars trajectory for this study and the entire quantity of design curves developed from the test data of this program. This material supplements the discussion of Sections 1.2.3 and 1.3.4 of Volume I.

Appendix D contains the detail design drawings and a discussion of the ten vehicle preliminary designs. These results were summarized in Section 1.2.3 of Volume I.

Appendix E contains the temperature data obtained in the thermal performance tests. This appendix also contains a description of the thermal model used in the analysis of results and gives the temperatures predicted for each test case. The test results are discussed in Section 2.2.3 of Volume I. THIS PAGE INTENTIONALLY LEFT BLANK APPENDIX A TANK ARRANGEMENT THERMAL EFFICIENCY COMPUTER PROGRAM

This appendix discusses the construction and operation of the TATE program used to derive optimized weights for tanks, insulation, propellent vapor, helium and helium tank. The results obtained through use of this program were described in Sections 1.1.2, 1.2.3, 1.3.2, 1.3.5 and 3.2 of Volume I "Final Report", NASA CR-121103.

The program was designed to arrive at a least weight case for any vehicle con- figuration through an iterative random search process where search limits were narrowed after evaluation of every 2000 cases. This process was continued for 10 iterations or a total of 20,000 cases. A computerized search technique was necessary in order to find optimum values of multiple, independent variables, each with arbitrary constraints.

The program randomly selected thicknesses of insulation for all locations on a given vehicle and calculated heat flow to the cryogens. Two mission phases were considered, ascent and coast. Ascent heating included the effects of residual purge gas in the MLI (Multilayer Insulation) and higher temperatures due to near earth environment and random orientation. A thermal balance was main- tained, therefore, heat could flow in or out of the propellents. The program calculated tank pressures and determined the critical point of the mission, i.e., launch, end boost, or end of mission. The tank sizes and gages were determined and a summary of insulation, tanks, propellent vapor and helium weights were made.

The assumptions for the study were:

1) The spacecraft was oriented during coast so that the payload was between the sun and the propulsion vehicle. The only heat to the propulsion vehicle came from the payload and the solar panels which were assumed to be 520°R (289°K) with e = 1.0, and 620°F (344°K) with £ = 0.05, respectively.

2) The net heat that penetrated the insulation blanket was considered the heat into the cryogenic tank.

The internal and external insulation surface temperatures used in the analysis were derived from the steady state solution of the BETA (Boeing Engineering Thermal Analyzer) program.

The thickness of MLI on all surfaces was determined by: ' = VINLIM + VXLIM 'MINLIM» RUNIF(A)

RUNIF(A) is a subroutine that selects random numbers uniformly between 0 and 1.

'MAXLIM = "-

'MINLIM =

l\i AW) Extreme thicknesses obtained from 5 best cases MAX I t. .... I from previous 2000 iterations.

riiAwim\ Insulation thickness limits to be used for next MAXLIM I 'MINLIM j 200°'*r<"ions- S = 0.5 Factor to_control search limit reduction rate.

After every 2000 cases Т .v| ... and Т ...... were modified and set equal to the minimum and maximum thickness of the 5 leastweight cases. Each con- figuration was run for 20,000 cases.

The total heat transfer into the propellant tanks included heat transfer through the MLI during the ascent phase plus heat transfer through the MLI combined with heat leaks through tank supports and fluid lines during the coast phase.

The equations for heat transfer were:

Q_ - (Q. + Q. + Q- + Q + Q ) / 4992 (Hours) ' 'м 'A s pD HLu t where Q = Total average heat transfer rate to fuel or oxidizer.

Q. = Total heat transferred thru MLI during coast. 'м Q. = Total heat transferred thru MLI during ascent. !A Q<- = Total heat transferred thru tank supports.

Qp = Total heat transferred thru plumbing lines.

Q., - Total heat transferred thru MLI by any other form. L Q lм

Modifying the MLI heat transfer equation

+ KPEN) A,i / ' |l |l and Q = 4992 £ Q-- (for the coasf Pnc"se) !M |i '' where T, = Temperature on outside of MLI j' T_ = Temperature on inside of MLI j> A = Surface area of MLI i" t.. = Thickness of MLI I1 k.. = Thermal conductivity of MLI

КПРК, = Thermal conductance of nylon fasteners per unit MLI area PEN • Q.. = Average heat transfer rate to fuel or oxidizer during coast phase of mission

T, and T are input constants for each insulation panel. These were ob- it» ^o . • I1 I1 tained by a separate thermal analysis.

The insulation conductivity was generalized as k. = к (т 2 + т 2) (т + т ) + к (т + т ) II K. . I.. t-. . I.. £-. . t~.. I.. £•. . 1 1 1 1 I1 1 M " '

The subscripts on the constants were required to identify the different types of MLI used on the vehicles.

The term KDC. was assumed to be a constant.

Q / Al-- \ Q. = A.. (——LL + Q t..) 1 f A2 1 A.. 'I V> -jj- " ji I' /' |,

Q. =52 QI (f°r ^e ascent" phase) A ji A.. Q. = heat transferred thru MLI during ascent phase of A.. mission for panel ji.

QA1 - constant which depended on the type of MLI and ji location on vehicle.

Q._ = Term required for use with perforated radiation shields M

Q.. and QAO were constants which depended on the type of insulation i' i1 and location on the vehicle. These constants were determined by a curve fit to data from the evacuation analyses. In most cases, QAO ~ 0.

Qs = 4992 £6

I1

= K (T T QS S 1.. - FU > 11 OR OX where: K_ was an input constant for each configuration,

TI was one of the boundary temperatures specified for the MLI, !' TCI was fuel temperature

T_v was oxidizer temperature Q_ was heat leak through structure

Qp - 4992 r

QP = KFILL(T1.. " TFU } + KVENT(T1.. " TFU 11 OROX "' OROX

KFEED(TENG " TFU *' OROX

FILL was thermal conductivity of fill line

K.,.- was thermal conductivity of vent line VENklTT ' was thermal conductivity of feed line

Т,--..,, was engine temperature ENG These were all input constants. HL

= K HL - У

where T, was temperature outside

T_ was temperature inside

K was conductivity from BETA program uMl L • This form of Q was used for special cases, e.g., where the LF« feed line penetrated the LhL compartment on Vehicle 1-14.

KFEED(TENG which was divided into:

where Л^ was the temperature KHL,

*T. K 1 4 T where Т л was a feed line < 4- T2) «т э support. з Ч

The representative Q's were accumulated and the^ Q was determined by divid- ing by the mission time and checked against the Q constraints. The Q con- straints were the heat flow values which resulted in limiting pressures (5 psia (SA.S.kN/m ) minimum pressure and critical maximum pressure). If either of the Q's was outside the constraints then the case was cancelled and the program proceeded to the next case. If the constraints were satisfied then the MLI weight was calculated.

WT. (A.t.) ms i I

A. = Area of panel

t. = Thickness of MLI i p = Density of MLI With non-vented tanks, any heat added to the propel lant was reflected in a change in internal energy, U. Assuming saturated liquid and vapor always in equilibrium, the pressure, temperature, liquid density and vapor density was also changed continuously with change in U. The total internal energy was made up of contributions of the liquid and the vapor:

и - U + U

uM = u.M. + u_M L L (j О M, M U = \{-M + uG(-M-) = uLmL + UGmG

The mass ratios m. and m_ could be defined in terms of the specific volume v of liquid ( ,)r gas ( V ) and total system ( V ) :

V_ ---- v. M + - V M - — L M G °

Since the sum of the liquid and vapor masses was equal to the total mass, i.e., m. + m = 1

(I ~rn/-x) "^ лП^л G G G "-"L

substituting

и = uL(l - и = v-

u = U + ( U U } L V-V G ' L

At any given set of conditions, the only unknown was V

8 A table of Q versus vapor pressure was derived for both cryogens, assuming that the liquid and vapor existed in equilibrium. Also used were tables of pressure versus densities of vapor and liquid in addition to helium gas used to pressurize tanks for the engine burn. The helium gas was assumed to be at the cryogen temperature and pressure plus N. P. S. P. From this information was found:

x M p Vapor Weight = - ( — -

M = mass propellent usable plus residuals

x = ullage required at mission end л = density of vapor

P. = density of liquid

2. Helium Weight = M

P PL

P, = density of helium gas

This assumed the required helium equalled the replacement of all the cryogenic liquid.

3. Helium bottle weight = 2.74 (wt. helium) assuming:

301 CRES ARDEFORM 2 5000 psia (34,5 MN/m design limit pressure f = 265 KSI @ - 320°F (1827 MN/m2 @ 77.7°K) yield F.S =1.33

~ 7A wt. helium bottle wt. helium The sizing and weighing of the fuel and oxidizer tanks is shown below:

LhL - LF,, System

Fuel Tank

The helium was stored in the oxidizer tank W, in fuel tank = 0 he Fuel tank operating pressure = P. . + NPSP £ 14.7 psia fuel vapor (}Q]

Then call tank sizing subroutine corresponding to the kind of tank.

Oxidizer Tank

W, = wt. helium in oxidizer tank he Oxidizer tank operating pressure = P . .. + NPSP ^ 14.7 psia ox.d.zer vapor (}Q}

Call Tank sizing subroutine corresponding to the kind of tank. NOTE: The sizing of the oxidizer tank included the volume of helium.

CH. - FLOX Uninsulated System (Both propellents at same temperature)

Fuel Tank

The helium was stored in the oxidizer tank W, in fuel tank = 0 he 2 Fuel tank operating pressure = Pf . + 14.7* (101.3 kN/m ) Call fuel tank sizing subroutine corresponding to the kind of tank.

Oxidizer Tank

W, = wt. helium for oxidizer tank plus wt. helium for fuel tank he Oxidizer tank operating pressure = P + NPSP> 14.7 psia _ °XyVaP°r (101.3kN/m2) Call tank sizing subroutine corresponding to the kind of tank.

* Based on initially adding helium to prevent tank collapse prior to launch due to vapor pressure less than one atmosphere.

10 CH4 - FLOX Insulated System

Fuel Tank

The helium was stored in the fuel tank

W, = W, . . + W, ... he he fuel he oxidizer о

Fuel tank operating pressure = Pp + NPSP > 14.7 psia (101.3 kN/m )

Call tank sizing subroutine corresponding to the kind of tank

Oxidizer Tank

W. =0 since it was stored in fuel tank he

Oxidizer tank operating pressure = P + NPSP £ 14.7 psia 0 °xyvap°r (101.3 kN/m2) Call tank sizing subroutine corresponding to the kind of tank.

The kinds of tanks included in this program were spherical, cylindrical, oblate spheroid, toroidal, and a common bulkhead tank. Following is a description of the sizing and weighing of each.

The baseline tank parameters were:

Factors

= F = 1 95 P PROOF ty ' op

Allowables (2219-T6E46 Aluminum Alloy)

F psi (MN/m2) F psi (MN/rr,2)

Room Temp. 39,000(268.9) 54,000(372.3) Methane -260°F 43,500(299.9) 61,700(425.4)

F2-FLOX -306°F 44,900(309.6) 64,800(446.8)

H? -423°F 51,900(357.8) 75,600(521.2)

11 Pressures

P = P + P , op vp npsh

Oxidizers - P = P +12.0 psia (82.7 kN/m2) op vp г \ Fuels - P = P +8.0 psia (55.2 kN/m2) op vp v Design pressure = proof pressure = 1.25 P op

Weight

Based on calculated or minimum gage x area x density

P = 0.102 Ib/in3 (2823 kg/m3) Minimum Gage = 0.025 in (0.064 cm)

Spherical Tank M W - ' " v = 1728 < -> 3 V = total volume stored in all tanks (in ) M. = mass of liquid (Ibs) 3 P . = density of liquid (Ibs/ft )

W, = wt. helium stored in tank (Ibs)

уIA N .у(4.1888). \/

R = radius of each tank (in) AN = number of tanks

1.25 (P ) R Т = °P 2F ty

Т = wall thickness (in) P = operating pressure of tank F yield stress of tank (psi)

12 WT = AN (1.2818) R Т

WT = weight of all tanks (IBs)

2. Cylindrical Tank - Oblate Spheroid Heads

M. W u V = 1728 (• .95 p. I Н

R = Radius is fixed (in.)

-2.9600 R) Н = 3.1416 R

Н = height of cylindrical portion of tank (in.)

Т = V2(1.25) (P ) R/2 F > .025

Т = thickness of cylindrical wall (in.)

Т = thickness of spherical cap wall (in.)

WT = AN (1.0392 R Т + .64089 R Н Т ) s с WT = weight of all tanks

3. Oblate Spheroid Tank

M W, \ V = 1728 ^=~ +-JS- J .95p 7.7 /

1/3 A = ( AN (2.96)

В = .7071 A

A = major radius of tank В = minor radius of tank

13 V2~(1.25)P A

Т = 2 °P > .025 Fty

Т = thickness of wall (in.)

WT = AN (1.0392 A2T)

WT = weight of all tanks (Ibs)

4. Torus Tank -f-+ A is fixed major radius -с / М. V = 1728 (жт;

1/2 в = V ,AN (19.739)А,

1.25 P В Т = , °P -Ч > .025 -2 B/A

WT = AN (4.0268 А ВТ)

5. Common Bulkhead Tank -Conical Base

MFLOX VFLOX = 1728 'FLOX

M-H CH4 1 V = 1728 CH4 5 p. I LCH, ОС 1/3 R = (VFLOX/2'528)

H = VrH /(3.1416R1 CH4

14 FH FLOX

1 25P - oPCH/

FLOX

(V2)(1.25)P R P ° FLOГ1АЛ*X OH 2F FLOX

P R P (DC FLOX

WT = 0.5196 R2 (T + T^J + .64089 RH T _ + .4531 R2 гCLпJ c

6. Common Bulkhead Tank - Oblate Spheroid Heads

M W cirFLOwX uhe , FLOX .95 P 7.7 FLOX

= 1728 (

CH

1/3 R -Г™Х\ K ~ \ 2.961 /

H = VrH /(3.1416П сн4

15 (V2)(1.25)P R

FL X 2F ° * ty FLOX

'•25PopCH/ -_-- 1_ > .025 ^FLOX

(V"2)(1-25)PopCH/

Tps = —^ > .025 ty FLOX

2 2 WT = 1.0392 R TQ + .64089 RH Т + .5196 R Т

At this point, all weights were accumulated (insulation weight, vapor weights, helium weights, helium bottle weight and fuel and oxidizer tank weights). If this total weight was less than any of the 5 previous least weight cases, then it was inserted in its appropriate place and the heaviest previous case was dropped.

16 APPENDIX В VEHICLE STRUCTURE EVALUATION - PRELIMINARY DESIGN

Section 1.2.3 of Volume I, "Final Report", NASA CR-121103, described the structural evaluation for the ten preliminary vehicle designs. Structural weights for the main body and Centaur adaptor for each of the study vehicles were sum- marized in Figures 1.2-10 and 1.2-11 of that report.

This appendix presents sketches of the vehicles, the major dimensions and weight assignments, and the detailed results of the computer aided OPTRAN (Optimiza- tion by Random Search) structural optimization program. The OPTRAN program operations were discussed in Section 1.1.3 of the Volume I document.

Three payload heights were evaluated for each of the study vehicles. These heights were approximately 1/2 and 1/5 of the vehicle diameter and a minimum case of 4 inches (10.2 cm) above the top deck insulation. Two continuous shell construction methods, and truss structures were evaluated in combination with three materials. The shells consisted of honeycomb sandwich and ring stiffened corrugations. The materials were aluminum, carbon/epoxy, and fiberglass/epoxy composites.

Sketches of the vehicle configurations with the dimensions and weights used for the study are shown in Figures B-l through B-10.

The results of the study are presented in Tables B-l through B-13. The case numbers refer to payload heights, Case 1 being the lowest payload position. The limits on member sizes as well as the optimum design point are shown. The results of the honeycomb sandwich evaluation indicated that shell loading was too low to make this approach competitive on a weight basis. In the majority of the cases, minimum gage configurations were selected. Examination of the weight results shows that optimum configurations were not achieved in all cases. For example, in Table B-l for Vehicle 1-14 (upper body) with an aluminum structure, the highest shell loading produced the least weight case. To achieve more nearly optimum designs for all cases the design limits were narrowed as shown in Table B-4 with the result that minimum gages were selected for all vehicles and all payload heights. Finalized shell weights are also shown in Table B-4. Several "non-optimum" cases were noted in the truss structure data also; however, since these cases tended towards minimum gage designs, it was concluded that the least weight case could be used where discrepancies existed.

It should be noted that the weights of Tables B-l through B-13 do not include end attachments. The weights are for the structural configuration, extending between the panel points shown in Figures B-l through B-10.

17 Vehicle 2-19 carried axial, bending and internal pressure loads in the tank wall, therefore, a stiffened skin was necessary to avoid shell buckling. It appeared that this configuration could combine tank mounted and shell mounted MLI effectively.

An analysis was made to determine stiffener size and spacing options for the three payload heights and vehicle configuration shown in Figure B-10. The stiffener chosen was a 1.00 inch high leg, integral with the tank wall and aligned with the longitudinal axis of the vehicle. Several design points were evaluated to establish stiffener proportions in terms of compression load carrying capacity. The results are presented in Figure B-l 1. A tank gage of .025 in. (0.064 cm) stiffener thickness of .040 in. (0.10 cm) and spacing of 2.00 in. (5.1 cm) were set as minimum values. The table below shows the compression loads and stiffener proportions at the top and bottom of the cylindrical shell for the three loading conditions (three payload heights).

PAYLOAD HEIGHT (above skirt)

28.5 In (0.7m) 37.5 in (0.9m) 67.5in(1.7m)

N ~ Ib/in (kN/m) 260 (45.5) 288 (50.5) 377 (66.0) f in (cm) .029 (.074) .031 (.079) .040 (.102) Top of skin

Cylindrical tsf|ff~ in (cm) .046 (.117) .049 (.125) .060 (.152) Shell Spacing -^ in (cm) 2.30(5.85) 2.50(6.35) 3.00(7.60) Т ~ in (cm) .050 (.013) .052 (.013) .060 (.152)

N ~lb/in(kN/m) 300 (52.5) 326 (57.0) 417 (73.0) Bottom of t , . ~ in (cm ) .032 (.081) .035 (.089) .044 (.112) skin Cylindrical .051 (.130) .053 (.135) .064 (.163) Shell Spacing "- in (cm) 2.50(6.35) 2.70(6.85) 3.22(8.18) t ~ in (cm) .053 (.135) .055 (.140) .064 (.163)

The t values defined the shell thickness assuming the stiffeners were "smeared" over the surface. The average dimensions between top and bottom of the cylindrical shell were used in the vehicle design and meteoroid protection eval- uation of the Volume I document.

The conical shell was checked for buckling stability when subjected to an engine thrust load of 12,500 Ibs (55.5 kN). The minimum gage required for internal pressure loads was found to be adequate for the thrust load condition. A "Y"

18 ring was necessary at the intersection of the conical and cylindrical surfaces to carry the radial loads. A cross section of 0.26 square inches (1.68 crrr) was required. The weights of the "Y" rings, shell stiffening and tank skirt plus ring were respectively;

Case 1: 5.1 Ib (2.3 kg), 4.5 Ib (2.0 kg), 7.1 Ib (3.2 kg) Case 2: 5.1 Ib (2.3 kg), 4.6 Ib (2.1 kg), 7.2 Ib (3.3 kg) Case 3: 5.1 Ib (2.3 kg), 6.1 Ib (2.8 kg), 8.0 Ib (3.6 kg)

The Vehicle Structure Evaluation was concluded by calculating end fitting and attachment bracket weights for all of the vehicles and adaptors using the curves of Figures 1.2-6 and 1.2-7, and the methods described in Section 1.2.2 of the Volume I document. The final results are presented in Tables B-14 through В-23.

19 LF TANK

# 15 LH2 TANK

LH2 TANK

LF TANK Case 1=4" Case 2 = 24" Case 3 = 60"

STRUCTURE =

78.5"

V ADAPTOR 50#

4C и \l\

f

г # ENGINE 108

Figure B-l: VEHICLE 1-3 20 LF2 TANK # LF2 TANK 5

LH2 TANK 22#

# LF2 TANK 5 Case 1 = 4" Case 2 = 24" Case 3 = 60 •I PAYLOAD 4946* 16" »• STRUCTURE = 170#

123" 17" ADAPTOR = 70#

ENGINE 108#

Figure B-2: VEHICLE 1-2A

21 # LF TANK 5* If TANK 5

LH_ TANK 22#

IF TANK 5# Case 1 = 4" Case 2 = 24" Case 3 = 60'

STRUCTURE = 170#

ADAPTOR = 100#

ENGINE 108*

Figure B-3: VEHICLE 1-2B 22 CH. TANK = 4

CH, TANK 4

FLOX TANK=

CH, TANK = 4

STRUCTURE =

ENGINE = 108#

ADAPTOR = 70#

Figure E-4: VEHICLE 2-2

23 — TO'-.DIA — 1- 6.11 Case 1 = 4" PAYLOAD 5004* LF2TANK Case 2 = 14"- CG Case 3 = 35' 1

STRUCTURE = 50#

22* LH2 TANK

He TANK = 9* STRUCTURE = 84*

ADAPTOR = 30*

ENGINE 108*

Figure B-5: VEHICLE 1-14

24 -_ 63" Case 1 = 4" DIA - 14" Case 2 # PAYLOAD 4750 CH, TANK= Case 3 - 33" 1 4 t 16" *с7с. STRUCTURE = 50#

FLOX TANK =

STRUCTURE = 75#

ENGINE = 108#

ADAPTOR = 50?

Figure B-6: VEHICLE 2-14

25 CH. TANK = 7# 4

FLOX TANK =

CH. TANK = 7* 4

Case 1 4" 102.0" Cose 2 20" DIA Case 3 52" PAYLOAD 16" C.G. STRUCTURE = 150#

•ENGINE = 108# # 74.5" -ADAPTOR = 70

27.5" J_LV.

110" DIA

26 Figure B-7: VEHICLE 2-3 LH2TANK

LF2 TANK = 15*

Case 1 = 4" Case 2 = 14" Case 3 = 35"!

13.0"

STRUCTURE = 125*

ADAPTOR = 50#

ENGINE 108*

Figure B-8: VEHICLE 1-7 27 Case 1 Case 2 Case 3 FLOXTANK=16* FLOX = 2050* CH,TANK = CH . = 390* 4

STRUCTURE = 100*

ENGINE = 108*

ADAPTOR = 50*

Figure B-9: VEHIClf 2-18

28 Case 1 = 4.0" Case 2 = 13.0" TOP DECK INSULATION Case 3 = 43.0" CH, TANK =15* 4 CH =390* 4 FLOX TANK = 16' FLOX = 2050# SIDEWALL INSULATION (Тур) CONE INSULATION (Тур) ENGINE = 108'

ADAPTOR = 50*

Figure B-10: VEHICLE 2-19 29 STIFF. SPACING I- .08 (140)- (2)

(130) .08 (2)

(120)

(110) to to O ш 5 .07 Z и v:

E _Z.04 u. (90) (I)

(80) .06. 0.5) (70)

(60)

(50) .05

(40) 300 400 600 LB/INCH (2000) (4000) (6000) (8000) (10000) (N/m) COMPRESSION LOADING

Figure B-l 1: VEHICLE 2-19 STIFFENER PROPORTIONS

30 Page intentionally left blank Table B-1: HONEYCOMB SANDWICH DATA (Cont)

FACE SKIN CORE CORE DEPTH RIBBON THICKNESS CELL SIZE VEHICLE SHELL L&D THICKNESS WEIGHT MATERIAL CASE HEIGHT Nx DENSITY (in.) (in) (in) (in) B)NFIG 2 («) (Ihrtn ) (ttfft3) ' MAX MIN DES MAX MIN DES MAX MIN DES MAX MIN DES (Ibtt )

1 SO 287 1.58 OSOO OJSO 0.255 0.040 0.020 0020 0003 0001 0.001 a 375 0250 0.338 0605 I 1 ALUMINUM 2 311 1.95 0.250 0283 0610 ' 3 365 1.50 0.282 0358 0604 »? 1 287 147 O250 0365 0334 ш1 8ш CARBON/ 0334 _J E 2 311 142 0.257 0374 и £ EPOXY Э 365 144 a251 0.003 0001 0001 0373 0334 11 1 287 133 O252 0.006 0.003 0003 0317 0439

4BERGLASS 2 , 311 L88 U254 i 0005 0003 0003 0369 0432 3 M 365 2.88 0500 0X3 0.040 0.005 0003 0003 0250 0.372 0.431 1 Э&5 476 141 OJ70 OJS1 0.021 а ооз 0.001 0.001 0375 0375 0601 ALUMINUM 2 519 141 O251 0601 Э 571 141 0.251 0601 1 478 142 O250 0332 CARBON/ 1 0332 EPOXY 2 519 142 Э 571 142 0.270 0003 0001 0001 a 332 ILOWF R BODY ) VEHICL E 1-1 4 1 478 2.81 О.ЭОО 0005 0003 0003 0430 FIBERGLASS 2 519 2.81 OJQO 0005 0003 0.003 0430 3 36.5 571 2.81 OJOO азSO 0021 0.005 0003 0.003 CUTS 0.375 0430 1 42.5 298 144 OSOO OJ51 0040 0003 0001 0.001 0250 0371 0602 1 ALUMINUM 2 322 155 OJ53 0344 0605

3 377 158 O253 0338 0605 1 298 144 OJS4 0374 0334 CARBON/ 2 322 143 0.372 0.334 EPOXY 0752 3 377 142 OJS1 0003 0001 0001 0373 0334 (UPPE R BODY ) VEHICL E 2-1 4 1 296 2.90 O251 0005 а ооз 0.003 0366 0432

4BERGLASS 2 322 2.81 O251 aoos 0003 0003 0374 04X

3 425 377 184 O2S1 0005 0003 0.003 0.371 0.431 1 ЭВ.5 437 154 O2&2 0.003 a 001 0.001 0349 0604 ALUMINUM 2 482 147 0250 0.003 0370 a 602

3 519 148 O251 0366 0.602 1 437 142 O2SO 0.374 a 334 CARBON/ 2 482 143 0334 EPOXY a250 0375 3 519 144 OJ50 0003 0001 0001 0.370 0334

1 437 2.87 0.262 0005 0003 0003 0375 0432 FIBERGLASS 2 462 2.85 1 0.251 0005 0003 0.003 0371 0.432

3 38.5 519 2.81 asoo OJSO 0258 0040 0020 0.020 0005 0003 0003 OJ75 0.250 0374 0432 I VEHICL E 2-1 4 1 (LOWE R BODY ) •ALUM CORE WITH ALUM & CARBON FACES HRP

32 Table B-1: HONEYCOMB SANDWICH DATA

ULT FACE SKIN CELL SIZE SHELL CORE CORE DEPTH RIBBON THICKNESS VEHICLE LOAD THICKNESS WEIGHT N (cm) (cm) (cm) (cm) MATERIAL CASE HEIGHT X DENSITY DONFIG 3 2 (cm) (N/ml (Ke/m )' MAX MIN OES MAX MIN DES MAX MIN DES MAX MIN DES (Ke/m ) 0.003 0953 1 127 5.023 25.31 1.27 0635 0.65 a 102 0051 0051 0008 0003 0635 0858 295 i ALUMINUM 2 5.443 31.24 0635 0718 298 0.665 0909 2948 3 6388 2403 - , 5,023 2355 0635 0927 163 CARBON/ 5443 2275 0653 , 095 163 EPOXY 2 3 6388 2307 0638 0008 0003 0003 0947 1 63 (UPPE R BOD > VEHICL E 1- 1 1 5005 53.35 a 64 0013 0008 0008 0805 214 4BERGLASS 2 5443 45.82 0635 0.645 0013 0008 0008 0937 2 108 3 127 6388 4582 1.27 0.64 0643 0102 0013 0008 0008 0635 0945 2 103 1 82.7 8.330 2259 0.69 0638 0053 0008 0003 a oo3 0953 0953 2933 ALUMINUM 2 9083 2259 0.838 2933 3 9.993 2259 0.638 2933 1 8.330 2275 0.635 1 62 CARBON/ EPOXY 2 9.083 2275 1 62 3 9.993 2275 069 0008 0003 0003 162 (LOWE R BODY ) VEHICL E 1-1 4 1 8330 4502 076 0.013 0008 0008 210 4BERGLASS 2 8.083 4502 a 78 0013 0008 0008 2 10 3 82.7 9993 4502 a те 0.635 0053 0013 a 008 0008 0953 09S3 2 10 1 10795 5.180 2307 127 064 0.638 0102 0008 0003 0003 0635 0942 294 1 1 ALUMINUM 2 5.635 2483 0635 0643 0874 295 3 6.598 2531 a 643 0859 295 1 5.180 2307 0645 095 163 CARBON/ 2 6.635 a 641 EPOXY 2291 0945 1 63 3 6,598 2275 0638 0008 0.003 0003 0947 1 63 (UPPE R BODY ) VEHICL E 2-1 4 1 5180 4646 0638 0013 0008 0008 093 2108 4BERGLASS 2 5.635 4502 0.638 0013 0008 0008 095 2 10 3 10795 6.598 4550 0638 0.013 0008 0008 0942 2 103 1 8779 7648 2467 a 664 0008 0.003 0.003 0886 2948 ALUMINUM 2 8.086 23.56 0635 094 294 3 9,083 23.71 0.638 093 294 1 7.648 2275 0635 095 163 CARBON/ 2 EPOXY 8.085 2291 0.635 0953 163 3 9.083 2X07 0635 0.008 0,003 0003 094 1 63 (LOWE R BODY ) VEHICL E 2-1 4 1 7.648 4598 a 64i 0013 0008 0008 0953 2108 4BERGLASS 2 I 0.638 8085 45.66 _] 0013 0008 0008 0942 2 108 3 9779 9.083 45.02 127 0635 065 0102 0051 0051 0013 0008 a 008 0953 a 635 095 2108 •ALUM CORE WITH ALUM & CARBON FACES HRP IF G > CORE WITH F с FACES

33 Table B-2: HONEYCOMB SANDWICH DATA (Cont)

FACE SKIN ULT CORE DEPTH RIBBON THICKNESS CELL SIZE SHELL LOAD CORE THICKNESS /EHICLf (m) (ml WEIGHT MATERIAL CASE HEIGHT N DENSITY (inj (m| 3)NFIG X (mj (Ib/in) (Ih/ft3) * MAX MIN DES MAX MIN DES MAX MIN DES MAX MIN DES (Ib/ft2) 1 38.5 IIS 152 0500 OJ50 OJ51 0.040 aozo 0020 0003 0001 a 001 0.375 0.250 0354 0603 ALUMINUM 2 136 184 О25Э , 0.293 0609 Э IBS 148 UL260 0361 0603 1 119 145 0.250 0366 0332 CARBON/ 2 136 146 ' азы 0365 0.334 EPOXY 3 165 144 OJ51 0003 0001 0001 0373 0334 VEHICL E 1- 3 1 119 2.84 OJS6 0005 0003 0003 0369 0431

4BERGLASS 2 133 2.88 O253 0005 0003 0003 0372 0431 Э 383 165 2.99 0.2SO a 005 0003 0003 0363 0433 1 170 142 142 0^50 0003 0001 '0001 0349 0604

ALUMINUM 2 1S9 146 0^53 . (X367 0602 3 188 179 OJS6 "299 0609 "£ 1 142 146 a 250 0368 0334 CARBON/ 1 2 159 146 0^53 0370 0334 38 EPOXY Й" 3 188 143 OJS4 0003 0001 0001 0372 0334 1 142 2Л5 0.251 0005 0003 0003 0372 0431 FIBERGLASS 2 159 232 OJ53 0005 0.003 0.003 0372 0430 3 170 188 IBS 0^61 0.005 0003 0003 0369 0434

1 3U 113 143 0.258 0.003 0X1 0001 0371 0603

ALUMINUM 2 129 131 0252 0357 0603

3 159 138 O250 0321 0606 1 113 144 0^53 0369 0334 CARBON/ 2 129 144 OJS2 0.373 0334 EPOXY 3 159 146 OJ51 0003 0001 0.001 0.366 0334 ILF j O N TO P t VEHICL E t- 2 1 113 2.82 O2S1 0005 0,003 0003 0373 0430 4BERGLASS 2 129 234 O250 0005 0003 0003 0371 0431 3 33i 159 2.85 OJ50 0.005 0.003 0.003 0.375 0.431 1 22Д зов 145 OJ51 0.003 0001 0001 0374 0603

ALUMINUM 2 326 157 0.261 0345 0604

3 360 132 0^53 0293 0609

1 306 142 U2SO 0.375 0333 CARBON/ 2 326 144 OJ52 EPOXY 0371 0334 3 360 148 0252 0.003 a 001 0.001 а 361 0334 VEHICL E 2- 2 1 зов 232 0.272 0005 0003 0003 0373 0436

'IBERGLASS 2 326 Z32 1 OL277 0.005 0003 0,003 0366 0438 3 2ZO 360 234 0300 0.250 OJ97 0040 0320 0020 aoos 0003 a 003 0375 0250 0371 0441

'ALUM CORE WITH ALUM ОЯ CARBON FACES HRP (F G.) CORE WITH F G. FACES

'34 Table B-2: HONEYCOMB SANDWICH DATA

F:ACE SKIN ULT CORE DEPTH RIBBON THICKNESS CELL SIZE SHELL LOAD CORE THICKNESS WEIGHT VEHICLE N (cm! Icm) (cm) (on) MATERIAL CASE HEIGHT X DENSITY X)NFIG 2 (on) IN/m) (KetoiV MAX MIN OES MAX MIN DES MAX MIN DES MAX MIN DES (Kj/m ) 1 97 ТВ 2.063 24.35 1.27 0.63S авзв 0.102 aosi 0051 aooB аооз аооз 0953 a 63s 0876 2943 ALUMINUM 2 2.380 2948 ав43 0744 2.972 3 2.888 2371 asei a917 2943 1 2.083 2X73 0.835 093 1 620 CARBON/ 2 2.380 23Л 0.643 0927 1 630 EPOXY Э 2888 23.07 авза aooe а ооз аооз a947 1630 VEHICL E 1- Э 1 2083 4550 0.650 aou 0008 аоов 0937 2103 4BERGLASS 2 2380 46.83 U643 aon ооов 0008 0945 2.103 3 97 П 2888 4790 0635 0013 0008 ОООВ 0922 2 113 1 4X18 2.485 2275 a ess 0.008 аооз оооз 0886 2947 ALUMINUM 2 2,783 23JS 0643 0932 2938 3 3.290 2876 0.648 U76 2972 1 2485 73.3B 0635 0935 1 630 CARBON/ 2 2.783 73.3S ав43 094 1 630 EPOXY 3 ЗЛО 2291 0.645 0008 аооз 0003 0945 1 630 (L H j O N TO P VEHICL E 1- 2 1 2485 45 GC авза 0.013 аооа 0008 0945 2103 FIBERGLASS 2 2783 4518 0.643 0013 а оси 0008 0945 2098 3 43.18 3.290 45 ее аввэ aoi3 аооа аоов 0937 2 118

1 86.08 1.978 22.91 0655 0008 аооз аооз 0942 2.943 ALUMINUM 2 2.258 2419 ав40 0907 2943 3 2.783 2691 0635 0815 2957 1 1.978 2307 0.643 0937 1 63C CARBON/ 2 2.258 23.07 a 640 0947 163C EPOXY 3 2.783 23.39 авзв 0008 аооз оооз 093 163C VEHICL E 1- 2 (LF j O N TOP ) 1 1.978 45.18 0638 0013 0008 ОООВ 0947 2038 FIBERGLASS 2 2.258 4550 авз5 0.013 аоов оооа 0942 2 103 3 86.08 2783 45.66 0635 0.013 аооа аоов a 963 2 103 1 66.88 5.355 23.23 0638 aooe аооз оооз 095 2943 ALUMINUM 2 5705 2515 0638 0876 2.947

3 6300 2916 а в«з 0.7*4 2972 1 5.366 22.75 0.635 0953 1625 CARBON/ 2 5.705 2307 0.640 EPOXY 0942 1 630 3 S.300 23.71 ав40 aooe аооз аооз 0917 1630 VEHICL E 2- 2 1 5355 4618 авЭ1 aon аоов 0008 0947 2.128 FIBERGLASS 2 5.705 46.78 0.704 aon а оов ОООВ аэз 2 137 U 754 3 5638 взоо 45 JO 1.27 0.635 а юз 0061 aosi aoi3 аоов аоов 0953 0635 0942 2.152 •ALUM CORE WITH ALUM OR CARBON FACES HRP (F GJ CORE WITH F G FACES

35 I смю о см о 3 3 s со со s 8 8 я Я я со со 3 0 £ (О to со со со 3 ч»- ТГ

Гч <• со см 1Л о со со in CO CO .- ч- in .- <л со со s $ ш п см со со со со со со со со со CO со CO со со со со ш 0 0* о о о о о о о о о о 0 о о о о 0 0 N (Л —: z § 8 _i E см см _i — 5 о ш о о Л ш X Гч Гч < п со 5 о о со со (Л о о о г 8 о ш о о о 0 i § о о О С) 0 о 0 о 0 о 0 о о со со Z г 8 о о о 0 о § о о о

(m ) 1 § 5 о о о о о о о 0 о 0 X г 8 in 8 8 ш 8 in с < о о 8 о 0 8 0 8 5 о 0 о d о о RIBBO N THICKNES S о о о 0 о О (Л 8 8 ш о 0 О гЯ о о 0 о Z 8 см 0 I (m. ) 5 о о о 0 FAC E SK I z THICKN E X Q < 5 о 0

со см ш СМ CM I (Л к ю s 5 ю 8 in ю in 8 3 8 Ю in 8 ю ш ю ш см см см см см см см см см см см CM CM CM см см m о см см 2 о о о 0 о 0 о о о 0 о о О 0 о 0 0 0 О z 8 О сgм см ш (m. ) 2 о о z X о COR E DEPT H < § о о T H ALU M AN D CARBO N FACE S E WIT H F G FACE S > * 50 t«£ со СО см О) со со 00 см 0 г* шо m Ш (Я t- (О 8 1П *г 00 00 <* Ч; ч- **• со СО О) cc z ^ ? 8 3 3 * О ш S см см см см см см So О) U Q -? "- 3 D a. x см О) со О) СП in o> ел -1 (C ю (0 и S S (О о s r» 8 г* 8 §L i 8 8 1со V со i«ч- со 9 < I

=!S г^. г». -«- 111 _ с ТГ V LO in I ш СЛ X ш " см со - см со см со - см со CM со - см со о - - ^ EPOX Y EPOX Y CARBON / CARBON / MATERIA L ALUMINU M ALUMINU M FIBERGLAS S = IBERGLAS S ш _IO УО: z z е-гзюшзл 81-г31Э1НЭЛ Ш О > 0

36 r^ о CO CO * •£ 3 S s S S я 3 2 1 s 1 § s 1i§ £ I CM ем CM •- •- ем ем см см CM см *~ ? ICM Ы oi — in CO eg to $ S $ en ш 5 ш r« 00 o> О) i3 3 11 О) Is 8 1 ш о S ci о о 0 о о 0 о о о о о о 0* 1 о о N_ от £ Z -1.Ы _i Z о ш о и X CJ со < $ 8 ci о со со шот 8 8 § § о о о о о 6 о о о 0 о en Z s я 1 8 (cm ) 3 § 1о 0 о о О 0 О о ci о X eo со со со CO со < 0 о о § § о о о о о еэ о о 0 0 о о о о о RIBBO N THICKNES S от in ш о 8 о 0 о

о Z 55 8 о I (cm ) I о 0 о* FAC E SKI N THICKNES S X о < S s Z 6 о* (Л от in я in ш ш г 3 S s i§ 13 § s s § to 1 о 0 о ез о 0 0 0 о о о о о о 1 d с! 6 о t ш„ 8 0 E Z шЗ 2 § 8 ш ее 6 о Z О X г> о и < CN и т 2 от со >*_ I- <*Г О) in ш to со ш от Е г> S \a S r» 55 S s 8 О) 55 5 6 S s o> со см со го in г- ос z ^ И CM Я ем я Я 3 3 s см и 8 см CM 8 V $ £ 8ё* ^ га ю in in к5 Е a г s в § 8 1 § in § Й Iс§ in 1 о 3 iо 0 N ем CO ем ем n CM ем со (О г» ео (О r- CO to r- 00 ш Х ос ^32 1 о 8 8 я s и dш S— и о» О» о> on I ш см CM О wl % о. CM CO ем eo см со см со CM CO CM со ОС ------I

б •ALU M COR E WIT H ALU AN D CARBO N FACE S < (Г ш EPOX Y EPOX Y 1 CARBON / CARBON / ALUMINU M ALUMINU M FIBERGLAS S FIBERGLAS S

е-г ЗЮ1НЗЛ ei-г зпэшзл VEHICL E CONFI G

37 THIS PAGE INTENTIONALLY LEFT BLANK

38 w* ^ 5 Q U) rt CN 59 S8

2 1 .X s s

LB/FT oi WEIGH T

Z in n in w ШО S 10 PsJ s0 ш — n s q 3 Й 2 °W w о Z U> f Ю Г in n In » 5 § я § шJ —z и X to r in r < 1^ If s s n 2 ". 5 q 2 ш и 8 I3 |i I Й? °S eeS z CSD ц* . i§ i §. i § I К i - X ш n < 8 1§ i 8 5. I z DC Ш О | § ОС z8_ i. § i i °w S|a z N I i i. I | § 8S« t »- X *• Й < M If й и Q i. 1 o. q I ш ? S Й ^ О gi «ч « r<{ g d CM. ц I« 1 § § 1 (Г 7 X о Я m 8 s i S i5 Iч 3 ч 5 О О >- k;

2 шос Чч? m * (Л < И ц U CARBO N EPOX Y < Q) ц. z to 4 и D u С 5 м s < Ш (j U С» I с S Q > Z 1 < Т Н F.G . F A

F с ALU M AN D i г _| - ш 4 < » с «Я <•§> _ U. D 0. -1 С < I

39 Table В-Б: TRUSS STRUCTURE DATA

TUBE THICKNESS TUBE RADIUS WEIGHT VEHICLE MEM- PER LENGTH LOAD (in) (in.) CONFIG- MATERIAL CASE BER MEMBER URATION QTY (In.) (Ib) MAX MIN OES MAX MIN DES (Ib)

ALUMINUM 1 24 42 3,246 0.200 0020 0020 250 100 101 0526 3 P- 0.10 LB/IN. i 5 0200 0020 1.00 1 03 E - 10 x 10 2 3,319 0020 250 0538 2 LB/IN. 3 3,520 0.200 0020 0021 250 100 1 00 0547

CARBON-EPOXY. 1 3,246 0070 0028 0028 225 075 0788 0317 P- 0.055 LB/IN/ 2 3,319 0070 0.028 0028 225 075 0.793 0319 E • 28 x 1Q6 LB/IN 2 3 3,520 0.070 0028 0028 225 075 0809 0325 VEHICL E 1- 3 FIBERGLASS 1 3,246 0.054 0030 0030 250 100 102 0526 P- 0.066 LB/IN * 2 3,319 0054 0.030 0030 250 100 1 04 0532 E - 7 6 x 106 i LB/IN.2 3 42 3,520 0.054 0030 0030 250 1 00 1 05 0541 1 56 3,885 0.200 0.020 0020 250 100 124 0.874 ALUMINUM 2 3,954 0200 0020 0.020 250 100 1 24 0881

3 4,079 0200 0020 0020 250 1 00 1 26 0890 CM >- i .ioP 1 3,885 0070 0028 0028 225 075 1 02 О *~ 0558 шшг CARBON/ 2 3,954 0070 0028 0028 225 0.75 103 0560 О ОС О EPOXY %%J- Q. 5f 3 4.079 0070 0.028 0028 225 075 1 04 0566 1 3,885 0054 0030 0030 250 100 1 33 0926 PAYLOA D SUPPOR T FIBERGLASS 2 3,954 0054 0030 0030 250 100 1 33 0930

3 56 4,079 0054 0030 0030 250 1 00 135 0948 1 23 3,223 0200 0020 0.020 250 1 00 102 0291 •

ALUMINUM 2 3,467 0200 0020 0020 250 1 00 1 05 0301 • 3 4,046 0200 0020 0020 250 1 00 100 0286

1 3,223 0070 0028 0028 225 - 0532 0119 CARBON/ 2 3,467 0070 0028 0028 225 - 0544 0123 EPOXY 3 4,046 0070 0028 0028 225 - 0614 0138 LOWE R BOD Y VEHICL E 1- 2 (LH O N TOP ) 2 1 3,223 0054 0030 0030 250 1 00 100 0288

FIBERGLASS 2 3,467 ООБ4 0030 0030 250 1.00 100 0288

3 23 4,046 0054 0030 0030 250 1 00 100 0288 1 37 2.997 0200 0020 0020 250 1 00 107 0495 •

ALUMINUM 2 3,070 0200 0020 0020 250 1 00 102- 0472 3 3.329 0200 0020 0020 250 1 00 1 03 0476 M Q. 1 2.997 0070 0028 0028 225 - 0709 0254 Ш~e CARBON/ 0070 0028 d§ EPOXY 2 3,070 0028 225 - 0715 0256 i ^ Id 3 3,329 0070 0028 0028 225 - 0734 0263 1 2.997 0054 0030 0030 250 1 00 100 0460

FIBERGLASS 2 3,070 0054 0030 0030 250 1 00 1 00 0461

3 24 37 3.329 0054 0030 0030 250 1 00 100 0462 'NON-OP! IMUM CASE

40 Table B-5: TRUSS STRUCTURE DATA WEIGHT VEHICLE MEM TUBE THICKNESS TUBE RADIUS .ENGTH LOAD PER (cm) (cm) CONFIG- MATERIAL CASE BER MEMBER URATION OTY (cm) IN) MAX MIN DES MAX MIN DES (kg)

ALUMINUM 1 24 106 68 14.438 0508 0051 0051 6 35 2 54 257 0239 P- 10 LB/IN 3 2 i 14.763 0508 0051 0051 635 2 54 262 0244 E- 10 x 106 LB/IN 2 3 15.657 0508 0051 0053 6.35 2.54 2.54 0248

1 CARBON-EPOXY 1 14.438 0179 0071 0071 5 72 1.90 200 0.144 ш 3 P- 065 LB/IN 2 14.763 0.179 0071 0071 572 1 90 201 0145 и 6 X E-28x 10 Ш LB/IN 2 3 15,657 0179 0071 0071 5 72 1.90 205 0148 FIBERGLASS 1 14.438 0137 0076 0076 6 35 2 54 259 0239 P- 066 LB/IN 3 2 14,763 0137 0076 0076 264 0245 E - 7 5 x 106 LB/IN 2 3 106.68 15.657 0137 0.076 0076 2.68 0247 1 14224 17,281 0.508 0051 0051 315 0397

ALUMINUM 2 17.587 0508 0051 0051 , 3 15 0400

2 3 18.143 0051 0404

3 14224 18,143 0137 0076 0076 343 0431

1 58.40 14,336 0508 0051 0051 262 0132*

ALUMINUM 2 i 15,421 0508 0.051 0.051 268 0137* 3 17,997 0508 0051 0051 635 254 254 0 130 *>s: ~§£ 1 14,336 0178 0071 0071 5 72 - 1 35 0054 Ш 00 1~ CARBON/ 15,421 0178 0071 0071 0558 dj§ EPOXY 2 5.72 - 138 iS " 3 17,997 0178 0071 0071 572 - 1 56 0627 ssxS 1 14,336 0137 0076 0076 635 254 254 0 131

FIBERGLASS 2 15,421 0137 0076 0076 254 0 131 3 5840 17,997 0137 0076 0076 254 0131 1 9400 13,331 0508 0051 0051 2.72 0225* ALUMINUM 2 13,655 0508 0051 0.051 259 0214

3 14,807 0508 0051 0051 635 254 262 0216

1 13,331 0178 0071 0071 572 - 1 80 0115 CARBON/ 2 s^ EPOXY 2 13,655 0178 0071 0071 5.72 - 1 82 0116 Is 3 14.807 0178 0071 0071 572 - 1 86 0119 1 13,331 0137 0076 0076 635 254 254 0209

•FIBERGLASS 2 i 13,655 0 137 0076 0076 635 254 254 02092

2 24 9400 14807 0137 0076; 0076 635 254 254 02097 * NON-OPTIMUM CASE

41 TABLE B-6: TRUSS STRUCTURE DATA (Cont)

TUBE THICKNESS WEIGHT VEHICLE MEM TUBE RADIUS .ENGTH LOAD PER BER (in.) (m.) CONFIG- MATERIAL CASE MEMBER URATION QTY (In.) (Ib) MAX MIN DES MAX MIN DES (Ib)

1 24 26 2.698 0200 0020 0020 2.50 1.00 1.02 0.318*

ALUMINUM 2 2,767 0.200 0.020 0.021 2.50 1.00 103 0.320 *

3 3.118 0.200 0.020 0021 260 1.00 1.00 0.312

1 2.698 0.070 0028 0.028 2.25 0.75 0.533 0130 CARBON/ 2 2.767 0.070 0028 EPOXY 0.028 225 075 0.536 0.131 3 3.118 0070 0028 0.028 2.25 075 0557 0.137 VEHICL E 2- 2 1 2,698 0.054 0030 0.030 250 1.00 100 0.314

FIBERGLASS 2 2,767 0.054 0030 0.030 100 0314

3 24 25 3,118 0.054 0030 0030 1.00 0315

1 12 53 6.656 0200 0.020 0021 1.35 0936

ALUMINUM 2 6,656 0.200 0020 0021 1.35 0936

3 6.679 0.200 0020 0.020 250 100 1.43 0945

1 6,656 0.070 0.028 0028 225 075 1.18 0.606 CARBON/ 2 0.070 0.028 075 0.606 EPOXY 6,656 0028 225 1.18 3 6,679 0.070 0028 0.028 225 075 1.18 0606 VEHICL E 1-1 4 (UPPE R BODY ) 1 6,656 0.054 0.030 0036 2.50 1.00 1.42 1.132

FIBERGLASS 2 6,656 0.054 0030 0036 1.42 1.132

3 53 6,679 0054 0030 0036 142 1 132

1 41 8,824 0.200 0.020 0021 1 29 0692

ALUMINUM 2 9,077 0.200 0020 0021 1.29 0692

3 9,582 0.200 0020 0022 250 1.00 1.30 0730

1 8,824 0.070 0028 0042 225 075 0866 0.512 CARBON/ 2 9,077 0.070 EPOXY 0028 0042 225 075 0874 0518 3 9.582 0.070 0028 0042 225 075 0.890 .0526

VEHICL E 1-1 4 (LOWE R BODY ) 1 8,824 0.054 0030 0036 2.50 100 139 0.845 FIBERGLASS 2 9,077 0054 0030 0042 ' 1.24 0882

3 41 9,582 0054 0030 0042 127. 0899 1 46 6,119 0.200 0020 0020 1.24 0710

ALUMINUM 2 6,119 0.200 0020 0020 1 24 0710 3 6,220 0.200 0.020 0021 2.50 100 124 0746

1 6.119 0.070 0028 0028 225 0.75 1.03 0456 CARBON/ 2 0.070 0028 0028 075 0456 EPOXY 6,119 225 1.03 3 6,220 0.070 0.028 0028 225 0.75 104 0.457 VEHICL E 2-1 4 (UPPE R BODY ) 1 6.119 0.054 0030 0.036 250 100 1.25 0848

FIBERGLASS 2 i i 6,119 0.054 0030 0036 250 1.00 1 25 0848 3 12 46 6.220 0054 0030 0036 250 100 1 25 0850 * NON-OPTIMUM CASE 42 Table B-6: TRUSS STRUCTURE DATA (Cont)

TUBE THICKNESS WCIGHT VEHICLE MEM- TUBE RADIUS LENGTH LOAD I'EH CONFIG MATERIAL CASE BER (cm) (cm) MEMUtR URATION OTY (cm) (N) MAX MIN DES MAX MIN DES (kg)

1 24 636 12,000 0,508 0051 0051 635 2.54 259 a 144*

ALUMINUM 2 12,308 0.508 0051 0053 635 254 262 0.145*

3 13.869 0508 0051 0.053 6.35 254 254 0.142 Ч ГЧ I 12,000 0179 0071 0.071 672 1 91 1.35 0.059 ш CARBON/ _J 2 12,308 0179 0071 0071 5 72 1.91 1.36 0.0594 и EPOXY X ш 3 13,869 0.179 0071 0071 5.72 1 91 1 41 0.062 1 12,000 0137 0076 0.076 635 254 2.54 0.143

FIBERGLASS 2 12.308 0.137 0076 0076 254 0.143

3 24 63.5 13,869 0137 0076 0076 254 0143

1 12 13462 29.606 0508 0051 0053 3.43 0425

2 j 0053 i 343 0425 ALUMINUM i 29.606 0508 0051 3 29.708 0508 0051 0051 635 254 363 0.429

1 29,606 0179 0071 0071 572 1 91 300 0275 CARBON/ 2 0071 1 300 0275 EPOXY 29,606 0179 0071 572 91 3 29,708 0.179 0071 0071 572 1.91 3.00 0275 (UPPE R BODY ) VEHICL E 1-1 4 1 09,606 0137 0076 0091 635 254 361 0514

FIBERGLASS 2 29,606 0.137 0076 0091 361 0.514

3 13462 29.708 0.137 0076 0091 3.61 0514

1 10414 39,249 0508 0,051 0053 328 0.314

ALUMINUM 2 40,375 0.508 0051 0053 328 0314

3 42.621 0.508 0051 0059 635 2 54 330 0.331

Т 39,249 0 179 0071 0 107 572 1 91 220 0232 CARBON/ 2 40,375 0179 0071 0107 572 1 91 222 0235 EPOXY 3 42,621 0179 0071 0107 572 1.91 226 0.239 VEHICL E 1-1 4 (LOWE R BODY ) 1 39,249 0.137 0076 0091 635 2 54 353 0.384

2 1 40,375 0137 0076 0107 3.15 0400 FIBERGLASS ' ' 3 10414 42,621 0137 0076 0 107 3.23 0.408

1 11684 27,217 0508 0051 0051 3.-15 0.322

ALUMINUM 2 27,217 0508 0051 0051 1 1 3.15 0.322

3 27,667 0508 0051 0053 635 2 54 3 15 0339 2 > 7 о 1 27.217 0 179 0071 0071 572 1 91 262 0207 w о Ш CQ CARBON/ -1 £C 2 27.217 0179 00/1 0071 572 1 91 262 0207 О ш EPOXY Т О- 3 276G7 0179 0071 0071 572 1 91 264 0207

*| 1 27,217 0137 0076 0091 635 254 3 18 0.385

FIBERGLASS 2 ' ' 27.217 0 137 0076 0091 635 2 54 3 18 0385 3 12 116R4 27.C67 0 137 0076 0091 615 2 54 3 18 038G NON OPTIMUM CASE 43 Table B-7: TRUSS STRUCTURE DATA (Cont)

TUBE THICKNESS TUBE RADIUS WEIGHT VEHICLE MLM PER hNGTM LOAD (in.) (m) CONFIG- MATERIAL CASE BER MEMBER URATION QTY (m.) (1Ы MAX MIN DES MAX MIN DES (Ib)

===^ 1 12 42 6,947 0.200 0020 0020 250 1.00 1.23 0651

1 ALUMINUM 2 7.168 0.200 0.020 0020 2.50 100 1.24 0662 ' 3 7,719 0.200 0020 0020 250 100 128 0.672 «• > 1 6,947 0.070 0028 0.028 225 075 105 0426 2ш 1 CARBON/ _l ~К 2 7,168 0070 0.028 0028 225 075 1 09 0440 и ш EPOXY 3 7,719 0070 0028 0028 225 0.75 1 17 0475 1> 1— 1 6,947 0054 0.030 0036 2.50 100 131 - 1.24 FIBERGLASS 2 i I 7,168 0.054 0.030 0036 0775

3 12 42 7,719 0054 0030 0036 1 28 0794

1 24 49 3,760 0200 0020 0020 1 11 0691 * ALUMINUM 2 i 0200 0.020 0020 1 12 0689 3^22 3 3,947 0200 0.020 0021 250 100 1 12 0707 1 3,760 0070 0028 0028~ 225 075 0921 0435 CARBON/ 2 0070 225 075 0926 EPOXY 3.822 0028 0028 0437 3 3,947 0070 0028 0028 2.25 075 0936 0443 VEHICL E 2- 3 1 3,760 0054 0030 0030 250 100 1 19 0726 FIBERGLASS 2 3,822 0054 0030 0.030 1 20 0.728

3 24 49 3,947 0054 0030 0030 1.21 0736

1 12 53 7,020 0200 0.020 0.020 145 0981 2 ' 1 0.200 0020 0020 145 0981 ALUMINUM , i 3 0200 0020 0020 250 1 bo 145 0.981 t 0070 0028 0028 225 075 1 20 0.620 CARBON/ 2 0070 0028 0028 225 075 1 20 0620 EPOXY 3 0070 0.028 0028 225 075 1 20 0620 VEHICL E 2-1 8 1 0.054 0030 0036 250 100 145 1 153 2 0054 0030 145 FIBERGLASS 0036 ' 1 153 3 12 53 7.020 0054 0030 0036 1.45 1 153

с 1 8 37 16.210 0200 0020 0029 134 0908 ш 00 i 5 '- 2 8 37 17,400 0031 1 ЗУ 0978 ш 5 3 8 37 18.590 0035 1 32 1.073

1 4 47 9.100 0022 141 0911

2 2 4 47 10,480 '0023 146 0994

MEMBE R 3 4 47 13,340 0026 152 1.160 VEHICL E 1- 7 ALUMINU M 1 4 35 22,700 0039 1 38 1 190

3 2 4 35 25,350 i 0048 1.26 1325

MEMBE R 3 4 35 28,150 0200 0020 0052 250 100 129 1476 •NON-OPTIMUM CASE 44 Table B-7: TRUSS STRUCTURE DATA (Cont) WEIGHT VEHICLE MEM- TUBE THICKNESS TUBE RADIUS -ENGTH LOAD (cm) (cm) PER CONFIG- MATERIAL CASE BER MEMBER URATION QTY (cm) (N) MAX MIN DES MAX MIN DES (Kg)

1 12 10668 30,900 0.508 0.051 0.051 6.35 2.54 3.12 0297

ALUMINUM 2 31 883 0508 0051 0.051 6.35 2.54 3.15 0300 3 34.334 0508 0051 0051 635 254 325 0305 1 30,900 0178 0.071 0.071 5.72 191 267 0.193 Ш3fi CARBON/ _i ec 2 31,883 0178 0071 0071 572 1.91 2.77 0199 О ш EPOXY 3 34,334 0178 0.071 0071 572 1.91 297 0216 £§ 1 30,000 0137 0076 0091 635 254 333 -

FIBERGLASS 2 i 31,883 0137 0076 0.091 315 0352 3 12 10668 34,334 0137 0076 0091 325 0360 1 24 12446 16,724 0508 0.051 0.051 282 0314*

ALUMINUM 2 17.000 0508 0.051 0051 1 2.84 0313 3 17,556 0508 0051 0.051 635 254 2.84 0321

1 16,724 0.178 0071 0071 572 191 234 0197 CARBON/ 2 000 0178 0071 0071 572 191 235 0.198 EPOXY 17, 3 17,556 0178 0071 0071 572 191 238 0201 VEHICL E 2- 3 1 16,724 0137 0076 0076 635 254 302 0329 i FIBERGLASS 2 i 17,000 0137 0076 0076 305 0330 3 24 12446 17,556 0137 0.076 0076 307 0334

1 12 13462 31.225 0508 0051 0051 368 0445

ALUMINUM 2 0508 0051 0.051 • 368 0445 3 0508 0.051 0051 635 254 368 0445 00 i г* 1 0178 0071 0071 572 191 305 0282 Ш CARBON/ 2 0 178 0071 0071 572 191 305 0282 0 EPOXY I Ш 3 0178 0071 0071 572 1 91 305 0282 1 0137 0076 0091 635 254 368 0523 1 2 0137 0076 0091 1 FIBERGLASS i 368 0523 3 12 13462 31,225 0137 0.076 0091 368 0523 1 8 9398 72.102 0508 0051 0074 340 0412

1 2 8 9398 77.395 0079 338 • 0444

MEMBE R 3 8 9398 84,290 .0090 335 0487 г» 1 4 11938 40,477 0056 358 0414 Ш _|

о 2 2 4 11938 46.615 0058 371 0451 I

Ш MEMBE R 3 4 11938 59,336 0066 386 0527 > ALUMINU M 1 4 8890 100,970 0099 351 0540 2 4 8890 112,757 0122 320 0602 3 4 8890 125.211 0508 0051 0132 635 254 328 0670 1 MEMBE R 1 з NON OPTIMUM CASE 45 Table B-8: TRUSS STRUCTURE DATA (Com)

TUBE THICKNESS TUBE RADIUS WEIGHT VEHICLE MEM- PER LENGTH LOAD (m.) (m) CONFIG- MATERIAL CASE BER MEMBER URATION OTY (m.) (Ib) MAX MIN DES MAX MIN DES (Ib)

1 4 48 15.100 0.200 0.020 0.028 250 100 J57 1311

< 1 2 4 48 15,100 0200 0.020 0028 250 100 157 1311

MEMBE R 3 4 48 15.100 0.200 0020 0028 250 100 1 57 1311 1 4 44 2,350 - - 0035 - - 0750 0725 1 2,350 ' в 0.750 0725 2 4 I

MEMBE R 3 4 2,350 0750 0725 1 4 2,453 0813 0785 4 2.453 0813 0785 6 2

MEMBE R 3 4 2.453 0813 0785 ALUMINU M I 8 4.483 0938 0905

7 2 8 4.483 0938 0905

MEMBE R 3 8 44 4,483 o.c 35 0938 0905 1 8 53 5.700 0049 1 12 0915

8 2 8 53 5,700 0049 1 12 0915

MEMBE R 3 8 53 5,700 - - 0049 - - 1 12 0915 1 8 37 16.210 090 0018 0054 250 100 1 29 1082 i 1 1 2 8 37 17.400 0054 1 33 1 109

MEMBE R 3 8 37 18590 0054 136 1 134 1 4 47 9,100 0042 137 1 118 2 VEHICL E 1- 7 2 4 47 10.480 0042 143 1 172

MEMBE R 3 4 47 13.340 0048 148 1383 t 4 35 22,700 0060 133 1.163

3 2 4 35 25,350 0066 134 1 281

MEMBE R 3 4 35 28,150 0066 139 1328 1 4 48 15,100 0048 1 56 1490 15,100 4 2 4 48 0048 156 1 490

MEMBE R 3 4 48 15.100 0048 1 56 1490 FIBERGLAS S 1 4 44 2,350 0024 104 0456

5 2 4 2,350 104 0456

MEMBE R 3 4 2.350 104 0456 1 4 2.453 106 0463 2.453 6 2 4 106 0463

MEMBE R 3 4 2.453 0024 106 0463 1 8 4,483 0030 1 18 0645 2 8 4.483 0030 1 18 0645

3 8 44 4,483 090 0018 0030 250 100 1 18 0645 1 MEMBE R

46 Table B-8: TRUSS STRUCTURE DATA (Cont) WEIGHT VEHICLE MEM- TUBE THICKNESS TUBE RADIUS LENGTH LOAD (cm) (cm) PER CONFIG- MATERIAL CASE BER MEMBER URATION OTY (cm) (N) MAX MIN OES MAX MIN DES (Kg)

1 4 12192 67.165 0508 0.051 0071 635 254 399 0595

« 2 4 121 92 67.165 0071 399 0595

MEMBE R 3 4 12192 67.165 0071 399 0595

1 4 111 76 10.453 0089 191 0329 i

5 2 4 10,453 191 0329

MEMBE R 3 4 10.453 191 0329 1 4 10.911 207 0356

6 2 4 10,911 207 0356

MEMBE R 3 4 10.911 207 0356 ALUMINU M 1 8 19.940 238 0411

7 2 8 19.940 238 0411

MEMBE R 3 8 111 76 19,940 0089 238 0411

1 8 13462 25.354 0124 284 0415

1 8 2 8 13462 25,354 i 0124 284 0415

MEMBE R 3 8 13462 25,354 0508 0051 0124 284 0415

1 8 9398 72,102 0229 0046 0137 328 0491

1 2 8 9398 77,395 0137 338 0503

MEMBE R 3 8 9398 82,688 0137 345 0515

1 4 11938 40,477 0107 348 0508 VEHICL E 1- 7 2 2 4 11938 46,615 0107 363 0532

MEMBE R 3 4 11938 59.336 0123 377 0628

1 4 8890 100969 0152 338 0528

3 2 4 8890 112,757 0168 340 0582

MEMBE R 3 4 8890 125,211 0168 353 0603 1 4 121 92 67.165 0122 396 0676

4 2 4 121 92 67,165 0122 396 0676

MEMBE R 3 4 12192 67,165 0122 396 0676 FIBERGLAS S 1 4 111 76 10,453 0061 264 0207 1

5 2 4 10.453 264 0207

MEMBE R 3 4 10,453 264 0207

1 4 10.911 269 0210

6 2 4 10.911 269 0210

MEMBE R 3 4 10,911 0061 269 0210

1 8 19,940 0076 300 0293 19,940 0076 2 8 1 ! 300 0293 3 8 111 76 19.940 0224 0046 0076 635 254 300 0293 1 MEMBE R 1 7

47 THIS PAGE INTENTIONALLY LEFT BLANK

48 t ш « 8 8 чг I ш со со шw ш5 ^-* О о* о in in ш С8П en СП S Q. 2 . о о 0 5al5 ~ W г* Ш со ^ со Q СО ^го со шСО 5 5 5 D in о *- •- •- Q < -P Z $ 3 S 0 S сч CV см Z о ш ~* ос с о en 8 8 D ш t- X in ю 00 и со со s к X о о со со со ш 1П 2 S см см см со со со со г» (Л ш о _ с CO Q о о о Ш 0 о сэ с шсо со со z о со о о о о :»i о 01 О 0 0 0 z У ? Z 5t Я S I 0 о — z 00 00 00 о 0 о 0 0 0 ш х 1 О CO s о о о СП СП О D X ш Ш сям ш со ее 1- Я ос X 8 •* о о о н о о8 8о ^ 0 0 о •* I Q I < =• s сsо со ее о S. ОС 0 И 8 и < s 8г*. 8 8г» in in in О —- см см см P —. со со со X ее Z .0 Я со S со со со ш ^~ ~- «- ш ш ю ш1 1 Ср S tr > ш uj i— 00 00 00 m ш SO- 5 aO UJ ш t— 00 00 00 2 со О LJ CO см со ш CJ — со *~ см со б 8 _l Ы181Л1Э1Л1 8 < _, и ш и t- 5 Е < О ш j 2 ос н О ш ОС ш 5 ш и. m Гч, 1 LL ш Н _i О О Ш i С Т ~ _| ш Z и _( О О ш Г 2 < и - - LJ С = X Г Z < о > 0 D ш UJ О С х > > 0 D ш

49 3 s 8 R S R R s R a p E s 1 1g § Я я § s S я 8 § 8 8 3 S 5 S я 1 2 % g о I _ z о s л i ""i V) s S 1 о z 1 0

(m l i

THICKNES S xt 8

REINFORCEMEN T 1

vt s ' §

RING S (ALUMINUM" ) ' z 8 (m ) i '

RIN G HEIGH T X 8 ' rl

1 § 1$ I О

CO t e III

i 0 - о « S 9 9 9 s 5 5 S г s s 9 9 9 9 9 Z 3 s 5 9 9 5 9 S s s 5 9 s 9 9 9 < * z < 9 о ft 5 * - - ч г Q LU

и e Г» СО (0 Я S г 8 S Я я 9 s S R S S Я Ш г s S г s R 2 OD s S 8 S I s S i1 О D ш •» E 8 § * ~ I О о 9 s Э i «1 ОС 8 К § К 1 к § § ОС о § § § § § i § i § i§ i § ||5 1 |i1 S § § d О d О I1' I 0 в о CORRUGATIO N о S (in ) SKI N о I THICKNES S

со 1I ! О О 9 (D со о к P 00 s В § § § i 8 и S i s § g s О о 0 0 о 0 о О S о d !d 13 10 ii 3 d 3 s d d о 3 •g г Ч § a* О О X § 8

5| x |2 Я s г 8 2 S г S 8 S 8 3 3 2 R 8 n 8 Г, R s я s г к 3) 8 3 9 s 8 Z s =>3 ^ ч to о 0 л ii Ё Я R Si ~" w •~ - и R i - 2 3 LB/IN L8/IN LB/I N ' § 1 It о ii EPOX Y CARBO N MATERIA L 3£ 56 ALUMINU M ALUMINU M 3 3 3 FIBERGLAS S i Е - 1 0 ж 10 * £ < Е - 1 7,10 * Е-Э..О * Р* 0 1 LB/IN р-ООв е LB/IN P-OOS 5 LB/IN ALUMINU M CARBO N EPOX Y FIBERGLAS S

tdOANO£Hl) (dO!NO£J1) С-1 310IH3A I- 1 31Э1НЭЛ t-l 31Э1НЭЛ VEHICL E CONFI G г- 1 Э1Э1НЗЛ

50 к _ 9IS6 0 о 8 S Й a Я Я S § 1§ 3 § 5 S § § is a a 1IS X g § § s г I s § § I 3 £ 0

1 1 i i О

г о i Icm l I

THICKNES S X <

О S

RING S (ALUMINUM" ! | z X

(cm l 2

RIN G HEIGH T X s з< 8я s ?s I 0

, e» ш Й| R I S со Q X Z - -

5 R И я ffl 3 к S s я E 3 з 2 с s У я г Й S s 3 Й с s я & 0 s S X & Й о z ос £ 5 5 ее Si О < s 8 о £

i s § о 8 8 s is i 8 8 8 2 g 0 о i 8 о о d О 1 о О

со Z ф 8 (cm l i SKI N 0 THICKNES S X< 5 0 о

s к я s К ;s 8 к Й ;n я 8 R г г 8 s и £ s г s £ 3 г 8 8 S s Ж 0 ы Ч

z д 11 s 5

tdOlNOlH1) UOlNO'jl) С -1 Э1Э1НЭЛ г- 1 ЭТИЧНА l-l Э1Э1НЭЛ l-t Э1Э1НЭЛ VEHICL E CONFI G

51 a 5 «- и в S Si £ S g 3 s 2 8! 8 1 3 Is 8 Я 5 1 S g 8 5 I 8 £ i11 s s ?s 1- I' __ I I I Iiz IIX 0 E 1 5 л 5 X л ?C эс i ~ * * * v> к 8 я S S § Й s 3 s I 1 о§ о ' 0 0 0 О 0 1i z 1 0 0

(m l з

THICKNES S X < 8 8 REINFORCEMEN T 1 1 2 0

- 0 1 8 5 s S s S s 8 8 ! ° 8 8 i о DC z S 8 (m l 3 ' RIN G HEIGH T 1X ' 8 8

Ни 7 I | § О £z -

Л n ;0 в с in - о о 0 0 r, о 0 - - - » « « - - - n " " " о z ° 8 Я 9 8 8 8 < 0 г г S s г 5 z г г s S s s s 8 8 8

< z dts s 3 i » ~ X < ш I8 г I со Л 8 8 a s к Й a 2 г s 5 iS 9 8 8 § Я я s § S И s s S я К s 8 S 9 о ri * ш z 0 S i § § i О 0 О э < Si s ОС R К ее з § § s § s § 8 К оR к fi 0 1§ g § § 1§ S § § i S ii§ § о § § 0 d d s о z R g (m l I SKI N о d THICKNES S X, 4 § ? со J d

rt л а 2 0) О § 18 Is 8 Я § § 1 S 8 3 s § s 8 5 1 8 S Ч 8 0 о d о I О 0 d (О 5 1 i, z g § § h d 8 a

[ CORRUGAT'O N I

S9 x | at « 0» « DOZ |8 § Si в n Й g S и R S 8 i £ 5 5 5 £ 8 S Й £ S g g & г» 9 §

-5 7 Ю ю 1Л Ш - ;§ Pi R Я 8 8 N 3 3 Я Я $ I s 9

5

§ о EPOX Y CARBO N CARBO N EPOX Y EPOX Y MATERIA L CARBO N ALUMINU M ALUMINU M ALUMINU M ALUMINU M FIBERGLAS S FIBERGLAS S FIBERGLAS S \

lAOoa uaddni uooa ыэмсл! (лаоя ызсмп) »l-l 31Э1НЗЛ »l-l 31Э1НЗЛ и-гзпэшэл VEHICL E CONFI G VEHICL E 1- 3 (LOWE R BODY ) (VEHICL E 2- м 52 с ffl С 8 i R о Б s 5 g s w 5 i § t $ 5 8 § о s S s о 8 8 s 8 1 ig § 8 i

1 1 5 3 i9 § g § § 5 i iS i 8 о о О о О о О О о

Z 5 0 о (cm ) I

THICKNES S X 4 REINFORCEMEN T 1 г S i е 3, 8 R R г & С 3 & г а В i S £ r4 с, г. 3 * S 5 Z 3 s х

RIN G HEIGH T

-8 1 I § о i- I О d о i!o ? ю •ч к. e e 9 9 9 8 s s 6i5 I 8 S 8 9 $ 9 к R я ft к R о < Z о <& ю 8 8 8 8 8 S 8 8 Z г 8 8 8 s S 8 8 с ;8 8 8 0 S

Z R К X s 0 о со ii X » < о 3 :

(Л S S £ 3 8 8 X ц в 8 n s R 3 г г 9 s 8 Я S E « s Я 5 s s i-J H ri rl S 2 1 о S э Z 5 R ос 2 ее h

о § 8 8 Iг g г § 1iг g 8 |§ I1IS d 11 § 8 I! i111 CORRUGATIO N i i 1! ю Z (cm ) SKI N s i 1 THICKNES S О)

Я Z S 8 8 С Г* в rj *l & 8 Z ч Ц Z s s 9 о 2 S 9 s a g 5 3 s § 5 S g i § H S Z R 8 I 2 5

X< 8 2 HI § 8 8 a g 8 i3 e 3 § ? Я 8 8 i g 8 g g S g 1 g 3 Ц a a О 10 « ID я « »• Ф 31* I !I • 1! !! ! « s О 0 8 g и R К ii i 18 s Iк R S S 6 § К Si & I -

* | 5 1 t 1* X- EFOX Y ETOX Y CARBO N CARBO N

§g ALUMINU M FIBERGLAS S i S 1 ! FIBERGLAS S

(лом и мап) (ласа измол) uooa мэмп) H-l Э1Э1НЭЛ И-l ЭЛЭ1Н1Л »!-( Э1Э1НЭЛ VEHICL E CONW O VEHICL E 2- 2 (LOWE R BODY ) (VEHICL E г- м т <<Г ф Я 8 о г 3 S g S 8 8 И S 5 с 8 5 5 s ГЭ i2 и s 8 я i § 1 1 0 g 0 0 0 0 0 s = I z I X S I 1 X 5 X X a: i5 i s ~ л s S о s i§ 5 0 § i s 0 О . о 0 0 О z о '0 I (m l i .

THICKNES S X 8 г i

REINFORCEMEN T I 1 £

1 3 S § s s s г S S ° В 0 8 a ' £ z г я (i n 1 2 ' • RIN G HEIGH T i ' 8 я •

1 § о • II I о

£07 S s S £ £ s S 0 о s • ' S *

О 0, 0 0 г, r. 0 » - - о z о г г г e $ S s s я г s г w я 5 8 a г » « * z 5 « * i

i. X s в ' V) £ R 8 5 к Я в s s s s Й u 8 s

X 8 s § rj I | CORRUGATIO N Х 0» a E S Й 1 S ^|' 1 5 3 5 3 £ iё 8 ig 8 3 g § R § 5 S § s 3 8 3 5 § 8 * _ м я s a 5 1 ""

§

с Sg epox v CARBO N EPOX Y CARBO N MATERIA L EPOX Y ffl 5£ CARBO N ALUMINU M ALUMINU M ALUMINU M FIBERGLAS S FIBERGLAS S FIBERGLAS S

IAQOB ЫЭМО1) X Z >8 »1-С31Э1НЗЛ t-I ПЭ1НЗЛ ei г Э1Э1НЭЛ i-l 31Э1НЗЛ

54 R 1 3 К я s £ s 5 I "I 8 8 * s s оэ § I8 s s i 8 i S g § i г ? i •§ s § 8 X X X X X X X X 1 e 1 1 C! tj 2 О ч с с С

S в 1s s S a § § i 1 о 1 1 о 0 о о

Z О 0

(cm l ' -

THICKNES S S RFINFORCEMESI T < • 1 - •

s 3 г з s s s 3 s s if! r о 1 £ RING S z 3 Я tcm l Б ' ' RIN G HEIGH T <г 1 3 S 1 S

ya i 0 I 1 ZS 5 ' о ео So 1 я 8 S s s s с ft? iк я я ft я s 3 г! s R fi о ' • О о 0 „ « ~ ~ ~ - ~ ~ ' >• » z " 8 S s s t Й 5 s s 5 5 s г г 8 s s 0 S S 8 8 0 о < Z S S О II S о < ; ш 2 : о ел S s S 3 S 9 О я 3 R S О я 9 s s г я к я & s 8 я 8 s к s о и rf rl ri ч 2 5 ? s e 00 00 Z к С Si г О X < S Э S 2 ОС ее s s 8 8 D & 8 о 8 i§ 8 8 8 Й 8 8 8 8 2 8 § 8 8 8 § g iо 8 о г 8 ri о ri ri ri О о CORRUGATIO N ri Z i 8

(cm ) 2 SKI N о CN THICKNES S X < R со I о 5

а S 8 s 8 S К 8 S г г 8 8 (S s 8 5 R 5 8 5 3 S Pi 9 о • и fj и n § н S rl 2 irf 5 (О Z о ~ 3 Ч 5

X < 8 8 I HI

« 10 Ю Л e Л Ш «0 5§ x | 1 § !! Z g 1i § з § g 3 § 3 3 i§ § g о e § § § s 10 = S 1 i - о г 5 Й ^ Z 1 a Si & S 3 1 Й I 1 з - Js EPOX Y CARBO N ЕРОХ Г EPOX Y MATERIA L CARBO N aS CARBO N m ALUMINU M ALUMINU M ALUMINU M FIBERGLAS S FIBERGLAS S FIBERGLAS S

lAQOB ЫЭМСЛ» »l-£ ЛЭ1НЗЛ t-t Э1Э1НЭЛ ei-Z Э1Э1Н9Л 1-1 Э1Э1НЭЛ VEHICL E CONFI G

55 Table B-13: ADAPTER TRUSS DATA

TUBE THICKNESS TUBE RADIUS WEIGHT VEHICLE MEM- PER LENGTH LOAD (in) (m) CONFIG MATERIAL CASE BER MEMBER URATION OTY (in) (Ib) MAX MIN OES MAX MIN DES (Ib)

CARBON 1 24 43 5,404 0070 0028 0028 225 0750 0953 1 0396 EPOXY VEHICLE 1-3 3 j P= 0.055 L8/IN 2 43 5,604 0965 0402 6 E-28x 10 PSI 3 43 5.963 0985 0408

1 54 6,434 1 18 0620 VEHICLE 1-2 2 54 6.633 i 1 20 0627 (LH2 ON TOP) 3 54 6,977 0028 1 22 0638 1 103 9,490 0042 165 247 VEHICLE 1-2 2 103 9,675 0042 166 248

1 38 5,748 0028 0899 0331

VEHICkE 2-2 2 i 38 5,923 0028 0906 0333 3 24 38 6,260 0028 0949 0347 1 12 73 13,520 0042 147 1 57 VEHICLE 1-14 2 73 14,280 0042 1 50 160 3 73 15,140 0042 1 53 163 1 70 13,350 0056 125 170 VEHICLE 2-14 2 70 13,740 0056 144 195 3 12 70 14,660 0056 148 201

1 24 31 4,686 0028 0750 0225

VEHICLE 2-3 2 24 31 4,868 0028 0750 0225

3 24 31 5.231 0028 0760 0227 1 12 75 12,260 0042 145 1 57

VEHICLE 1 2 75 12,660 146 158 2-18 3 75 13.610 1 50 1 63

1 86 12,386 159 1 99 VEHICLE 2 86 12,732 1 61 201 2-19 3 12 B6 13,613 ОС 42 165 206

1 24 354 7,447 0028 0934 0320 CAR BON VEHICLE 1-7 2 24 354 7,995 i 0028 0956 0327 EPO XY 3 24 354 8,542 0070 0028 0028 225 0750 0978 0335

56 Table B-13: ADAPTER TRUSS DATA

TUBE THICKNESS TUBE RADIUS WEIGHT VEHICLE MEM PER -ENGTH LOAD (cm) (cm) CONFIG- MATERIAL CASE BER MEMBER URATION OTY (cm)

CARBON 1 24 10922 24.037 0178 0071 0071 572 191 242 0180 EPOXY i VEHICLE 1-3 P=0055LB/IN3 2 10922 24.927 245 0182 6 E-28x 10 PSI 3 10922 26,528 250 0185 1 13716 28,618 300 0281 VEHICLE 1-2 2 137 16 29,504 304 0285 (LH2ONTOP) 3 13716 31.034 0071 3 10 0290 1 26162 42,212 0107 419 1 121 VEHICLE 1-2 2 26162 43.034 0107 422 1 126 (LFjONTOP) 3 261 62 44,524 0107 427 1 140 1 9652 25567 0071 228 0150

VEHICLE 2-2 2 i 9652 26,346 0071 230 0 151 3 24 9652 27.844 0071 241 0 158 1 12 18542 60.137 0107 373 0713 VEHICLE 1-14 2 18542 63,517 0107 380 0726 3 18542 67,343 0107 390 0740 1 17780 59,381 0142 318 0772 VEHICLE 2 17780 61,115 0142 367 0885 2-14 3 12 17780 65.208 0142 376 0913 1 24 7874 20.843 0071 1905 0 102

VEHICLE 2-3 2 24 7874 21.653 0071 1 905 0102 3 24 7874 23,267 0071 193 0 103

Т 12 19030 54,532 0107 368 0713 VEHICLE 1 2 19050 54.532 371 0717 2-18 3 19050 60,537 1 50 0740 1 21844 55,092 404 0903 VEHICLE 2 21844 56.632 409 0913 2-19 3 12 21844 60.551 0107 4 19 0935 1 1 24 8992 33,124 0071 237 0145 CAR BON VEHICLE 1-7 2 24 8992 35,562 , 0071 , 243 0 148 EPOXY i 3 24 8992 37,995 0 178 0071 0071 572 191 249 0152

57 Table B-14: STRUCTURAL WEIGHT SUMMARY

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED OTY WT WEIGHT WT (Ib/ft2) (1Ы (ft2) (Ib) (Ib)" (tb) t

ALUM 0.328 — 101 33.1 41.8 65.8 CARBON I CORRUG. EPOXY 0.186 _ 18.8 35.2 592

FIBERGLASS 0.304 30.7 47.1 71.1 >- — О ALUM 0. 0.601 — 60.6 79.9 103.9 HC CARBON — SANDWICH EPOXY 0.333 33.6 48.5 72.5

(CAS E 1 FIBERGLASS 0.430 — 43.4 58.3 82.3 VEHICL E ALUM — 0.526 24 12.6 25.3 49.3 CARBON TRUSS EPOXY — 0.317 24 7.6 197 43.7

FIBERGLASS - 0.526 24 126 25.3 49.3 CARBON 24 ADAPTER TRUSS EPOXY - 0.396 9.5 24.0 - - - ALUM 0.330 - - 33.3 43.2 675 CARBON CORRUG EPOXY 0.187 - 18.9 37.6 61.9

FIBERGLASS 0.316 - 31.9 50.6 74.9 О ALUM О* 0.601 - 60.6 82.7 107.0 HC. CARBON

VEHICL E 1- 3 — SANDWICH EPOXY 0.333 33.6 50.7 75.0 FIBERGLASS — (CAS E 2 0.430 43.4 60.5 84.8 VEHICL E ALUM _ 0.538 24 12.9 25.7 50.0 CARBON TRUSS EPOXY — 0.319 24 7.7 19.9 44.2

FIBERGLASS — 0.532 24 12.8 256 49.9 CARBON ADAPTER TRUSS EPOXY - 0.402 24 9J 24.3 -

ALUM 0.337 - 34.0 46.0 70.7 CARBON - CORRUG. EPOXY 0.190 19.2 41.9 66.6

FIBERGLASS 0.322 - 32.5 55.2 79.9

ALUM 0.601 - 60.6 87.4 112.1

(CAS E 3) * H.C. CARBON 0.333 - 79.0

VEHICL E BOD Y 543 SANDWICH EPOXY 33.6

FIBERGLASS 0.430 ,- 101 43.4 64.1 88.8

* CASE 1 - LOW PAYLOAD - 4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD - L/D = 0.2 CASE 3 - HIGH PAYLOAD - L/D = 0.5 '* INCLUDING END FTG'S AND ATTACHMENTS 58 Table B-14: STRUCTURAL WEIGHT SUMMARY

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (Kg) " (Kg) t

| ALUM 1.60 - 9.38 15.1 19.0 29.9 CARBON - CORRUG EPOXY 091 8.54 160 26.8 FIBERGLASS 1.48 - 13.8 21 4 32.3 > О - 2* ALUM 2.93 27.5 35.3 46.7 HC. CARBON - 15.5 218 SANDWICH EPOXY 1.65 329

(CAS E 1 FIBERGLASS 2.10 - 19.8 264 37.4 VEHICLE S ALUM — 0.24 24 57 11.5 22.4 CARBON 0.144 TRUSS EPOXY — 24 34 88 19.7

FIBERGLASS - 0.24 24 57 11.5 223 CARBON 018 ADAPTER TRUSS EPOXY - 24 4.3 10.9 -

ALUM 1.62 - 15.2 196 307 CARBON - CORRUG. EPOXY 0.91 854 17.2 28 1

FIBERGLASS 1.54 - 145 228 33.0

ALUM 2.92 - 275 376 486 H.C CARBON

VEHICL E 1- 3 165 - 155 22.8 SANDWICH EPOXY 33.1 FIBERGLASS 2.10 - 193 (CAS E 2) " 27.5 386 VEHICL E BOD Y ALUM - 0.245 24 58 1.1 7 227 CARBON - 0145 24 34 8.9 203 TRUSS EPOXY FIBERGLASS - 0.245 24 5.77 11.6 226 CARBON TRUSS - 0.185 24 44 ADAPTER EPOXY 11.05 - ALUM 1.65 - 156 20.9 321 CARBON 0.93 - 87 19.1 CORRUG EPOXY 30.2 FIBERGLASS 1.57 - 14.7 252 363

ALUM 2.92 - 27.5 398 51.1

(CAS E 3) * H.C. CARBON 1.65 - 155 24.7 359 VEHICL E BOD Y SANDWICH EPOXY FIBERGLASS 2.10 - 9.38 19.3 29.2 407

CASE ^ - LOW PAYLOAD - 4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD - L/D = 0.2 CASE 3 - HIGH PAYLOAD - L/D = 0.5 INCLUDING END FTG'S AND ATTACHMENTS

59 Table B-15: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED OTY WT WEIGHT WT (Ib/ft2) (Ib) (ft2) lib) lib)* Ob) Т 3>1« ALUM 0547 24 13 1 262 509 ш CARBON УоВ 24 78 203 450 о °7 Х0< TRUSS EPOXY 0325 i •" > ~- _ ш FIBER6LASS 0541 24 130 261 508 > TRUSS CARBON 247 - AD AFTER EPOXY — 0.408 24 98

ALUM 0.440 1322 58.2 785 1084 CARBON CORRUG. 744 1043 EPOXY 0.273 361 FIBERGLASS 61 8 1001 1300 >. '0467 о 0 ALUM 0.601 795 1245 1544 OQ ~ НС. CARBON 0.333 440 78.8 1087 SANDWICH EPOXY ^—иш «<2 I 0 FIBERGLASS ш ~- 0430 1322 569 91 7 121 6 > 12 ALUM 0936 - 196- 370 669 0.692 12 CARBON 12 TRUSS 0606 134 29.0 589 EPOXY 0512 12 12 FIBERGLASS 1.132 238 42.0 71 9 0845 12 CARBON ADAPTER TRUSS EPOXY 1 57 12 189 299 -

<а- ALUM 0.459 132.2 605 826 113 1 1 CARBON CORRUG 0284 37.6 793 1098 ш EPOXY _| о FIBERGLASS 62.8 1045 1350 > 0.475 ш О > о ALUM 0.601 795 128.5 1590 m КГ H.C CARBON -ш 81 9 1124 SANDWICH EPOXY 0.333 440 ^I ^ 0 ош —^ FIBERGLASS 0.430 1322 569 948 1253

ALUM 0.936 12 19.6 372 677 0.692 12 CARBON 12 0.606 135 294 599 TRUSS EPOXY 0.5 >8 12 12 FIBERGLASS 1.132 242 41 4 71 9 0882 12 CARBON 1 60 12 192 305 - ADAPTER TRUSS EPOXY r ' у я ALUM 0.471 1322 624- 868 118.0 CARBON 0.295 390 850 1162 CORRUG. EPOXY 1322 111 > и - " . FIBERGLASS 0.536 132.2 71 0 1170 1482

* CASE 1 - LOW PAYLOAD - 4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD - L/D = 0 2 CASE 3 - HIGH PAYLOAD - L/D = 0 5

60 Table B-15: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (Kg)' (Kg)t

г~~ ALUM - 0248 24 59 118 238 ш CARBON TRUSS - 24 0 igl EPOXY 0148 35 92 204 е I О < I ? Ш GO О ш •- > ~ FIBERGLASS - 24 > 0.246 5.8 11 75 238 CARBON ADAPTER TRUSS EPOXY - 0185 24 45 112 -

ALUM 2.15 12.3 263 367 49.1 CARBON 134 CORRUG EPOXY 164 339 472

FIBERGLASS 233 281 455 590

ALUM 294 362 566 700 HC CARBON 162 358 490 SANDWICH EPOXY ' 200 FIBERGLASS 210 12.3 41 6 1 550 (CAS E 1 ) 258

VEHICL E BOD Y 0.425 12 ALUM 168 308 0315 12 89 CARBON 0273 12 TRUSS 132 267 EPOXY 0232 12 61 0.514 12 FIBERGLASS 327 0374 12 109 191 CARBON ADAPTER TRUSS EPOXY 0708 12 86 136 -

ALUM 2.24 12.3 275 375 51 4 CARBON CORRUG EPOXY 1.39 • 172 360 495

FIBERGLASS 232 285 47.3 614 >- VEHICL E 1-1 4 Q О ALUM 2.94 362 581 723 ЯО т- HC CARBON 162 372 51 0 SANDWICH EPOXY ' 200

(CAS E 2 FIBERGLASS 215 12.3 258 43.0 568

VEHICL E 0425 12 ALUM 168 308 0.315 12 89 CARBON 0273 12 TRUSS 133 272 EPOXY 0235 12 62 0514 12 FIBERGLASS 188 323 0402 12 110 CARBON 0726 ADAPTER TRUSS •EPOXY 12 87 138 -

ALUM 2.35 12.3 28.3 395 537 %« CARBON УОся CORRUG 1.44 123 177 386 52.3 X EPOXY ш8 со< О FIBERGLASS 2.62 12.3 32.2 532 673

* CASE 1 - LOW PAY LOAD - 4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD - L/D = 0.2 CASE 3 - HIGH PAYLOAD - L/D = 0 5

61 Table B-16: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Ib/ft2) (Ib) (ft2) (Ib) (Ib) t

ALUM 0.601 1322 795 1335 1647 НС CARBON 0333 132.2 SANDWICH EPOXY 440 857 1169 FIBERGLASS 0.430 1322 569 986 1298

ALUM 0.945 12 0730 12 201 385 697 (CAS E 3 ) CARBON 0606 12 TRUSS VEHICL E BOD Y EPOXY 0526 12 136 296 608 VEHICL E 1-1 4 1 132 12 FIBERGLASS 41 8 0899 12 244 730 CARBON TRUSS 1 63 ADAPTER EPOXY 12 196 31 2 -

ALUM 0322 445 143 247 560 CARBON 0176 i 274 COR RUG EPOXY 78 587 FIBERGLASS 0239 10.7 303 61 6

ALUM 0601 268 498 81 1 HC CARBON 0333 326 63:9 SANDWICH EPOXY 148 FIBERGLASS 0430 445 (CAS E 1 ) 192 370 683 VEHICL E BOD Y о. ALUM 0.286 6.9 200 51 3 О 24 CARBON z TRUSS 0119 24 29 139 452 о EPOXY ем I FIBERGLASS 0.288 24 69 201 51 4 CARBON см ADAPTER TRUSS i EPOXY 0620 24 14.9 31 3 -

ш ALUM 0.324 445 144 260 582 о CARBON X CORRUG 0177 79 299 62 1 ш EPOXY FIBERGLASS 0260 11 6 336 658 0 О ALUM 0601 268 526 848 HC CARBON 0,333 148 347 66.9 SANDWICH EPOXY X 0 0430 44.5 ш — ' FIBERGLASS 19.2 39 1 71 3

ALUM 0.286 24 69 202 524 CARBON 30 464 TRUSS EPOXY 0123 24 142 FIBERGLASS 0288 24 69 203 525 CARBON - ADAPTER TRUSS EPOXY 0.627 24 151 322

CASE 1 - LOW PAYLOAD -4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD -L/D = 0 2 CASE 3 - HIGH PAYLOAD - L/D = 0 5

62 Table B-16: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (kg)* (Kg) t

, ALUM 294 123 361 605 745 Н.С CARBON > 1 63 123 200 39.0 530 1 а SANDWICH EPOXY •Ч оШ 1 Я FIBERGLASS 215 123 258 448 586 Ш ш ~j Ш 0430 _| ALUM 12 92 175 31 7 УЗ 0332 12 о I•г е v\ J Ш CARBON 0273 I TRUSS 12 6.17 13.4 274 ш > EPOXY 0.238 12 > 0514 FIBERGLASS 12 190 0407 12 11 2 332 CARBON 0741 ADAPTER TRUSS EPOXY 12 89 143 - ALUM 1 57 0.42 65 11 2 254 CARBON CORRUG EPOXY 0865 '• 35 124 267 FIBERGLASS 1 17 49 139 278 Q ALUM О 294 12.3 22.6 369 Н.С CARBON 1 63 67 14.8 290 3» SANDWICH EPOXY FIBERGLASS 215 0.42 87 168 309 iшs > ALUM 0.130 24 3.2 91 233 CL CARBON е TRUSS EPOXY 0054 24 1 3 6.3 205 Z о FIBERGLASS 0.132 32 9.12 234 см 24 I _1 CARBON ADAPTER TRUSS EPOXY 0.282 24 68 . 144 - i ALUM 1 58 042 67 11 8 264 ш _| CARBON и CORRUG EPOXY 0865 36 136 28.2 ш FIBERGLASS 1 27 53 153 299 > > Q О ALUM 294 123 239 385 Ш £7 H.C. -ш CARBON 163 67 157 304 SANDWICH EPOXY — < I 0 87 178 ши^ FIBERGLASS 215 042 323

ALUM 0.130 24 313 92 238 CARBON 1 36 645 TRUSS EPOXY 0056 24 21 1

FIBERGLASS 0.132 24 313 92 239 CARBON ADAPTER TRUSS EPOXY 0285 24 675 146 —

CASE 1 - LOW PAYLOAD - 4" t BODY PLUS ADAPTER CASE 2 - MED PAYLOAD - L/D = 0.2 CASE 3 - HIGH PAYLOAD - L/D = 0 5

63 Table B-17: WEIGHT SUMMARY (Cont) •

AD- MEMBER BODY' TOTAL MATERIAL WEIGHT WT/MEM AREA USTED DTY WT WEIGHT WT (Ib/ft2) (Ib) (ft2 (Ib) (Ib) (Ib) t

ALUM 0324 445 144 281 607

CORRUG CARBON 0177 7.9 339 665 EPOXY FIBERGLASS 0265 11 8 378 704 о о ALUM 0.601 268 573 899 HC CARBON 0.333 148 384 71 0 SANDWICH EPOXY I 0 FIBERGLASS 0430 445 19.2 428 754 ш ~ ALUM 0286 24 69 207 533 CARBON TRUSS 0138 24 33 154 480 EPOXY VEHICL E 1- 2 (LH O N TOP ) 2 FIBERGLASS 0288 24 69 208 534 CARBON 0.638 24 153 32.6 - ADAPTER , TRUSS EPOXY ~ALUM 0328 87.5 287 369 678 CARBON 0177 15.5 31 1 620 CORRUG EPOXY FIBERGLASS 0.304 266 422 731

ALUM 0.601 525 70.9 101.8 HC CARBON 0.333 291 433 742 SANDWICH EPOXY FIBERGLASS 0430 376 51 8 827 Q? (CAS E 1 ) 87.5 VEHICL E BOD Y ALUM 0472 11 4 238 547 z 24 о CARBON CM TRUSS 0254 24 61 177 48.6 LL EPOXY FIBERGLASS 0460 24 11 0 235 544 CM CARBON 247 24 30.9 - Ш ADAPTER TRUSS EPOXY 59 и I ALUM 0.328 875 287 381 69.8 ш CARBON 0.179 335 CORRUG EPOXY 15.7 652 О О FIBERGLASS 0312 27.3 451 76.8

ALUM 0.601 525 735 1052 o<5 HC. CARBON хб 0333 291 453 77.0 ш ~ SANDWICH EPOXY FIBERGLASS 0430 87.5 376 538 855

t BODY PLUS ADAPTER

64 Table B-17: WEIGHT SUMMARY (Cont)

AD- VIEMBEP BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (Kg) (Kg) t

ALUM 1.58 042 65 127 277 CARBON 0.87 154 302 CORRUG EPOXY 3.6 FIBERGLASS 1.29 16.8 32.0 о. 545 о 408 Z 0^ ALUM 2.94 124 27.0 о НС CARBON см £" 1.63 17.4 323 I SANDWICH EPOXY 1 672 _| 3«у <* I 0 FIBERGLASS 2.15 19.5 343 см ш — 042 8.72 > ш ALUM 0130 24 3.2 94 242 О CARBON 0.063 24 7.0 21 8 X TRUSS EPOXY 1 5 > FIBERGLASS 0132 24 3.2 9.38 243 CARBON 148 - ADAPTER TRUSS EPOXY 0.290 24 6.95

ALUM 1 61 0813 131 167 309 CARBON 0.865 143 282 CORRUG EPOXY i 704

FIBERGLASS 0.148 12.2 194 333 >. 0 О ALUM 2.94 23.8 32.2 462 со — НС CARBON "]ш 1 63 132 19.7 337 о!2 SANDWICH EPOXY о. - < I О FIBERGLASS 2.15 236 377 ш "~" 0.813 172 р > ALUM 0214 24 108 248 0 t 5.18 см CARBON ц. 24 _| TRUSS EPOXY 0116 27 804 221

см FIBERGLASS 0208 24 50 107 247 ш • CARBON ADAPTER TRUSS 1 13 24 27 14 1 - (J EPOXY I ш ALUM 1.61 0.813 131 176 31 7 > CARBON CORRUG 0.87 15.3 296 >- EPOXY 714 а %ъ FIBERGLASS 1 53 125 20.4 34.9 УШ ALUM 2.94 23.8 334 478 HC. CARBON ш^d й—^ 1.63 • 134 206 360 > SANDWICH EPOXY FIBERGLASS 2.15 0.813 172 24.4 388

t BODY PLUS ADAPTER

65 Table B-18: WEIGHT SUMMARY (Cont)

AD- VIEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT

(Ib/ft2) (Ib) (ft2) (Ib) (Ib) (lb)t

ALUM 0.472 24 11 3 23.8 555 VEHICLE BODY CARBON 24 TRUSS EPOXY 0256 6.2 177 494 (CASE 2) FIBERGLASS 0.461 24 11 1 23.6 553

ADAPTER CARBON 24 TRUSS EPOXY 248 60 31 7 —

о. ALUM 407 727 О 0.333 875 29.1 CARBON CORRUG 0182 k 159 378 698 Q EPOXY {Ч LL FIBERGLASS 0322 282 501 821 _J s_ Q СМ О ALUM 0601 525 783 1103 ш HC CARBON 291 491 81 1 _| SANDWICH EPOXY 0.333 iУ» < I FIBERGLASS 0.430 875 376 576 896 ш L^UB > > ALUM 0476 24 11 4 -242 562 CARBON 24 TRUSS EPOXY 0263 63 182 502

FIBERGLASS 0462 24 11 1 240 560 CARBON 24 ADAPTER TRUSS EPOXY 251 6.0 320 -

ALUM 0340 455 155 33 1 552 CARBON CORRUG EPOXY 0187 '. 85 41 9 64.0

FIBERGLASS 0.393 179 51 3 734 V Q ALUM О 0601 274 66.6 88.7 HC CARBON • 0333 45.5 676 ri со SANDWICH EPOXY 152 ^УШ < ч I 0 FIBERGLASS см ш — 0.430 455 196 49.9 72.0 _| > о ALUM 0312 24 75 195 41 6 X ш CARBON 0130 24 > TRUSS EPOXY 31 135 356 FIBERGLASS 0314 24 75 195 41 6 CARBON 0331 24 ADAPTER TRUSS EPOXY 79 22 1 - ALUM 0348 455 158 345 567 VEHICLE CARBON BODY CORRUG EPOXY 0195 45.5 89 444 68 6 (CASE 2) FIBERGLASS 0406 455 185 540 762

t BODY PLUS ADAPTER

66 Table B-18: WEIGHT SUMMARY (Cont)

AD- 1ЕМВЕП BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED OTY WT UEIUHT UT (Kg/m2) (Kg) (m2) (Kg) (Kg) (Kg) t

ALUM 0215 24 5.1 10.8 25.2 WPUIIPI С BODY TRUSS CARBON 224 EPOXY 0116 24 2.7 8.05 lUMOfPAQC £.•>)» FIBERGLASS 0209 24 50 107 251 CARBON ADAPTER 1.13 - TRUSS EPOXY 24 27 148 ALUM 1 63 0813 134 183 330 {Г* CARBON CORRUG • 173 31 7 g EPOXY 089 7.2 о FIBERGLASS '1.57 128 228 373 CN _| ^О О ALUM 294 24.8 355 50.0 CM шm .-^ 1 СО НС CARBON 1 63 132 223 379 ш SANDWICH EPOXY " _1 ^=:о«ш<5 у Ю FIBERGLASS 215 0813 166 261 406 I ш — ш > > ALUM 0.216 24 5.2 11 0 255 CARBON к TRUSS EPOXY 0119 24 27 8.3 228 FIBERGLASS 0.209 24 5.0 108 254 CARBON 1 14 ADAPTER TRUSS EPOXY 24 2.7 145 - ALUM 1 66 0.42 7.0 15.0 253 CARBON CORRUG EPOXY 0.914 3.9 190 291 FIBERGLASS 1.92 81 23.2 333 О О ALUM 2.94 124 308 404 H.C CARBON 1 63 69 20.7 30.6 Зшw SANDWICH EPOXY ' 7 Уti < см 10 FIBERGLASS 2.10 0.42 89 22.6 32.7 ш ш ~" _| > о ALUM 0.143 24 34 885 18.8 ш CARBON O.OS9 1 4 61 166 > TRUSS EPOXY 24 FIBERGLASS 0144 24 34 8.85 18.8 CARBON 0151 36 101 - ADAPTER TRUSS EPOXY 24 ALUM 0.170 0.42 72 15.7 25.7 wctjipi с VcnluLt CARBON 0.952 41 20.1 308 BODY CORRUG EPOXY 042 (UMo(РДССc О^)\ FIBERGLASS 197 0.42 84 245 34.6

t BODY PLUS ADAPTER

67 Table B-19: WEIGHT SUMMARY (Cont)

AD- MEMBER! BODY ТО1Л1. MATEKlAL WEIGHT WT/MEM AREA JUSTTD JTY WT WNGIIT WT (Ib/ft2) Ob) (ft2) (Ib) (Ib) (Ib) t

ALUM 0.601 45.5 27.4 69.1 91 3 >- НС. CARBON 0.333 Q EPOXY 45.5 15.2 47.4 696 о _ SANDWICH со см FIBERGLASS 0430 45.5 19.6 740 Ш ш 51 8 — 1 (Л и < ALUM 24 75 19.7 41 9 ЕВ 0.312 ш CARBON > TRUSS EPOXY 0131 24 31 13.7 359 FIBERGLASS 0314 24 7.5 197 41 9 CARBON - ADAPTER TRUSS EPOXY 0333 24 80 222 - ALUM 0353 45.5 161 36.8 606 1 CARBON гм CORRUG 0197 90 48.3 72.1 ш EPOXY ' _| о FIBERGLASS 0418 19.0 58.3 821 х > ш О > о _ ALUM 0601 274 734 972 са т H.C ш ш CARBON 0.333 152 509 747 -1 (Л SANDWICH EPOXY ЕО 9^ 0.430 45.5 19.6 ш FIBERGLASS 55.3 791 > ALUM 0312 24 75 20.2 44.0

CARBON 33 TRUSS EPOXY 0.137 24 148 38.6 FIBERGLASS 0315 24 76 20.2 44.0

TRUSS CARBON 83 ADAPTER EPOXY 0347 24 23.8 - ALUM 0.498 112.4 560 73.0 102.6

CORRUG CARBON 0.263 29.5 EPOXY | 61 7 91.3 FIBERGLASS 0435 48.9 81 1 110.7 >- Q ALUM 0.601 67.5 1054 1350 ч- О _ 00 t— HC. CARBON см Ш ш 0333 | 374 667 96.3 ш SANDWICH EPOXY _| dg о Ей FIBERGLASS 0430 112.4 484 ш 777 107.3 ш > ALUM 0.710 12 163 330 62.6 > 0651 12 CARBON 0456 12 106 259 555 TRUSS EPOXY 0426 12 FIBERGLASS 0.848 1 12 195 358 654 0775 12 CARBON 20.4 ADAPTER TRUSS EPOXY 1.70 12 296 -

t BODY PLUS ADAPTER

68 Table B-19. WEIGHT SUMMARY (Cont)

AD- MEMBER BODY' TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (kg) (kg) t

ALUM 294 0.42 12.8 31 4 41 4 > НС CARBON о 1.63 042 6.9 21 5 31 6 Q SANDWICH EPOXY 00 сч FIBERGLASS Ш ш 210 0.42 89 235 33.6 о < ALUM 34 894 Ей 0.142 24 190 ш > CARBON 1.4 TRUSS EPOXY 0059 24 63 166

FIBERGLASS 0143 24 34 895 190 CARBON ADAPTER TRUSS EPOXY 0.152 24 3.6 10.1 -

ALUM 042 7.3 168 273 CM 1 73 CM CARBON CORRUG 4.1 21 9 Ш EPOXY 0963 327 о FIBERGLASS 1 99 86 264 373 I >_ > О ALUM О 2.94 12.5 333 44 1 со со НС CARBON Ш Ш 1 63 6.9 231 33.9 -1 СЛ SANDWICH EPOXY оЕ й^ FIBERGLASS 89 251 ш 210 042 360 > ALUM 0142 24 34 917 199 CARBON TRUSS EPOXY 0059 24 1.5 6.7 175 FIBERGLASS 0143 24 34 917 199 CARBON ADAPTER TRUSS EPOXY 0157 24 37 108 -

ALUM 243 11 5 254 341 46.5 CORRUG CARBON EPOXY 1 28 134 281 41.3 • FIBERGLASS 212 221 368 502

ТС О 0_ ALUM 2.94 30.6 478 61 3 es ш ш HC CARBON 169 30.8 ш EPOXY 1.63 43.7 _i м2 SANDWICH 0 О < Ей FIBERGLASS 11 5 21.9 343 486 1. ш 2 10 > > ALUM 0.322 12 7.4 149 28.4 0296 12 TRUSS CARBON 0.207 12 48 136 255 EPOXY 0194 12 FIBERGLASS 0385 12 8.85 163 29.3 0352 12 CARBON 0.771 12 925 134 ADAPTER TRUSS EPOXY -

t BODY PLUS ADAPTER

69 Table B-20: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Ib/ft2) (lb) (ft2 (1Ы db) db) t i ALUM 0517 112.4 581 761 1096 CARBON COR RUG 0274 308 649 984 EPOXY FIBERGLASS 0461 51 8 859 1194 > ALUM 0601 675 1076 141 1 HC CARBON 0333 374 684 101 9 SANDWICH EPOXY

(CAS E 2 ) FIBERGLASS 0430 1124 484 794 1129 VEHICL E BO D 0710 12 ALUM 164 33.1 666 0662 12 12 CARBON 0456 108 263 598 TRUSS EPOXY 0440 12 12 FIBERGLASS 0848 195 358 693 0775 12 CARBON ADAPTER TRUSS 195 12 234 335 - EPOXY ALUM 0557 1124 625 827 1174

VEHICL E 2-1 4 CARBON CORRUG 0295 332 71 4 106 1 EPOXY FIBERGLASS 0501 564 946 1293

ALUM 0601 675 1125 1472 HC CARBON 0333 374 722 1069 SANDWICH EPOXY

(CAS E 3 ) FIBERGLASS 0430 112.4 484 832 1179

VEHICL E BOD Y 0746 12 ALUM 170 339 686 0672 12 0457 12 CARBON 11 2 269 61 6 TRUSS EPOXY 0475 12 0850 12 FIBERGLASS 197 35.9 706 0794 12 CARBON ADAPTER TRUSS 201 12 241 347 - EPOXY ALUM 0.342 1045 357 451 638 CARBON 0187 195 373 560 CORRUG EPOXY FIBERGLASS 0349 364 542 729

ALUM 0.601 627 837 1024 HC CARBON 0333 348 SI 0 697 (CAS E 1 ) EPOXY

VEHICL E 2- 3 SANDWICH

VEHICL E BOD Y FIBERGLASS 0.430 104.5 450 61 2 799

t BODY PLUS ADAPTER

70 Table B-20: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY' TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (Kg) (Kg) t

ALUM 2.57 115 26.4 345 498 CARBON • 1 34 CORRUG EPOXY 140 295 447

FIBERGLASS 2.25 235 390 542

о ALUM 294 30.6 о^ 489 64 1 HC CARBON 1 63 170 SANDWICH EPOXY 31 1 463 FIBERGLASS 210 11 5 220 361

(CAS E 2 ) 51 2

VEHICL E 6 0322 12 ALUM 75 0300 12 150 302 CARBON 0206 12 49 11 9 27 2 TRUSS EPOXY 0199 12 0385 12 89 163 FIBERGLASS 0352 12 31 5 TRUSS CARBON 0885 12 106 152 ADAPTER EPOXY - ALUM 272 11 5 284 375 533 VEHICL E 2-1 4 CARBON 144 151 324 CORRUG EPOXY 482 FIBERGLASS 245 256 430 587

ALUM 294 306 51 1 668 HC CARBON 1 63 170 328 SANDWICH EPOXY 485

(CAS E 3 ) FIBERGLASS 210 11 5 220 378 535

VEHICL E BOD Y 0339 12 ALUM 0305 12 7.7 154 31 1 0207 12 CARBON 51 TRUSS EPOXY 0216 12 122 280 0386 12 FIBERGLASS 0360 12 89 163 32 1 TRUSS CARBON 0913 12 109 158 ADAPTER EPOXY - ALUM 167 965 162 20.5 290

CARBON 0.915 89 170 CORRUG EPOXY 254 го FIBERGLASS 170 16.5 246 331 ем ш _1 ALUM 2.94 285 380 465 О HC I (CASE D CARBON 163 15.8 232 316 ш SANDWICH EPOXY VEHICL E BOD Y FIBERGLASS 210 9.65 204 278 36.3

1 BODY PLUS ADAPTER

71 Table B-21: WEIGHT SUMMARY (Cont)

ЛП- MEMBEP BODY IO1AL MATERIAL WEIGHT WT/MEM AREA JUSTI D QTY WT wi-ir,nr wr (Ib/ft2) (Ib) (ft2) (Ib) (Ib) (Ib) t

ш — ALUM 0689 24 16.5 304 491 OQUJ CARBON TRUSS 0435 24 105 238 425 Е EPOXY 2< > § FIBERGLASS 0726 24 174 32 1 508 TRUSS CARBON ADAPTER EPOXY 0.225 24 54 187 -

ALUM 0350 104.5 366 47 1 66 1 CORRUG CARBON EPOXY 0197 206 404 594 FIBERGLASS 0.360 574 764 v 376 о 0_ ALUM 0.601 627 860 1050 ш ш НС CARBON -1 W EPOXY 0333 348 528 71 8 ( } rff SANDWICH Ей FIBERGLASS ' ш 0.430 1045 450 630 820 > ALUM го 0689 24 165 304 494 м CARBON ш TRUSS EPOXY 0437 24 105 238 428 и FIBERGLASS 0728 24 175 32 1 51 1 > CARBON ADAPTER TRUSS EPOXY 0225 24 54 190 -

ALUM 0379 104.5 396 522 71 5 CORRUG CARBON EPOXY 0205 214 452 645

FIBERGLASS 0.371 388 626 81 9

Q ALUM 0.601 907 110.0 О 62.7 СО п HC CARBON ш ш 0333 348 564 757 -1 (Л SANDWICH EPOXY 1 0< га FIBERGLASS 0.430 1045 450 666 85.9 ш> ALUM 0707 24 17.0 31 0 503 CARBON TRUSS EPOXY 0443 24 106 24.6 439

FIBERGLASS 0.736 24 17.7 325 51 8 CARBON ADAPTER TRUSS EPOXY 0227 24 55 193 -

ш ш — ALUM 0.447 668 299 437 73.2 -iv*- о £ CARBON о ш CORRUG I » EPOXY 0.285 668 191 453 748 ш 7 > m о > (N FIBERGLASS 0.417 668 278 540 835

t BODY PLUS ADAPTER

72 Table B-21: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT (Kg/m2) (Kg) (m2) (Kg) (Kg) (Kg) t

ALUM 0313 24 75 138 223 ">- Уош TRUSS CARBON EPOXY 0198 24 48 108 193 TOm " > § FIBERGLASS 0330 24 79 146 231

ADAPTER TRUSS CARBON EPOXY 0102 24 25 85 —

ALUM 1 70 965 166 21 4 300 i CORRUG CARBON EPOXY 0096 94 183 270

FIBERGLASS 1 76 17 1 261 347

ALUM 293 285 390 477 HC CARBON SANDWICH EPOXY 1 63 \ 158 240 326

(CAS E 2 ) FIBERGLASS 209 965 204 286 372 VEHICL E BOD Y ALUM 0313 24 75 138 22.4 CARBON TRUSS EPOXY 0198 24 48 108 194

FIBERGLASS 0330 24 79 146 232 CARBON VEHICL E 2- 3 ADAPTER TRUSS EPOXY 0102 24 2.6 86 -

ALUM 1 85 965 180 237 325 CORRUG CARBON EPOXY 1.00 9.7 205 293

FIBERGLASS 181 17.6 284 372 лао а ЭЮ1НЗ Л

ALUM 293 28.5 41 2 49.9 ( E 3SVO ) HC CARBON SANDWICH EPOXY 1 63 158 256 34.4

FIBERGLASS 210 9.65 204 302 390

ALUM 0321 24 77 14.1 228 CARBON TRUSS EPOXY 0201 24 48 11 2 200

FIBERGLASS 0334 24 8.0 148 235 CARBON ADAPTER TRUSS EPOXY 0103 24 25 88 - ALUM 2.18 136 ш — 062 198 332 CARBON "am CORRUG 1 39 062 87 206 io£ EPOXY 340 UJCOg

2-1 8 FIBERGLASS 203 062 126 245 379 1 VEHICL E Т BODY PLUS ADAPTER

73 Table B-22: WEIGHT SUMMARY (Cent)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED TTY WT WEIGHT WT 2 (Ib/ft ) Ob) (ft2) (Ib) (Ib) (Ib) t

ALUM 0.601 668 40.2 71 0 1005 НС CARBON >- 0333 668 223 461 75.6 Q SANDWICH EPOXY о_ FIBERGLASS 0430 668 287 52.5 820 ш ^ -1 СЯ 0 < ALUM 0981 12 11 8 21 4 509 I У ш TRUSS CARBON EPOXY 0620 12 75 160 455

FIBERGLASS 1 15 12 13.8 231 526 CARBON TRUSS ADAPTER EPOXY 1 57 12 188 295 -

ALUM 0498 668 33.2 479 776 CARBON CORRUG EPOXY 0295 197 477 774

FIBERGLASS 0427 285 565 862 > О о _ ALUM 0601 40.2 73.2 1029 оо см НС ш ш CARBON 0333 223 477 774 со SANDWICH EPOXY ОГ> <2 CM 5Ц FIBERGLASS 0430 668 287 541 838 ш ш _| > о ALUM 0.981 12 11 8 21.4 51 1 I ш TRUSS CARBON 0620 12 75 457 > EPOXY 160 FIBERGLASS 1 15 12 13.8 231 528

ADAPTER TRUSS CARBON 1 58 190 — FPOXY 12 297 ALUM 0520 668 34.7 51 5 823 CARBON CORRUG 0316 21 1 528 836 EPOXY FIBERGLASS 0453 303 620 928 О ALUM 0601 402 774 108.2 с0о г-о H.C CARBON ш ш 0333 223 51.0 81 8 -1 СО SANDWICH EPOXY О < 59 FIBERGLASS 0.430 287 ш 66.8 574 88.2 > ALUM 0981 12 11 8 21 4 522

CARBON 0620 7.5 TRUSS EPOXY 12 16.0 46.8 FIBERGLASS 1 15 12 138 231 539 CARBON 1 63 196 - ADAPTER TRUSS EPOXY 12 308 t BODY PLUS ADAPTER

74 Table B-22: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED QTY WT WEIGHT WT 2 (Kg/m ) (Kg) (m2) (Kg) (Kg) (Kg) t

, ALUM 293 062 183 322 457 НС CARBON > 1.63 062 101 209 343 Q SANDWICH EPOXY 0 _ ю - FIBERGLASS 2 10 062 13.0 238 372

-1 <Л 0 < ALUM 0445 12 54 97 231 i В ш TRUSS CARBON 0282 34 > EPOXY 12 73 206 FIBERGLASS 0522 12 63 10.5 239

ADAPTER TRUSS CARBON 0713 85 EPOXY 12 134 - ALUM 243 062 151 21 7 352 CORRUG CARBON EPOXY 144 89 21 7 351 FIBERGLASS 208 12.9 257 391 > О ALUM 293 183 332 467 О _ m см НС CARBON oo Ш ш 1 63 101 21 7 351 i SANDWICH EPOXY см оН* <2 LU Ей FIBERGLASS 210 0.62 130 246 380 _| ш и > I ALUM 0445 12 54 97 232 ш > CARBON TRUSS EPOXY 0282 12 34 73 207

FIBERGLASS 0522 12 63 105 240 CARBON ADAPTER TRUSS EPOXY 0.717 12 86 135 -

ALUM 2.54 062 158 234 374 CORRUG CARBON > EPOXY 1 54 9.6 240 380

FIBERGLASS 221 138 282 421 >. О ALUM 2.93 183 352 494 ffоn £: H С Ш Ш CARBON 1 63 10.1 231 37 1 о-1 ALUM 0.445 12 54 97 237

CARBON 0281 3.4 TRUSS EPOXY 12 73 21 2 FIBERGLASS 0522 12 6.3 105 245

CARBON 0740 8.9 ADAPTER TRUSS EPOXY 12 140

t BODY PLUS ADAPTER

75 Table B-23: WEIGHT SUMMARY (Cont)

M>- 1EMBEK BODY ! MATERIAL WEIGHT WT/MEM AREA II', 1 1 M QfY WT VI

2 (Ib/ft ) (Ib) (ft2) (Ib) (Ib) (lb)t

ALUM 0780 1130 88.0 1086 131 7 CORRUG CARBON EPOXY 0400 113.0 45.2 842 1073

FIBERGLASS 0930 1130 1050 1440 167 1 > о - 44 94 1 о _ ALUM 41 5 71 0 00 ,- Ш Ш TRUSS _1 (Л 0 < Ей FIBERGLASS - 44 402 723 954 ш >

CARBON ADAPTER TRUSS 24 - EPOXY 0.320 77 231 1395 ALUM 0820 113.0 92.6 1154 CARBON 1145 CORRUG EPOXY 0.420 113.0 47.4 904 1 FIBERGLASS 0.980 1540 1781 ш > 113.0 111 0 _| а 969 о о _ ALUM ' - 44 430 728

ш Ш Ш ^> -1 (Я TRUSS о < Ей FIBERGLASS - 977 ш 44 j 41 1 736 >

CARBON - ADAPTER TRUSS EPOXY 0327 24 79 24.1 147 1 ALUM 0.860 113.0 970 1220 CARBON > CORRUG 0.440 121 7 О EPOXY 113.0 496 96.6 о _ 1883 со го FIBERGLASS 1.03 1130 1162 1632 ш ш -1 (Л 100.2 0 < ALUM - 450 751 Ей 44 ш > TRUSS 1009 FIBERGLASS - 44 423 75.8 CARBON 251 — ADAPTER TRUSS EPOXY 0.335 24 80

t BODY PLUS ADAPTER

76 Table B-23: WEIGHT SUMMARY (Cont)

AD- MEMBER BODY TOTAL MATERIAL WEIGHT WT/MEM AREA JUSTED DTY WT WCIGMT WT 2 (Kg/m ) (Kg) (m2) (Kg) (Kg) (Kg) t

ALUM 380 105 400 493 598 CARBON 105 487 CORRUG EPOXY 1 95 205 382 FIBERGLASS 454 105 477 654 759 > - О ALUM 44 188 322 427 о _ m ^г TRUSS Ш Ш —I (/) о < FIBERGLASS 433 ЕВ 44 183 328 >Ш

CARBON - ADAPTER TRUSS EPOXY 0145 24 35 105 ALUM 400 105 420 524 633 CARBON 2.05 CORRUG EPOXY 105 21 5 41 1 520 !>. 1 FIBERGLASS 478 105 504 700 809 . •>• Ш 0 и О _ ALUM 44 195 33.1 440 ш ш Ш -1 V) TRUSS > ЕО 9^ ш FIBERGLASS 44 187 334 444 >

CARBON - ADAPTER TRUSS EPOXY 0148 24 36 109 ALUM 4.20 105 440 554 66.8 CARBON CORRUG 2.15 105 225 439 553 S EPOXY 0_ m n FIBERGLASS 503 10.5 528 74.1 855

-1 (Л о < ALUM 44 204 341 455 I•~ о=i ш > TRUSS FIBERGLASS 44 192 344 45.8

CARBON 36 11 4 - ADAPTER TRUSS EPOXY 0152 24

t BODY PLUS ADAPTER

77 THIS PAGE INTENTIONALLY LEFT BLANK

78 APPENDIX С

METEOROID PROTECTION

This appendix discusses the meteoroid environment and the method of laboratory simulation, derivation of the Earth-Mars trajectory for the study vehicles, the design meteoroid sizes for the study, a tabulation of weights for the materials used in the tests, and the design curves developed in the course of the study.

METEOROID ENVIRONMENT

Meteoroid experimental information comes from two primary sources: meteors in the Earth's upper atmosphere and satellite impact records. None of the sources of the information provide meteoroid mass directly except meteorite finds which are of no interest here.

The most important sources of information on meteors are the photographic ob- servations. This covers a mass range down to about 0.01 grams. Figure C-l is a cumulative distribution of a sample of sporadic photographic meteors as a func- tion of brightness, using the stellar magnitude scale (Reference C-l). Since the total collecting rate of the cameras is known, the cumulative flux as a function of magnitude can be approximated (Reference С-2) as

log N = 0.537 M - 4.34 (km^hr"1)

The equations of meteor physics and an average meteor velocity (variously taken as 16.5, 20, 35, 40 km/sec) can be used to obtain a mass flux curve. These average values are usually obtained from the raw data: 35 km/sec from photo- graphic data, 40 km/sec from radar data, and the other values resulting from various data weighting schemes.

A derivation of the velocity distribution (Reference C-3) was considered here. From Figure C-l note that the sample appeared to be complete only to magnitude one. The roll-off was not a real effect. Rather, it was caused by the limiting sensitivity of the photographic system.

If the sensitivity were independent of velocity, the raw data would provide a velocity distribution at constant brightness. However, slow meteors are easier to see, and the limiting magnitude extends to much fainter meteors for low velocities than for high velocities. The sensitivity dependence is essentially inversely as the velocity, as would be expected. To eliminate those observa- tional biases, the total sample of Figure C-l is divided into small velocity inter- vals with distributions of the same form in each. The velocity distribution of the raw data was obtained from the total number in each velocity interval. This is called the observed distribution in Figure C-2. Next, the portion of the dis- tribution where the data was complete was fitted by a straight line in each

79 interval with the same slope as in Figure C-l. From these straight lines the constants in equations of the form shown in Figure C-l are obtained, but now for each velocity interval. From the theory of meteor physics (Reference C-4) a relationship among magnitude M , velocity V, and mass m is obtained. By this means the number per unit velocity interval at constant mass is then ob- tained with the observational bias removed. The average velocity of meteors in the earth's atmosphere is computed to be 16.5 km/sec. The average velocity for impact on a near earth sateMiteis 17.8 km/sec.

The velocity distribution in the absence of the Earth's field is also shown in Figure C-2. The average of this distribution is 14.1 km/sec, however, the average for impact is 17.0 km/sec. Meteoroid velocities) relative to a space- craft can range from 0 to 70 km/sec; however, 90 percent of the population is in the range 0 to 20 km/sec.

Taking the appropriate average over the velocity distribution, the luminous flux of Figure C-l is converted to a mass flux, given by

log N = -1.21 log m - 13.85 (M~2 sec'1) - - - --

where m was in grams. When the influence of the Earth's field on the flux is removed: i log N = -1.21 log m - 14.20

which is shown as the straight line portion of Figure C-3. This is the flux en- countered by a spacecraft at Earth's distance from the sun, but not near Earth itself.

The meteoroid satellites such as Explorer 16 and 23, Pegasus 1, 2, and 3, and also the Lunar Orbiters provide flux rates by recording the number of perforations in thin metal sheets of several thicknesses. These measurements automatically give the cumulative penetration flux, since particles larger than the threshold size also penetrated. The sensors on Lunar Orbiter were the same as the .001 inch (.0025 cm} be-cu pressure cans on Explorer 16. The penetration rate of Explorer 16 was 2.0 times that recorded by the Lunar Orbiter (44 penetrations on Explorer 16 and 22 on Lunar Orbiter with almost the same effective exposure). This result was due to the increase in the meteor flux by the Earth's field and, to a lesser extent, the greater velocity of the near Earth satellites. Since this effect is velocity dependent, something can be inferred about the average speed from the experi- mental result.

To analyze this problem, the meteor flux is taken to be effectively isotropic. The are in hyperbolic orbits and the satellites were in elliptic orbits. The penetrated thickness is given by the empirical formula:

80 . , ч, p = km (Vx/ cos A)

The satellite penetrating flux is approximately of the form:

log F = - 8log p + log F. (1)

The penetration rate of a satellite is given by Reference C-5

2+08 ^" L 2 \r 2a

1/2 2V2 1/21

F(V)AV (2)

Integrating over V using the bias free velocity distribution (the near-Earth curve) in Figure C-2 and averaging over the orbits of Lunar Orbiter and over Explorer 16 and computing the ratio F /F. the function of б 8 shown in Figure C-4 is obtained. The best value о1/]>8 is 0.64 (ft = 2/3 from impact data, 8 = 0.96 from satellite data) which checks the experimental result exactly. However, the extreme range of possible values (0.43<|38 £ 0.96) gives good comparison. The dashed curves were computed using unique values for the velocity rather than a distribution in Equation 2. These curves illustrate the velocity dependence. It can be seen that the bias free velocity distribution obtained from the photographic range is confirmed by the comparison of Lunar Orbiter and Explorer 16 data.

The satellite data is available in the form of Equation 1. From the integral of Equation 2 the parameter N1 can be evaluated and hence the mass flux results in the form:

log N = -1/3 8 log m + log N (3)

The curve for the satellite range in Figure C-3 was obtained by using Equation 3 over short intervals of mass.

The mass range of importance in spacecraft design is from about 10 grams to one gram. The flux curve was established on the satellite and the photographic data; an interpolation was used between these ranges. Radar data appears to be improperly corrected, especially for low velocity meteors. Radar meteors appear to have velocities which are too high and flux rates which are too low.

81 Meteors of the photographic and radar range, because of their behavior in the atmosphere, appear to be fragile and of very low density, ranging from less than 0.25 gm/cc at one gram to around 0.8 gm/cc at 10"^ grams. They crumble and burn up in the 80 to 120 km altitude region. They are believed to be cometary debris; the association of some meteor streams with bears this out.

Annual meteor streams do not appear to be a significant hazard to spacecraft (Reference C-6). Although some streams have very high visual rates, this is primarily because of the high luminosity of even the very small particles in those streams which have large velocities relative to Earth.

EXPERIMENTAL SIMULATION

The Boeing Company Meteoroid Protection Laboratory was developed for the primary purpose of generating data suitable for design of meteoroid protection systems. Little emphasis was placed on the study of the physics of hypervelocity impact as such. Within the physical limitations, meteoroid impact was simulated as closely as possible.

As shown in the previous section, most meteoroids have velocities ranging up to 20 km/sec, densities from 0.25 to 0.8 gm/cc, and very little strength. These conditions could not be simulated in the laboratory. Although speeds up to 10 km/sec were occasionally reported, a practical upper limit for routine testing is about 8.5 km/sec. The minimum density projectile that can be routinely launched is polyethylene (sp.gr. = 0.95), although inlyte (sp.gr. = 0.7) has been launched with some success in other laboratories (Reference С-7).

Most laboratories used spherical projectiles because they gave symmetrical and repeatable damage patterns. This was necessary for the study of hypervelocity impact phenomena. However, there is no reason to believe that meteoroids are spheres. Indeed, the current theory that they are cometary fragments would pre- clude this possibility except for those few which come close enough to the sun to be melted but not vaporized. Cylindrical projectiles with random attitudes at impact give random damage patterns, which should be more representative of meteoroid damage. Reference C-8 concluded that cylindrical projectiles caused greater damage than spherical projectiles, thus the use of the latter projectiles could yield non-conservative results. Since cylindrical polyethylene projectiles were easy to launch, these were selected by Boeing as the best projectiles to simulate meteoroid impact.

A family of small light-gas guns, which were simple and economical to operate, were available. With polyethylene and Lexan projectiles, velocities up to 9 km/sec were achieved. The 1/16 and 3/32-inch (.16 and ,24cm) projectiles were launched with basically the same gun. It was powered by a .375 magnum case loaded with Bullseye powder. The guns were shock compression types using hydrogen gas. The most important factor in their economical operation was the disposable launch tube consisting of commercial tubing. 82 Velocity Dependence - Meteor speeds relative to a spacecraft have a wide range. From Figure C-2 it was seen that velocities up to 20 km/sec must be considered to include 90 percent of the meteoroid population. Since the test data effectively ends at 8.5 km/sec an extrapolation is required. In Reference C-9 a theoretical treatment based on blast loading of the second sheet was given. This resulted in a linear increase of the threshold thickness of the second wall with velocity. However, this approach did not determine the constant. This linear dependence is included in an empirical relation in Reference C-10, resulting in a very con- servative penetration threshold at approximately 20 km/sec. This is a consequence of the fact that in the test range, the blast loading contributes only a small part of the damage to the second sheet. A more realistic treatment is given in Ref- erence C-l 1 where experimental thresholds, using glass spheres, were determined with sufficient accuracy so that extrapolation was possible. Here the second wall thickness was found to vary with velocity as:

This weak dependence on velocity was in keeping with Boeing test results. Since the Boeing data was valid up to about 8 km/sec, the following expression could be written:

Т2 4

0'278 v>8 km/sec

Density Dependence - Very little accurate work has been done on the density dependence of low density projectiles. This is because low density (sp. gr.< 1) materials have little strength and testing is difficult. Reference C-7 compared Inlyte (sp. gr. = 0.7) with aluminum projectiles (sp. gr. = 2.8). Several con- figurations were considered, and it was found that total thickness varied as

6 (T1 + T2)/D» P°- for very small mass and low density projectiles. This was a somewhat stronger dependence on density than would have been the case if damage depended only on the projectile mass; i.e., p '/**. The second sheet thickness was not given separately as a function of density.

83 However, in spite of the value of this work, there was insufficient supporting test data to include this density dependence in the penetration equation of this study. It did demonstrate, though, that a threshold dependence on projectile mass is conservative. Consequently, the penetration equation is:

т, /т, s \ / p \ 1/3 4= fiU'T/W 4

T2 /Tl S W р \ 1/3 /V\ °'278 Т = fl U ' D) loFJ Ы v > 8 km/sec since res* data was obtained with polyethylene (sp. gr. = 0.95) projectiles.

DETERMINATION OF THE METEOROID ENVIRONMENT FOR EARTH TO MARS TRAJECTORY

The meteoroid flux varies in the solar system as a function of distance from the sun. The reliability requirement for this study was stated for the total mission. Therefore, an average flux was used in the meteoroid protection analysis. This average was not very sensitive to the particular mission, but specifically the computation was based on a feasible 208- trajectory starting on Earth on October 7, 1975. This trajectory was not necessarily a practical one, but served the purposes of computing the average meteoroid flux for the study.

The desired trajectory was an ellipse satisfying the two end conditions. Earth distance from the sun would be very close to one A.U. on October 7. Mars distance from the sun on May 2, 1976 was computed. The equation for the was

M = nt + £ - S

For January 15, 1960, this was

M = .524033t - 76.5554 for Mars' orbit. On May 2, 1976, M = 169.535°.

Other data for Mars' orbit were:

semi-major axis, a = 1.523691 eccentricity, e = .093368

84 Mars distance was computed from

r = a(1 - e cos E ) M where E was the eccentric anomaly which was determined from Kepler's equation M

M = E.. - e sin E M M which was solved by iteration. The result was r = 1.664 A.U. on May 2, 1976.

The trajectory, that is a and ' e, of the spacecraft was next computed. It was assumed that perihelion of this trajectory was at Earth; hence was

1 = a(1 - e)

At intercept 1.664 = a(l -e cos E-) where E_ was the eccentric anomaly of the spacecraft trajectory at intercept. It was related to time by

3/2 t - 208 = a (Es - e sin E$) days.

These three equations were solved for a, e, and E_ by iteration. Starting with Е- = 7Г , the solutions converged in four steps to:

E = 2,389 rod (136.8°) a = 1.383 A.U. e = .275

The orbits of Earth, Mars, and the spacecraft are shown in Figure C-5. A plot of the equations

R = 1.383 (1 - .275 cos E) A.U. (1)

t = 94.5 (E - .275 sin E) Days (2) giving R as a function of t is shown in Figure C-6.

The model of the cumulative meteoroid flux in interplanetary space was assumed to have the functional form

N = f (m) f (R) (3)

85 where N was the total rate on a surface of unit area by meteoroids of mass m and larger at a distance R from the sun. This implied that the mass distribution was independent of the distance R. Hence, the near Earth flux model gave f(m). Strictly speaking, this was the flux relative to an object in a direct circular orbit such as Earth; however, the spacecraft's elliptic trajectory would produce only a very small deviation in the relative flux. This model also assumed that the flux was isotropic relative to the spacecraft. Meteoroids are primarily in direct orbits. However, most of the orbits are very eccentric and the relative flux is approximately isotropic.

The total number of hits per unit area during the mission was

ff (m) f (R) dt hence the average rate was «\ s = IM. J f(R) dt (4)

Over the relatively small distance from Earthi to Mars the space dependence could be approximated as f (R) = R where R was in A.U. From Equation 1

f (R) = Fl.383 (1 - .275 cos E)] (5) and from Equation 2

dt = 94.5 (1 - .,275 cos E) dE

Substituting in Equation 4

= f (m) F (Y)/F(0) (6) where F(Y) = (].383)Y f S (1 - .275 cos E) dE *ч> and E- = 2.389 rod. For the purpose of computation, the integrand could be expanded in a series and integrated term by term as

"S (1 - .275 cosE)1 +Y dE = о 2.389 - .1879 (Y+l) + .03574 (Y+1) Y- .002 (Y+1)(Y -1)Y

+ .0001848 (Y+1)(Y-1)(Y-2)Y .

86 The quantity F(Y)/F(0) is plotted in Figure С-7.

The average of the relative meteoroid velicity over the trajectory was next cal- culated. An approximation suitable for the purpose was that the relative meteoroid speed depended on distance from the sun as

V=V, R"1/2 (7)

This result was exact for a particular (fictitious) distribution of meteoroid orbital elements. The velocity relative to an object in a circular orbit varied as

V = R~1/2 [з - R/a - 2 N/(1 -e2) a/R cos \\]/2

If the distribution was such that the average semi-major axis "a" was proportional to the distance R at each point in space, then Equation 7 was exact.

The average over the trajectory was defined as

/ N dt

Fiom (3), (4) and (7) this became

V, /RY "1/2dt

/RY dt and by means of Equation (6) this was represented by

= V F(Y- which is plotted in Figure С-7.

The curves of Figure С-7 were used to determine the sensitivity of the meteoroid protection requirement to variations in the model of the environment as described in Section 1.3.4 of the Volume I document.

For instance, various published models of the environment corresponded to a range of V from -2 (Reference C-12) to an unrealistic extreme of +5 (Reference C-13). A nominal value of Y was selected, and the flux from the near-Earth model multiplied by F(Y )/F(0) to give the average flux over the trajectory (the nominal value of У was most likely between 0 and -2). This was used to determine the design meteoroid mass. The average velocity for penetration based on the near- Earth flux was multiplied by F( Y-l/2)/F(Y) to give the average velocity over

87 the trajectory. The amount of meteoroid protection required was computed from these values. Another value, Y =3 for instance, would then be used for a similar calculation. A comparison of the two results gave a measure of the sen- sitivity of the weight to the model used.

DESIGN METEOROID SIZES

Section 1.3.4 of the Volume I document described how the spherical diameter of the polyethylene design projectile was computed. The nominal values of the meteoroid environment and velocity dependence, /3 and Y , were used to derive design meteoroids for all study vehicles with varying payload heights. These values were j8 = 0.182, У = -2, and the design probability of no failure was 0.999. The resulting design meteoroid diameters are listed in Table C-l.

METEQROID PROTECTION MATERIALS

The meteoroid protection design curves presented in this Appendix were developed from a wide range of materials. The weights and description of materials are listed in Table C-2.

DESIGN CURVES

Figures C-8 through C-l2 present meteoroid protection design curves for the various MLI materials of the program. The 3 О curve and the arithmetic mean curves are shown as well as the individual data points. The experimental results were developed in terms of an equivalent thickness of aluminum protection sys- tem (Ti) necessary to protect a certain aluminum tank wall thickness (To). Both thicknesses (Ti and T2) were normalized to meteoroid diameter (D) so the data could be used to evaluate protection systems for various vehicles and probabili- ties of mission success. The normalized penetration depth is also shown on the ordinate.

The aluminized mylar/nylon net curve, Figure C-8, had a very steep slope, indicating a substantial increase in protection efficiency with a slight increase in thickness. Figure C-l2 shows the arithmetic mean curve for multiple discrete shields of 1/2 mil aluminized mylar with 1/4 inch (0.64cm) spacing. This concept was very weight efficient; however, it would be difficult to maintain the spacing in a vehicle installation.

Figures C-13, C-14 and C-15 are the curves for single sheet materials. The characteristic decrease in protection efficiency as aluminum sheet thickness was increased is evident in Figure C-14. Figures C-16 and С-17 represent fiber- glass honeycomb sandwich with different thickness face skins. Figure C-18 is for aluminum honeycomb sandwich. Fiberglass honeycomb sandwich provided considerably more protection than an equivalent weight of aluminum honeycomb sandwich. Fiberglass sandwich approximately 1/7 the weight of the aluminum sandwich shown in the curve provided equal protection. Continuous shell con- cepts were not tested in more detail because of prohibitive structural weight.

Figures C-19 through C-22 present the test data for combinations of Beta fiber cloth in front of Mil. The curves show a reduction in protection system efficiency with initial additions of MLI, moving from left to right on the curves. As more MLI was added there was a corresponding Increase in efficiency. There was no apparent explanation for this. Figures С-23 through С-31 present data for combinations of aluminum skin in front of MLI, and Figures C-32 through С-42 for fiberglass laminate skin in front of MLI.

Figures C-43 through C-48 show the data for combined honeycomb sandwich and MLI. The honeycomb sandwich was in front of the MLI and was impacted first. Fiberglass honeycomb shows greater efficiency in combination with MLI than aluminum honeycomb.

Figure C-49 shows data for one thickness of carbon composite bidirectional laminate.

Figures C-50 and C-51 show data for MLI in front of an aluminum skin. This configuration was representative of vehicles with MLI on the outside of the structural shell. Figure C-52 is for vehicles with MLI on the outside of a fiber- glass laminate structural shell.

Figures C-53 and C-54 show data for MLI in front of aluminum and fiberglass honeycomb sandwich. The results were about the same as for MLI located be- hind the honeycomb sandwich shell.

Figures C-55 through C-57 represent a combination of metallic bumpers in front of MLI, located on the outside of an aluminum vehicle shell. The curves show the trend towards less efficiency as an aluminum bumper is added, except for Figure C-57. In this case, the downward turn of the curve could have been due to an increased effectiveness of MLI. Figures C-58 through C-60 show similar data for fiberglass laminate structural shells. In this configuration, im- proved efficiency was experienced because spoliation consisted of low mass particles.

Figures C-61 through C-66 represent vehicles constructed with honeycomb sandwich shells and incorporating a metallic bumper and MLI on the outside. Observations made previously for fiberglass and aluminum honeycomb sandwich are also applic- able for these configurations.

Figures С-67 through С-78 present final design curves for material combinations where the thickness of MLI and bumper material were varied. The curves identi- fied as Tn /D or TpQ/D represent constant Beta fiber cloth or fiberglass laminate

89 thickness with varying amounts of MLI. The interpolation formula used to derive these curves was described in Section 2.1.2 of the Volume I document. The curves were constructed with 3(j values.

Figures C-79 through C-81 are the final design curves for MLI and bumper com- binations located in front of fiberglass laminate structural shells. The curves labeled Tr/D represent a fixed laminate skin thickness with varying thickness of MLI.

Figure C-82 is the design curve for MLI located outside of an aluminum structural shell.

90 REFERENCES

C-l Hawkins, G.S. and Southworth, R.B.; "Statistics of Meteors in the Earth's Atmosphere", Smithsonian Contrib. Astrophys., 2(11), 349, 1958.

C-2 Hawkins, G.S. and Upton, E.K.L.; "The Influx Rate of Meteors in The Earth's Atmosphere", Astrophys. J., 128, 727, 1958.

C-3 Erickson, J.E.; "Velocity Distribution of Sporadic Photographic Meteors", J. Geophys. Res. 73 (12), 3721, 1968.

C-4 Jacchia, L.G., Verniani, F., and Briggs, R.E.; "An Analysis of the Atmospheric Trajectories of 413 Precisely Reduced Photographic Meteors", Smithsonian Contrib. Astrophys. 10 (1), 1967.

C-5 Erickson, J.E.; "Analysis of the Meteoroid Flux Measured by Explorer 16 and Lunar Orbiter", Astron. J. 74(2), 279, 1969.

С-6 Erickson, J.E.; "Mass Influx and Penetration Rate of Meteor Streams", J. Geophys. Res. 74(2), 576, 1969.

C-7 Arenz, R.J.; "Influence of Hypervelocity Projectile Size and Density on the Ballistic Limit of Dual-Sheet Structures", 69-376 AIAA Hypervelocity Impact Conference, 1969.

C-8 Morrison, R.H.; "A Preliminary Investigation of Projectile Shape Effects in Hypervelocity Impact of a Double Sheet Structure", NASA TN D-6944, August 1972.

C-9 McMillan, A.R.; "Experimental Investigation of Simulated Meteoroid Damage to Various Spacecraft Structures", NASA CR-915, 1968.

C-10 Cour-Palais, B.G.; "Meteoroid Protection by Multiwall Structures", 69-372, AIAA Hypervelocity Impact Conference, 1969.

С-И Nysmith, C.R.; "An Experimental Investigation of Aluminum Double-Sheet Structures", 69-375, AIAA Hypervelocity Impact Conference, 1969.

C-12 Southworth, R. В.; "Space Density of Radio Meteors", NASA SP-150, p. 179, 1967, Symposium.

C-13 Wall, J.K.; "The Meteoroid Environment Near the Ecliptic", NASA SP-150, p. 343, 1967.

91 100

N

10

LOG N » 0.537 M + LOG N Ppe иг

-2 -1 M

FIGURE C-l: CUMULATIVE DISTRIBUTION OF METEORS AS A FUNCTION OF MAGNITUDE

92 1.0 I I I I Observed Distribution in Atmosphere Average Velocity = 33.5 KM/SEC Distribution With Observational Bias Removed = 16.5 KM/SEC

= 17.8 KM/SEC Distribution in the Absence of Earth's Gravitational Field = 14.1 KM/SEC

= 17.0 KM/SEC

/ F(v) dV = 1

F(v)

0.01

X S

0.001

ь

aoooi 10 20 30 40 50 60 70 VELOCITY KM/SEC

FIGURE C-2: METEOROID VELOCITY DISTRIBUTIONS 93 и

Photographic Satellite -2 » Data ta - ^ Da

-4

^^

-Ао и ^-^ ^. < ^V^ \ to -8 \ о. 2 \

X -Ю \ _j \ LL. LU \ > \ $ -1? ^ =! \ \ Г) \ и^ \ \ 0 -14 > О \

-16 \ \

-18

-?п -14 -12 -10-8-6-4 -2

LOG (METEOROID MASS m, GRAMS)

FIGURE C-3: METEOROID ENVIRONMENT NEAR EARTH, BUT IN THE ABSENCE OF EARTH'S GRAVITATIONAL FIELD 94 3.0

4-a

2.5

2.0

EXP - a 1.5

зо i.o oo

0.5 I I i i i I i i 0.5 1.0

FIGURE C-4: COMPUTED EXPLORER 16 METEOROID FLUX/LUNAR ORBITER FLUX

95 INTERCEPT MAY 2, 1976

LAUNCH OCT. 7, 1975

FIGURE C-5: SPACECRAFT TRAJECTORY

96 ие

и2 ш и

to

О

3DMVism 01 wns

97 .92

.90

F( У- PO AVERAGE VELOCITY FUNCTION .86

.84

2.5 AVERAGE FLUX FUNCTION

2.0

1.5

1.0

.5

-2 О У FIGURE C-7 DEPENDENCE OF THE AVERAGE FLUX ON THE METEOROID ENVIRONMENT PARAMETER, У 98 z ш о Z CM о* и I — I О О Н ОС о: о.

0 <

{ш5 оОС. &• to о ш и S N UI ££

5 О ос

00 (О см

(О СМ со

Z ш О Z и I LU I- 5 0© 3D ш 1 I О I О < ^ \i О 2 2 ш £ z 5 О oI. 00 uj о Q LU U N _l < 2 О ОС о

q СО (О СМ *-' т- - Hld30 NOIlVdl3N3d О

»NV103ZnvWUON

99 s <

о 00 (Я

О •g U N С Ё о: о_ 2 © о

со to (N Q-|O a: (N oo О

E n О LL •o 0) о U Э ©GfcT ft CO Z I О

Z N С о Ё иt— LU

5oe. a. О О Qi О

о-|О оо со сч со CN 00

U LU Of

О 100 о «л ш О _o о 0 и, р ь U ш

В £

®«ЭЭ© о1 2к шо <•

со

© о

о. О 00 со

(О 00 5 < •о о ел Z О 2 Ь! о I Z о U ш 1 С В Ё о. Q О О£ in О

© CN

о-|О 00 (О «а- ОС (О см 00 о

101 _2 ..Р-. О "5" 2.4 4.2 I Aluminum Sheet "}- t 5 го о I™ —-1 } 1.6 :\ -в

1.2 \Л о .8 \~А

.4 i i

О ' (I- ©- СО с Xi fl,

FIGURE С- METEOROID PROTECTION DESIGN DATA -'SINGLE SHEETS

т ol: _2 D [D Q 2.4 р Fiberglass Laminate

2.0 51.0 о I 1.6 f .8 Ч q з ?.2 I.6

•8 , .4 о

б .4 .2 Ui

0.1 X^ u [ „-J „JcxL-—•'— —i- „i™.. с о FIGURE C-15: METEOROID PROTECTION DESIGN DATA - SINGLE SHEETS

102 fOC 1/2" F.G Honeycomb With 007" F.G. 1/2" Fiberglass Honeycomb With .030" Laminate Bonded To Each Side Fiberglass Laminate Bonded To Each Side Excludes Weight Of Cell Walls Note Excludes Weight Of Cell Walls Т р 2 Т2 р D D D D

8 .4 — 8 4 —

за о 4 2 4 2 — еое X за so о 0 я о 0 1 1 1 1 1 1 0 —» — 1 ... 01 01 03

FIGURE C-16: METEOROID PROTECTION FIGURE C-17: METEOROID PROTECTION DESIGN DATA-SANDWICH DESIGN DATA-SANDWICH

12. ± D D D D 1/2" Al Honeycomb With 020" Al Bonded /3 Cloth + NRC-2 To Each Side 1.6 .8 Note Excludes Weight Of Cell Walls

.8 .4 1.2 .6

за 8 .4

.4 .2

.4 .2 8 о

-II- I I I I I I I I I 0.1 03 04 Т, 0.1 "5" FIGURE C-18: METEOROID PROTECTION FIGURE C-19: METEOROID PROTECTION DESIGN DATA-SANDWICH DESIGN DATA-SINGLE SHEET AND MLI

103 LU

§' 8LU ;<.

CN и LU Of О

00 со см 0-10° со см 00

QQ о

U Е 1 2 с ь|о £ Ё О lo 0£ , I LU <

О о CN

38S х© 0 LU 0£

О

о-|о °. оэ (О CM (О CM 00

104 О) Q Q

О > UJ Z О ш I X fcr i/> О ш at _i Q. 0 а 9 Z с О 1л '§ 0£ , I

т о о со CN U в© © О U.

Q.Q оо CD CM

со (N 00

e оCO LL

и , (Л U ш ш X fc »" 9 У 9й —' 1 9л z° с О to i 0£ | LU ^ Ш <

о со. CN СМ и 088 x 0 0 ш о: О

O.O 09 CO

CO (N со

105 i з о я ^ о. Q Q

со §5 I иvJ шfc

О 'с B^ i Q =

§со Si © ©

и ш с* :э О

.|0 00

(О см 00 i

§

бVj

О с

Е I

со ^ ш < II с Ё S ^ Я и

Q-Q 00 CO ем

(О CN оо

106 со 5 ш •* Q Q §5 P t U ш г» О ОС О Z он О Е Z 10 Ё 8 з О < го 5

80 0 о ш де

о-ID оо (О CM

(О CN 00

Z о _i *л •< LU < 0 О Z Z D 0 о < t— 5 ш ш 'I>: _ Сш auoiv 'umiv 010 »- 1— X СО СГ ос*. ш о о. w(i\ Q •о Н-U •у У 1° о 1/1 С/5 oi ^ 1 6 1 — О ш < h- h- О > UJ с ^ £2 S ^Q- с -0

Ч) ]« !е — CN <1 и Ш о Qi 0 1 и 1 1 1 1 f> о. IQ оо <о ч- см о .см!о to см оо •* ^

107 2 з a 5 Z Q Q z z (Л о < R Ь

N I! 'с Ё II о • aш E m

Я О о 3uoiv IV £00 0 CX0 0 см U ш a: 13 О Q-IQ

03

о ~ и 5 1 Q Q z z ов х/ о. CM О < 1 / ш О се / О!"! ш z / £ X О £ / 2- 2 / 3^ |§ X _ £ "~ о с т О ^ — 0 ' и LU <, 1— Ь- о о _ ^ Р с0м0 — и ш де 1— 1 1 1 3

(N 00

108 Т? £ T2 P О D D D .050 Al Alone

Al Skin In Front Of Aluminized Mylar - Silk Net 0.050" Al Skin In Front ' Of Aluminized Mylar 30 - Silk Net 010 Al .8 .4 Alone .8 .4 \

4 .2 4 .2 ол 00

I I III 0.1 0.1 -»*- 04 05

FIGURE C-30: METEOROID PROTECTION DESIGN FIGURE C-31: METEOROID PROTECTION DATA - SINGLE SHEET AND MLI DESIGN DATA - SINGLE SHEET AND MLI

7? p D D 1 Layer F.G. Laminate + 0214" F.G. Laminate Skin In Front Aluminized Mylar — Nylon Net Of Aluminized Mylar - Nylon Net

.8 4

.4 2

.4 .2 -

I I I I T. 01

FIGURE C-32: METEOROID PROTECTION FIGURE C-33: METEOROID PROTECTION DESIGN DATA - SINGLE SHEET AND MLI DESIGN DATA - SINGLE SHEET AND MLI

109 _i JL .012" F.G Laminate In Front Of 4 Layers Of F.G. Laminate In D 0 Alumimzed Mylar - Nylon Nat D О Front Of Alummized Mylar — Nylon Net

.8 .4 .8 4

.4 .2 .4 2

9- 8

1 1 1 1 1 .• ai ai

FIGURE C-34: METEOROID PROTECTION FIGURE C-35: METEOROID PROTECTION DESIGN DATA - SINGLE SHEET AND MLI DESIGN DATA - SINGLE SHEET AND MLI

IL .1 D D 1/32" F G Laminate + NRC-2 0 D 024" F G Laminate Skin In Front Of NRC-2

.8 .4 8 .4

4 .2 4 2

QB

01 т, 02 ttl ~o~

FIGURE C-36: METEOROID PROTECTION FIGURE C-37: METEOROID PROTECTION DESIGN DATA - SINGLE SHEET AND MLI DESIGN DATA - SINGLE SHEET AND MLI

110 §

X «л О 9s -" a> J- о Z В Ч + * О 1л £ СЯ 0£ ,

IЕ '« ш •*( «5 > В 5

7 о

О

(О CM

CM СО

Q Q §5 P= t U ш см Й z о ее о 2 £ о а

I О ш <

00 7 и

to о

CM со

111 1

z z о < U ш

ui. ^ х •o I со ;В; оz + I < о С Ё

"I fe< Т 1 G G и

О Q.|Q oq (O CM

(Ml (O 00

вi ^з Q Q z z О <

Ji z с * i со G (MOD 2 5J

LLJ я JS с > E S

О ит ш о: О о.|о со. (О см

(О гм со

112 12 P Ч P D 0 D 0 018" F.G Laminate + Al Honeycomb In Front Of Aluminized Mylar — Sliced Foam Alumlnized Mylar - Nylon Net

.8 .4 Л .4 —

^0 \30 9 4 .2 .4 .2 \ о о » о о о о

0 1 1 1 1 1 0 ,i_l 1 L_ 0.1 ai 0.3 04

FIGURE C-42: METEOROID PROTEC- FIGURE C-43: METEOROID PROTEC TION DESIGN DATA - SINGLE SHEET TION DESIGN DATA - SANDWICH AND MLI ANDMLI

13 ± D D D D Al Honeycomb In Front Of NRC-2 Al Honeycomb In Front Of Aluminlzed Mylar - Silk Net

8 4 Л 4

30

.4 .2 .4 .2

-*J- -tt- 0.1 03 04 0.1 0.3 ОА T1 D FIGURE C-44: METEOROID PROTEC- Fl GURE C-45: METEOROID PROTEC - TION DESIGN DATA - SANDWICH TION DESIGN DATA - SANDWICH ANDMLI ANDMLI 113 Al

1/2" Fiberglass Honeycomb With 030 F G. 1/2" F.G. Honeycomb + NRC-2 Faces In Front Of Alumimzed Mylar

Ъ. .L - Nylon Net Т2 Р О D D 0

.8 .4 .8 .4

4 2 .4 .2

за

г- 1 1 1 I 0.1 03 04 i.o 03 04 D "о FIGURE C-46: METEOROID PROTECTION FIGURE C-47: METEOROID PROTECTION DESIGN DATA-SANDWICH DESIGN DATA-SANDWICH ANDMLI ANDMLI

Fiberglass Honeycomb In Front Of Carbon Filament Composite + Alumlmzed Mylar - Silk Net Alumlmzed Mylar - Silk Net Т2 Р 12 _P D D D D

.8 4 — 8 .4

.4 2 .4 .2

30 Carbon Composite S о xО у Composite + Insulation

W 0 .. I * , I I I 01 03 04 0.1 04 05.

D О FIGURE C-48: METEOROID PROTECTION FIGURE C-49: METEOROID PROTECTION DESIGN DATA-SANDWICH DESIGN DATA-SANDWICH AND ML! SINGLE SHEET ANDMLI

114 Т р 2 Тг _р "о" "5" Alumlmzed Mylar - Nylon Net With D D Aluminized Mylar - Sliced Foam With 010 AI Skin In Back .010 AI Skin In Back

.8 .4 _ 010 AI .8 4 .010 AI Alone Alone 1 за ^****~ о

.4 .2 .4 2

^

Q 1 till 1 1 1 1 0.1 0.1 Т1 II D

FIGUREC-50: METEOROID PROTECTION FIGURE C-51: METEOROID PROTECTION DESIGN DATA - MLI AND SINGLE SHEET DESIGN DATA - MLI AND SINGLE SHEET

II _f_ D D D D Aluminizad Mylar - Nylon Net With Aluminized Mylar - Nylon Net With 0214" FG Laminate In Back AI Honeycomb In Back 1/2" Thk. .020" AI Bonded To Each Side

AI Honeycomb .8 .4 .8 .4 Alone •У .4 .2 .4 .2

1 1 II 3 4 ai ai о- TI о- 0.5 о ТГ FIGURE C-52: METEOROID PROTECTION FIGURE C-53: METEOROID PROTECTION DESIGN DATA - MLI AND SINGLE SHEET DESIGN DATA - MLI AND SANDWICH

115 Alumimzed Mylar - Nylon Net With F.G. 003 Al Bumper + Alummired Mylar Honeycomb In Back 1/2" Thk. .030" Nylon Net + .010 Al Skin In Back F.G. Bonded To Each Side

Т2 р '2 P D 0 "5" "о 0) с 0 .8 .4 c .8 .4 — < О a E о и

с о z О .4 .2 — Iх .4 .2 30—о

0 _JV- I I.I I 1 03 04

FIGURE C-54: METEOROID PROTECTION FIGURE C-55: METEOROID PROTECTION DESIGN DATA-MLI AND DESIGN DATA-SINGLE SANDWICH SHEETS AND MLI

.003 Al Bumper + NRC-2 + Al Skin .003 Al Bumper + Alummized Mylar In Back Silk Net + 010 Al Skin In Back Zz ± Та f_ D D D D

8 4 .8 4

.4 2 4 .2 о о X ос

il 1 1 0.1 т, 0.1 "D FIGURE C-56: METEOROID PROTECTION FIGURE C-57: METEOROID PROTECTION DESIGN DATA-SINGLE DESIGN DATA-SINGLE SHEETS AND MLI SHEETS AND MLI

116 ?* .8 4 003 Al Bumper + Alummized Mylar - Nylon Net + 4 Layer F.G. Laminate Skin In Back

.4 2

0.1 T1

FIGURE C-58: METEOROID PROTECTION DESIGN DATA - SINGLE SHEETS AND MLI I? L D D .8 .4 .003" Al Bumper + NRC-2 With .024" F.G. Laminate In Back

.4 .2

0.1 П D FIGURE C-59: METEOROID PROTECTION DESIGN DATA - SINGLE SHEETS AND MLI T2 f. О 0 .8 .4 .003 Al + Aluminized Mylar - Silk Net + 4 Layers Of F.G. Laminate Skin In Back

4 2

I I 0.1 T1

FIGURE C-60: METEOROID PROTECTION DESIGN DATA-SINGLE SHEETS AND MLI

117 £Ош" r-X «л oo.

•К о<1 *>- -|Q2 g ^ Myla r - S i pe r G . Honeyc o 030 " F G a F . u Iэ !Sf M l со g ч < i IIS и^Q 4 о.|0 Q-IQ S О

Ош г^ •*• U, и?

* «(Чi s О XJO o< 8X / X' н 1° ш S "» э о а и

«л 8 <* U и (Ч ш •Ю ел •» ID О

ZE л UJ О ш О= ш1 ms с £ л 00

Л* 0 №0 .ii* III u. < ?а£ <|г з « < Z < z ^ 1Л со 40 N » О ш

118 О n _ ьо о ft is

of Ъ N U. 5ш 8w О С ос о оЬ- —

CD

U ш с* о

1§ В| il i 2 О

и ш с*

J 1 о

00

119 D 2.0

Cloth + Aluminized Mylar - Silk Net 1.6 Interpolation Formula Plus 3 a

1.2

.8

.0*6- в Cloth Alone .046 .0273

j i j I

FIGURE C-69: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

2.0

0 Cloth + Alumimzed Mylar - Sliced Foam 1.6 Interpolation Formula Plus 3 о

1.2

.8

,1

т1 D FIGURE C-70: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

120 D Aluminum + Alummized Mylar — Nylon Net 2.0 т Interpolation Formula Plus 30 AL

16

12

Aluminum Alone

J I I I I I I I 0.1

FIGURE C-71: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

о 2.0 Aluminum + NRC-2 Interpolation Formula Plus За

16

1.2

Aluminum Alone

J I I I 111 0.1 Jj D FIGURE C-72: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

121 ~сг 20 Aluminum + Alummized Mylar — Silk Net Interpolation Formula Plus За

1.6

1.2

Al. Alone

I I I 0.1

FIGURE C-73: METEOROID PROTECTION DESIGN DATA-MATERIAL COMBINATIONS

D 20 Aluminum + Alummized Mylar — Sliced Foam Interpolation Formula Plus За

16

12

.8 A\. Alone

0.1

FIGURE C-74: METEOROID PROTECTION DESIGN DATA -MATERIAL COMBINATIONS

122 12 D Fiberglass Laminate + Alummized Mylar Nylon Net 20 Interpolation Formula Plus За 0

1.6

1.2

7 Fiberglass Laminate .0435

i i i 0.1 II D FIGURE C-75: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS I2- D 2.0 Fiberglass Laminate + NRC-2

Interpolation Formula Plus За

16

1.2

.087,^ FG Laminate Alone

0.1

FIGURE C-76: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

123 D 2.0 Fiberglass Laminate + Alummized Mylar — Silk Net Interpolation Formula Plus 3o

1.6

TFG -7Г = 0257 12 D

.8

.4 Fiberglass Laminate

I I I 0.1 Tj D FIGURE C-77: METEORO1D PROTECTION DESIGN DATA - MATERIAL COMBINATIONS I? D 2.0 Fiberglass Laminate + Alummized Mylar - Sliced Foam Interpolation Formula Plus За

1.6

12

087-- . F.G. Lam. Alone 0435 --<.._ .0257

j I I I I i i I I 1 I i 0.1 LI D

FIGURE C-78: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

124 la D Alummized Mylar — Nylon Net In Front Of 20 Fiberglass Laminate Skin With Bumper

16

12, F G. Laminate Skin Alone

I 01

FIGURE C-79: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

т2 ~D" 2.0 NRC-2 In Front Of Fiberglass Laminate Skin With Bumper

16

12 F.G. Laminate Skin Alone

.8

0.1 jj 0 FIGURE C-80: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

125 Aluminized Mylar - Silk Net In Front 20 Of Fiberglass Laminate With Bumper

16

1 2

F G Laminate Skin Alone

.8

01 VD

FIGURE C-81: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

D 2.0 Aluminized Mylar - Nylon Net In Front Of Aluminum Skin

1.6

1.2

Aluminum Skin Alone .4 .3 .8

.4

I 0.1 туо

FIGURE C-82: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

126 TABLE C-l DESIGN METEOROID SIZES

PAYLOAD METEOROID PAYLOAD METEOROID VEHICLE HEIGHT DIA VEHICLE HEIGHT DIA in cm in cm in cm in cm 4 10 .0644 .1636 4 10 .0605 .1537 1-14 14 36 .0648 .1646 2-14 13 33 .0609 .1547 35 89 .0655 .1664 32 81 .0615 .1562 4 10 .0615 .1562 4 10 .0538 .1367 1-2B 24 61 .0626 .1590 2-3 20 51 .0541 .1374 60 152 .0638 .1621 50 127 .0548 .1392 4 10 .0626 .1590 4 10 .0539 .1369 1-2A 24 61 .0637 .1618 2-18 12 30 .0543 .1379 60 152 .0648 .1646 32 81 .0555 .1410 4 10 .0588 .1494 4 10 .0577 .1466 1-3 24 61 .0602 .1529 2-2 9 23 .0586 o!488 60 152 .0619 .1572 48 122 .0598 .1519 4 10 .0610 .1549 4 10 .0539 .1369 1-7 24 61 .0612 .1554 2-19 13 33 .0544 .1382 35 89 .0616 .1565 43 109 .0559 .1420

127 СN4 _у и 8 со о а и S5E- 0 • ф О. к» тз о -Q. э т E ^ф ъ с X Ф ф г ^ЕЙ *> *> С о N N __оо ш ° _* .У 8 с5 1s;§o 1 _с а Ч)" Ч> "* «-}*о: с*о• 1 6 ц с . °ЗУ т ^-v — т J* и " 0 с ^^ о* ir т О S1 — 0 .c£ о о сЯ ° -С ф i х-^ 1 ^ <. og — о 8 оо^ |.Е• О^ см Ь-8 CN о _ Е Uj .£x- Ф N •о ^ 141 — о ^ф Е I— ' — см Ф Сэ о см8 2 о' TJ Е> *-~ ^ и «о •и^ •<°> _^§ Ё = SQ-^ X Гх X IX га*Ё -2< J 8* ф TJ- ф ^4- -g .z , -С X ^», •— UL х 3 со 9 см о 5? «*л* о* о *• to ^0^ ю^ О) с -o "N о l_ О) о "^ лл ф ч» v> ч» м Lи £ V S О) 2 t, II3э о. С £ £ £ £ £ \ ос и ел 1Л (Л 1 1Л 1Л z 31/> ОО g С С ч> *o _Ь О) О) • га о1 о5 с5о 'С о- £ §> • i— l.2 (XI 1m ео еа со _£ О Z CN со г- 8: 7 7 7 7 CN г- 7 CN СМ о о О о о 0 0 О 0 о 0 О CN о X X X X X X X со X X Оч X X X oe. о о*, о О t о о 8 CN •о о ч> О 1 8 ч> • 00 8 1 00 о . 1 8 8 S Ч) X ю CN со см• IX о.• • • /г\ - CN чЭ — о^ — '«t ю см CN CN ш т т т т 7 7 т ХС t о о О 0 о о о о о О £ CN о о о о С ^™ ^" ^™ ^"™ и "X X X X X X X X X X X X X X X N о CN о со «о ч> IX о о о см О О Ч) ю о •<г 8 см 2 и СО со см с* ч> 8 Ч) «о 15 • • Ч) см зCN. CN со ^* -* со CN Ч) — — ' ^ ^ ч fc. U Е _с ^ ^_ Ф 0 о X с Ф <. X Jo оё Ф т ^ J С10 < Е и .» ф С ^*~ "5 о а "ф 1•о >-о j |_ 1i§< "ф 0 и} с s *ф ф fee о к см _о й« с s, •о .? с: х '*• Х°Ю <с _о с?-Е ф и jfE С о< _0+ — •ч и _* <£ §+& ф * X 05 *Ё o-g £ Z laminat e 1 » Z Тл 1л о э ф СФЕ ф Aluminu m «о-в ео Honeycom b 2 > •~ о Fiberglou/epo x -Ц ю ^ 0?2|CN + О О«£^ 1 Aluminu m 1 Fiberglas s | Honeycom b

128 APPENDIX D

VEHICLE PRELIMINARY DESIGNS

Section 1.2.3 of Volume I, "Final Report" NASA CR-121103, summarized the weight data for ten vehicle preliminary designs. This appendix presents the design drawings, discusses some of the main features and includes a detailed weight statement for each vehicle configuration.

LH9-LF7 Propellents

'Vehicle 1-14 - Figure D-l shows the vehicle structural arrangement and fluid line details. A median height payload position was selected for design. A possible design improvement was the elimination of upper ring and payload sup- ports. The payload supports would then originate at the mid-body ring and would be constructed of fiberglass. This feature was incorporated in the final designs discussed in Section 1.3.1 of Volume I. The ring weight saved by this change would be offset to some extent by the addition of a MLI support ring between the payload and the LFo tank. It was estimated that the net effect was a weight reduction of 7 Ibs (3.2 kg).

Figure D-2 shows insulating details. Internal MLI was selected and the meteoroid protection was provided by the MLI. The top deck, compartment separation and bottom blankets were supported by X-850 film laminate. A fiberglass laminate ring was added at the mid-body point to support the compartment separation blanket. This ring was totally enclosed within the MLI blanket, thus there were no bracket penetrations through the multilayer. The ring rested on a pair of fluid line support beams which spanned the vehicle at the mid-body location. The innermost radiation shields were joined at this location, shown in Detail I, to provide thermal continuity around the corner and to act as a purge seal.

A 90 corner and blanket overlap was provided at the intersection of top deck and sidewall MLI. It was necessary to add strips of fiberglass laminate to the upper ring to produce this type of joint.

Vehicle 1-2A - The structural arrangement is shown in Figure D-3. It was necessary to provide secondary structure in the form of an insulation support framework over and under the LHo tank. The vehicle body was only 17 in. (0.43 m) high, with a 52 in. (1.32 m) centaur adaptor below and a 58 in. (1.48m) payload support bay above. A six-truss member structure supported the engine and some of the tank load. The LFo tanks were manifolded together for engine feed and venting functions.

Figure D-4 shows the insulation design. The conical surface above the LHo tank was insulated with six large panels and six filler panels. The smaller panels were

129 necessary due to material width limitations and the arrangement of MLI support members. A more efficient design could be possible by splicing aluminized mylar roll stock to greater widths and by relocating some MLI support structure; how- ever, a minimum of six panels still appeared necessary.

This insulation design located the MLI on the outside of the vehicle structure, therefore, it is necessary to provide penetrations for the payload supports and for the adaptor. Hand-fitting at these penetrations would be necessary to pro- duce a thermally efficient joint. Access to the LHo tank would necessitate removal of several panels with the attendant problems of replacement to produce a thermally efficient joint.

Vehicle 1-2B - The structural arrangement of this vehicle eliminated the internal truss construction of its counterpart, Vehicle 1-2A. Instead, the tanks were sus- pended from the main body rings, and engine loads were applied through a conical framework. It was necessary, however, to provide secondary structural support for the MLI blanket separating the two propellents. Figure D-5 shows these details. As in the case of the previous vehicle, there was a considerable amount of un- used volume between the LF« tanks.

Figure D-6 shows insulation details. External MLI was used and meteoroid pro- tection was provided by the addition of MLI with non-aluminized radiation shields. That portion of the blanket using clear mylar films was used as a struc- tural support for the remainder of the MLI. The compartment separation blanket utilized X-850 film laminate for support. This blanket would be applied in two pieces. The top deck blanket was also supported by X-850 film and would be applied as one piece. It would be necessary to splice the mylar to produce this panel.

Vehicle 1-3 - Figure D-7 shows the structural arrangement. The vehicle was divided into four bays by trusses. The tanks were supported partially on the trusses and partially on the external ring. A manifold system connected pairs of oxidizer and fuel tanks. The manifold system was located above the tanks for simplicity, however, this necessitated some additional MLI support structure.

Figure D-8 shows the insulating details for this vehicle. External MLI was chosen and non-aluminized mylar was used in the MLI added for meteoroid pro- tection. The top deck blanket thicknesses were different for the fuel and oxi- dizer compartments, therefore, foam block shims were used along abutting edges to maintain panel alignment. A fiberglass laminate support structure was devised to elevate the MLI above the plumbing lines. The sidewall blankets were all the same thickness for meteoroid protection, however, the number of radiation shields varied between oxidizer and fuel compartments. This necessitated four panels to insulate the sidewall. Compartment separation blankets within the vehicle were located inside the LhU tank enclosure. The intersection of these blankets at the center, and the joints with top and bottom panels, would present severe insulating problems. 130 Vehicle 1-7 - The structure of this vehicle is arranged in a square configura- tion, with four corner posts supporting tank and engine loads. Fiberglass tubular struts were selected for the design because the structural trades indicated this was the least weight approach. The two LH2 tanks were suspended externally by a system of fiberglass struts and tension straps. Figure D-9 shows the structural arrangement.

Figure D-10 shows the insulation details for this vehicle. It was necessary to add fiberglass laminate structure to support the MLI blankets around the perimeter of the LHo tanks. It appeared that this configuration could be efficiently in- sulated with tank mounted MLI, at least for the LH2 tanks. Producing thermally efficient MLI joints at sidewall, top deck and the intersection of compartment separation blankets would be very difficult.

FLOX-CH4 PROPELLANTS

Vehicle 2-19 - The structure is shown in Figure D-ll. This configuration was unique in that tank mounted insulation appeared to be more adaptable to all the surfaces except possibly the upper deck. Primary boost loads would be carried through the cylindrical portion of the tank which necessitated a tank gage in- crease and the integral stiffening ribs shown on the drawing. There were obvious pressure vessel weight penalties associated with this approach, however, such items as structural members, MLI supports, tank support and engine thrust structure were minimized, thus offsetting the tank weight increases. The structure was relatively simple, consisting of a tank shell extension (skirt), pay load supports and an adaptor. A design review revealed that the skirt shown on the drawing was 5 in. (12.7 cm) longer than necessary. Shortening the skirt and lengthening the payload support struts resulted in a weight reduction of 4 Ibs (1.82 kg). The weights of Table D-l do not reflect this reduction. The reduction was included in the weight summary, Figure 1.2-42, of the Volume I report.

Figure D-l2 shows insulation details. External MLI was selected. The MLI blanket on the sidewall and cone consisted partly of aluminized shields for thermal protection and non-aluminized shields for meteoroid protection. The non-alumin- ized shield portion of the blanket was used to support the thermal protection portions and incorporated a zipper joint to aid installation and obtain a close fitting joint.

The top deck blanket was supported by an aluminized laminate film, Schjedahl X-850. The film was reinforced around the perimeter with fiberglass laminate and riveted to an insulation mounting ring. The MLI blanket was attached to the laminate with nylon retainers. A 90° corner was incorporated in the top deck blanket. This comer was formed during construction by cutting and taping the edges of shields and spacers. The insulation extension along the sidewall was held in place with hollow nylon studs and the edges restrained by sewing several net spacers to the sidewall blanket. Aluminized mylar roll stock was

131 not wide enough to make a complete radiation shield. It would be necessary to splice this material for the top deck of all vehicles. The splice would be made by overlapping and taping sheets of aluminized mylar. The overlapped joints would be staggered to avoid excessive thickness.

Payload support members penetrated the top deck blanket and were wrapped with MLI. The external plumbing lines and those within the insulation enclosure were also wrapped with MLI.

Venting of the purge gas used during prelaunch operations would be accomplished along the edges of the blankets. The mylar films (but not the radiation shields) would be perforated in the zipper area to aid in evacuation.

Vehicle 2-18 - Figure D-13 shows the structural arrangement for this vehicle. Payload supports and the adaptor attached to a common ring. The tanks, as well as the engine thrust structure, were also connected to the same ring.

Figure D-14 shows insulation details. Internal MLI was used. A fiberglass mounting ring was added to support the top deck and sidewall blankets. X-850 film was used to support the top deck blanket and a group of mylar films and net spacers were used for sidewall blanket suspension. The sidewall blanket was separated at the top so that the top deck blanket could be overlapped outside of the radiation shields and spacers. The sidewall meteoroid protection (mylar films and net spacers) was on the outside so a zipper could be used for closing the longitudinal joint. The MLI on the inside, above the separation point, was held in place with hollow nylon studs and washers.

The conical base MLI blanket was envisioned as two pieces, with appropriate cuts and taped joints in the aluminized mylar to produce the correct shape. The net spacers could be cut and sewn, or formed to the desired contour. The mylar films and spacers which were added for meteoroid protection were also used here to support the blanket. Structural members were external to the MLI blanket, therefore, they were uninsulated. This simplified fabrication as compared to Vehicles 2-2 and

Vehicle 2-14 - Figure D-15 shows the structural arrangement. The vehicle is divided into two bays with rings enclosing each bay. Further structural weight reductions appeared possible by omission of the uppermost ring, changing the upper bay truss members to fiberglass and connecting them directly to the pay- load. It was not expected that these changes would improve the ranking of this vehicle significantly, based on similar changes to Vehicle 1-14.

Figure D-16 shows insulation blanket and mounting details. The multilayer was located inside the structure and the entire blanket incorporated aluminized shields. The top deck blanket was suspended from an X-850 film and was held in place at the corners with velcro tape. The sidewall blanket was suspended

132 at the top from hollow nylon studs. A blanket joint was necessary at the mid- body ring because of aluminized mylar roll stock width limitations. Velcro tape was used for suspending the lower sidewall blanket and restraining the bottom of both upper and lower sidewall blankets. A lacing joint was used on the side- wall. The outer and inner net layers were reinforced with X-850 in this area to support the nylon retainers.

The bottom insulation panel employed X-850 film for support since it was nearly perpendicular to the direction of maximum acceleration forces. Velcro patches attached the panel to the engine thrust members.

Vehicle 2-3 - The body structure of this vehicle (Figure D-17) consisted of two rings separated by aluminum truss members. A crossed truss arrangement supported the tanks and engine thrust loads.

Figure D-18 shows the insulation arrangement. External MLI was used which made it necessary to insulate all of the structural members. This task was com- plicated because of the numerous joints, and because external portions of the members had to be left exposed to permit attachment of sidewall and bottom blankets to velcro patches. Sidewall and top blankets were both suspended from the upper vehicle ring, thus additional MLI support structure was unnecessary in this area. A fiberglass ring was added in the engine recess to hold the blanket clear of the engine. The engine recess MLI joints would require considerable hand work to obtain thermally efficient joints.

Vehicle 2-2 - A six beam structural arrangement was employed to support tank and engine thrust loads of this vehicle. An insulation cage covered the FLOX tank and also supported the fluid lines. The details are shown in Figure D-19. The payload height of this vehicle was found to be excessive and a reduction of 27.1 Ibs (12.3 kg) was possible with shorter payload support members. This change was incorporated in the weight summary, Figure 1.2-42 of Volume I, but not in Table D-l of this appendix.

Figure D-20 shows MLI and meteoroid protection details. External MLI was used, therefore the difficulties of insulating structural members described for Vehicle 2-3 were encountered for this vehicle also. The top deck blanket was penetrated diagonally by the twelve payload support members. This resulted in a large cut, which would need to be prepared carefully to avoid heat shorts. The conical blankets were supported by X-850 film and were assembled in six units. A scarf joint, attached by velcro tape, was employed at the longitudinal edges of these panels. The scarf joint was held together on the outside by sew- ing adjacent panels. Sidewall, bottom and engine recess panels were supported by the non-aluminized mylar films and net spacers added for meteoroid protection.

133 Weight Statement

The weight data for the ten vehicle preliminary designs is summarized in Table D-l. The weights breakdown is confined to major systems in this table. Tables D-2, D-3, D-4 and D-5 show secondary structure and MLI weights. The latter item consists of additions to the basic MLI panel weights derived by the ТА ТЕ program discussed in Appendix A. Tables D-6 through D-8, and D-9 through D-ll show FLOX-CH4 and LHo-LFo vehicle plumbing weights.

134 LOVJER SVDEVIWLL 4RUV5 г SB o\ O

I SO OIC.' O2O»I&.\_\_ FEED UNE. г \o о\(ч » .035 *n».v.v. LHZ TWK SUPPORT SVWT

L.FZ. тмлк SUPPORT I OO D\fk > OI5 4JU.U- (b PVJk.CC'S) GVW1BW. BEV.V.ONS

LFj \ICNT UNC BEU0NS PANUJMJ SUPPORT ST«UT (\г зоо«зоо> г.5оUPPE« v o« Ri о ЯН -даЬо \N*.\.\- гг\э-т д. <ч\_ зооокч- одгшыл. CARBOt*/EPOX4 uvtvu srac*iM.\_ Tfusa- \IKL\TC. ого .\90CUCS 7075-T6KL LFj FCTO U*e.5i 300»3OO> т*. A.V. P\.A>CCS> 10ОЧОО- 063 V_ PER гг»-т* м. •*iEB, оьо гоэ-т* ох.

а ооомк»гоо< IHSUU4TXON BbHWCHlFCT) Ncrres I FIU_,FEED,4EKT i ETC.UNES MVE 050 ORES ОАМР, 10О WIDE ТЛЫК SUPPORT STRVJTS 4 PM4LOP>O SUPPORT TRUSS (UDOSE V\TTED ЧИТН TEFUJN OK FIBERGLASS. SECTION В-В ' WJJ3W 3. T»*4KS »ЯЕ (sew* \K) 4. W4UvR(ftUJNINrZEDtNON»,\.UVMNlZEt>)>S IS MIL THICK RING (4 UNE SUPPORT BEWsA QUO <1.Z9< ZOO» 5. N4LON NET, SEMIS ROEBUCK Co , WJ6 Т ОО7 (4 JOINTS ЬТ UNE

F\\.\. \.\КЕ O3SWWJL

FH.V. ONE BRACKET 25 CHCS ft Figure D-l: А-Л VEHICLE 1-14 PRELIMINARY DESIGN (WuKPTOR NOT -t.-.. OR FILL LINE =ЕМАч- х TRATION BLANKET WILL BE nBCTtGL*V=>S TKB- OGO ЧЕЛ-CRO » OO «» OO CUT a F\T AREA AT CUT x ТШСК . 3OO ЬОО SPKCINS SCXN TO WILL BE REWFORCEO t SECURtO4- G, OO LONG BOND OR 85O ir SPACCR NET TO L\NC OR BRAC SPACERS 6. 5 то STUDS SECURE ТЛРЕ ЧС--СДО ALL (WCRRUPTCD AT SUPPORTS? TOP BL.ixNvc.eT SCHJEL.DAHL *• eso FXL.WI

PANL.OAD

NNLON STUD SNAP ON BOND TO TAB (J9 PURGES) CT\NO AT JO> NT) GRotsmeT мслл DO\NN MEAD FOR KSS4 ЧОГТН OVCR SNAP ON StOD RETTA-VNEW. FT 24. SPPOERS (NNLON NET) 23 SH\CUDS (A\_UM NIVUAR.) UPPtP,

ONE P^ECE TOP BLA.t4K.ET CARRVER- b\OE\NALL BLANKET VOLQED NNLON ' UPPER . /-VSQ FT BASE BLANKET (ONE CONT\NUOUb \/C\_CRO SO WOE MOLDED NVLON If, PLACES) MOLDED 4 CON\CA\_ CONTINUOUS VELCRO BONO TO H.-BSO (?. PiECEJ sso BONO TO WNCo О ДО DIAS1EM (UCLT SEW MET SPACERS SIDE VIEW iSCALE 1/Ю) RETAINER, (J- PLACES) BOND TO V850

RETAINER SCVUCLDAHL, V85O FILM BOND TO MELCRO CONTIGUOUS TO BLANKET OB PLACES)

2 SPACERS (J-WION NED г SHIELDS ALUM MNLAR COMPARTMENT SEPARATOR X 85O FILM SPACERS (NNLON NET) SH\ELDS(A.LUW NVLAR) INNER t OUTER NET 6 OO MELCRO STR\P BONDED BOTTOM BLANKET гоо SE^bi TOGETHER 4. TO ANGLE \JELCRO STR\PS SO BLM4KET WLL.BE CUT 8- FIT BACK TO TOP NET SEWN TO e>LANKET ENOS VELCRO - MKTCHE TO PLUMBINGL\NE PENETRATIONS I 00 TOR\NG «\00 WIDE t SO « ( SO - О<ЬО < GOO LONu (BOND BOTH i 2S *IIOE >• OC.O-LAT FIBERGLASS ANGLE VJCLO TO TUBE SCREW TOWNS CONTINUOUS \JELCRO (г PLACES) PLACES) ОЬО N TO BASE BLANKET t, B5O FILM THRUST TUBE TO END SPACER в 40О &PAC\NG SEW TO BOTTOM BLANKET X-BSO SCHJE.LDM4L X-SSO FILM BOTH FILM SIDES OF JOINT THE FULL LENGTH OUTER NET SPACER LOOPEO AROUND SCARF BLANKET MELCRO 3OO«\OO BOND TO BLANN TO B&££ BLANKET К. 85О ' BOND TO *. SSO PLACES) BLWKET

Z1 SPACERSfriMLO NNET ) гз SHIELDS CO-LUM MVLAR) SECTION В-В LOXNER (SCALE i/i| SOWELDAUL. X-SSO F\LM SECTION C-C CONTV&UOUS TO BLANKET (SCALE i/ij CONTINUOUS MELCRO 100 HvQE BOND TO RING SEW TO BLAN

LH2 TANK STRUT "O O\A.« —--•• TRUSS [

UNO IHSUL SUPPORT •THRUST TRUSS OSS WM-L - t BELLOWS IN UNE UPR INSUL. SUPPORT NOT SHOVMN)

FEED UNt 1NSUV. SUPPORT WNffi XOWS-^ ч г i oitv > V-Uj FETO LHjVCNT UNE MM.\IE- FEED ONE bEUjCWJS

CENTbUR/ ft.Dft.PTOe.

_oae «IMA. CAUBON/ЕРОХЧ

TOPR\NS - INSUL SUPPORT I50«1SO. 032 RING UPPER \HSAJL: г so« г so • O83 VNKLV. SUPPORT

TOR=>\ON STRUT 7SDIA.» (a puvces) гг\э-т«- ONE \.F TfcNK STRUT (1Mb'O .SOOIN» OZOVJM-L. E TWRUSTf R\Nu DICK* 6\G.«J TOP V\£W VENT UNE MM.VE so V_F, TM*K STRUT CUTS' (SCNJC ШО) O\ (G, UPPER V.FZ FEED LANE 3 OO« 3QO. ObO \NM-L. гг\э-т* I ЬО О11Ч» O35 «4M.L. \_FZ MM4VFOUO SUPPORT UPPER IN90LAT\ON SUPPORT LF, MEHT UNE BRXXCT ZS OlA* 022 •NULL ft* PLACES) MS CRCS INNER №SUL SUPPORT >NbU\..SUPPOHT He. FWA. UMC zsoio.» огг«1 гор.\оо«1оо..озг (г) He STORAGE ТАНК LONER Vt4bUV_SUPPORT лгг *i LFjFEEO MUN\FOL.O 2.SO D\b « 03SW>.\.L,

LUjTKNK STRUT FXLL. UNE 1 SO OIA.« OZO«l(kVL. ORES O4O • 100 WOC LFj TANK STRUT (* L,FjTIXNX STRUT (.OUT BDj INNER \NSUV SUPPORT

V.F» FUJL LINE BRACKET 190 CRES 4. VERTICAL. STRUT LCW1EP. «\N

X NOTES I FILL FEEC>,VENT ^ ETC UNES ARE ORES SECT\ON A J Z TANK STRUTS 4 PAX\_OAO 9UPPOWTS ARE RBERGLASS BOTTOM CUOP.O l ЭО СЛЬ. 3. TANKS ARE ZZ\4> T6EAC> AV.UM INSULATION SUPPORT STRUCTURE IS г21Э-Т* AL. S. KA4LAR \S ISMVL. THICK «*JUM\N\ZEO $. NON ALUMINIIJED G. N4LON NET, SEM»=, ROEBUCK О. АМ6 *. OO7, ЧП - 37 Ol/XDZ SO Dlfct O4S «ItvLL. т* м. Figure D-3: VEHICLE 1-2A PRELIMINARY DESIGN 137 COMPARTMENT SEPA.RA.TlON TION CONllCAL 5_-N

SPACERS (N4I.ON NCT SCHJELDAHL H-8SO FILM 5HltV.Ob (ALUM BONO TO KVNG SUPPORT - X-BSO (IB PLACED

TOP X-B5O FILM \ 1" ' \S. SCALLOPED TO STRUCTURAi. R\N(3 NAAKE BEND PLACE OVER STUD BEFORE BLANKET PENETRATION . \ THRUST TRUSS. TANK & SPACERS \ SUPPORTS, PLUMB\NG LINES 1 FITTmuS, \NS\DE 1 BLANKET CUT SO SHIELOS FACE ARC WRAPPED , VJITH IS AFT SPACERS S. 5 SHIELDS, v— CUT AND TA.PE V OF INSULATION \ EDGE OF PA.NEL. SON NET LA.XCR5 CQN\CA.L PANEL. BLANKET N SECURE \\1ITH TAPE

SPACERS CUTOUT FOP. PA.NLOA.D SHIELDS г SPA.CERS SUPPORT STRUTS (TERMINATE) г SHIELDS SE\M SPACERS CUT tTNPt BLANKET TOGETHC TO FORM BEND 5 SPACERS A. SHIELDS

FILM UOU BLANKET

TOP \NSULAT\ON 3LKNK.F.T ONE РЛЕСЕ

RETPWE4 - \ (3 PLACES) CUTOUT FOR FILL LINE. EDGES OF CUTOUT SE\N- MELCRO SE\NH TO X.- RETA1N.EW. FORCED 1 ATT BLANKET) BONDED то RING, ED TO BRACKE (is PERv MCLCRO \JELCRO SC4JN TO \ 8SO ^T \VRUST R\NG ЖО (T4PICA.L) 3ASE INSULATTIOM — SPACERS SEWN SEPARAT\ON BLA!4

гЗ SHIELDS (ALUM M4LAR) SECTION С-С (SCALE I/I)

SW \NNEU t OUTER. \JELCRO STRIP FULL NETS TOGETHER t LENGTH OF JOINT BACK TO TOP SEVJN TO * 850 EDGE BOND OTHER WA.LF TO STUO t GROMNIET - •/ NVLON G3OMMET - MELT DOVJN FLAT t (30 PLACES) STEM FOR ASS^ >чпн BLANKET BASE PANEL 5 PER BASE PANEL FltS OVER SNA.P ON STUD BLANKET (G,) PANCL. RETAINER BOND BLANKET NVLON STUD - SNA.P ON STEM TO X-85O FILM BOND TO RINS (I г PLACES) \JELCRQ BAR WELDED ГГО TUBE 50N (SEE В В) CONTINUOUS VBSO CONT\bUOU5 WITH BLA.NKET INSULATION VSSO NET «.BONDED SUPPORT FILM BOTH SIDES TO INDI\JIDUA,L BLANKET INNER t OUTER TUBE OF JOINT THE FULL NET LEXERS SE44N LENGTH BOV4Q TO SPACERS (N4LON NET) - ТНЕП STITCHED TOGETHER NET SPACERS SHIELDS (ALUM MXLAR) ON INSTALLCCUON I/I) (u PANELS) - TXPIOAL PANEL (3ASE PANEL JOINT) Figure D-4: (SCALE 1Л) SECTION D-D SECTION E-E (SCALE I/I) (SCALE )/l __ _ _ VEHICLE 1-2A PRELIMINARY DESIGN ALL INTCRNKL STRUCTURE SHOWN WTVAOin 138 VEKT UNE BRACKET 'IZS CRES ft

S1CC '«W.V. TRUSS огомамл. (2* PLACES) 7075ЛСр A.V. /—t-Fj TfkNK О1А-ЭО 62 INSULATION SUPPORT RH4G UF2 MENT UNE t- OZS 2 OO Old.» O35WW.L

FEED VAMAXTOLO BCVV-OWS (.4 PLACES) LUj FEED UWE Z IO DIA » O3S *NA\A-

ZSOOVN. OSS'Nfr.U.

THRUSло CIAT 4 гR\NG so •> Z219-T4 AL.

a»*BA\. LFj SMBAk. BELX01NS UNE

CENTAUR /ADAPTOR INTERFACE

\-Uj VJCNT UNE г oo о\«ч » o^as WMA. ADAPTOR TRUSS 3 3OO1A » О4г WAUL. (г* PL<>CES) (CA-RBON/г РОХЧ)

--PLATE (>г PLACES) vis« & oo »4.oo

UNE BRACKET LAMENT UNC SUPPORT 2.S CRES ft L.H TftNK SUPPORT STRUT г OISWLL. LFjFCEO NttkN\RXO SUPPORT OZZVMAU. (.4) LFjNENT UKE ^OWER THRUST TUBE (Z PLACES) SUPPORT 875OIA» O35WALL, AL. Й* PuACCS) E£I9-T4- AL. 375OA' O35WAV.L. RINb TOP,VNSUV- SUPPQBT 2t\9-T4 AL. V OO» S0« 5O« AL. COLLAR -\HSUL, SUPPORT \A OO TOP VIEW AL. UPPER THRUST TUBE PRESS\1R\T.AT\ON o (SCM.E W*O) 5DO\A AL. R\NG- N5ULAT1ON SUPPORT CONE LF, TANK SUPPORT STRUT so UPPER (6 PLACES) A\_ CLAMP e 4 PLACES) ObO • I OO\N-4lV"5-T4, Av. TM« SUPPORT STRVJT R t V.ONCR HOWlOt4TA.V- ТМЧК SUPPORT STRUT LOWER L.OWCR а зо • г зо _~j FEED VALVE HEUUM STOPJVUC TANK гг^-т*. UPPER. R«46 г.зо • г•зo^ oso V SO Э1А » OZO WALL. A.L.

Lf? FEEO MO,№FO\.D SUPPORT INSULATION SUPPORT TRUSS ZSOOIA» AL, (г* PLACES)

-RNS-TOP,INSUL,AT\ON SUPPORT I SO ' I SO « O31 L ZZI9-T4 AL. t PRESSUW1AT\ON UN.ES АЛЕ CRCS TANK' SUPPORT STRUTS 4 PAVLOMS SUPPORT TPAJSS ARC F\BERSLASS 3 TANKS ARE гг\Ч Т&Е4С. AL. 4 INSULATION SUPPORT STRUCTURE Vb 22\9T4AL S. MXUVR CffcJLVJVA\N\tCO ^ fr^QH AV_UKA\N\1EO) \S .\SVA\\. TWC К G> N4L.ON NET, StEARS ROEBUCK Co A\J& T = OO7, »lt- 37OZ7'"* i Figure D-5: VEHIClf 1-2B PRELIMINARY DESIGN

139 SEVMN \ OO WOE 4 CON1\NUOOS BONO г oo wot

РАЛСН г г5 wcrc u CONTINUOUS \ OO OVt4 BONO OMCR "TOP IC\-CRO IJNTERRUPte Pfr,V\_OP-O bUPPORTSi) SOI TO X-SSO t BON1 " 75 \IE\-GRO A,\_\- M*OUNO SET TO RET АЛ NCR (Л- PLACETS) MOLDED N4UON RET,IX\NE.R. (PER.4SQFT

TOP SlDEXNWA. \NSUL.»XT\ON 38 SPACERS (NNV.ON NET) BLANKET (.ONE INSULAT\ON CUT OUT FOR PANL.OAO SUPPORT ^SUPPORTS NOT SWONNU) RET (M NCR CONTINUOUS VEV-CRO (£ PVJ4CCS) \ ALONG BLO.NMET EDGE 4 SEVN TO ».- B5O t BONO xTO BLM4KCT—. MOL.QEO NNLON SO 5EW NET \ \1E\-CRO RETWNER. \ ES VNVQE BONO TO FT PWLOA.O R\NG SENN TO X-SSQ BLANKET \NSO\_f4T\OM SUPPORT - \I4NER С OUTER (ONE NET INSULATION SUPPORT \NEV_OEO TO TUBE TUBE \S SPA

JEULRO 3£Л WZEM TUBES t>E SEWN TO к 8SO ~1LM 8. BONO TO CUT В W4KE"T TO 50010,- 020T O^PJ -а тик: а SUPPORT SECURE ОМ 5 OO b PLACETS) 1KPE SUPPORT TUBE CENTERS MERTVCW. FLANGE - \ ZS \N\UE » ZO Т ЖСУС. BONO TO *. BSCl \ OO WQE UPPER BASE го oo * г oo« ZS TU\C< LO*)ER B^SC \O OO < г OO

SUPPORT RVN.6

NiOE CONTINUOUS JE\-CRO SE\NN TO INNER THRUST TUBE NET V_^NER BOND TO (UPPER.)

SCMJELOfvHL, X-BSO П1_М SE\N F\L.WlS t BOTH SIDES BOND TO NET SPACERS TO NNLON ZIPPER B-AKKET FILMS 4 SPACERS -ОЬЕТИЕВ. г OO VO BLIXNVCCT PtvNEL. \ -«NG S\OE, 3ONO VIEW A-A MOLDED N4LON ALL TANK SUPPORT STRUTS, PLR4 SQ FT) (p PER PWME -) O R\NG INTERNAL. STRUCTURE, t FVT, г oo • г oo P^TCM e> PLUMBING O.NES. WLV BE 41R№PEO OTHER \NVTU c. SPACERS u s SHIELDS OF CONICA.L BASE 5ЕСТЮМ C-C SECURE (TVPJ TO BRP>CN\TW MELCRO U=PER t LOWER NOT

\ SE\N F\LMS SPACER t 1 SUIELO TO VELCRO STRIPS I 3 SPbCERS (N4LON NET) SO WIDE BONO I Z 5 WOE \JELCRO Ъ SHIELDS .\.\. 7075-ТЬ Л\_ (ZA O»8VJ (A. PU4CES) T(4NV{. S1PXJT IOOOIA» OlS WB.L\- (4. PLACES)

L«£ FCCD MM-HFOV-O BE

г SO D\IK « O35 WW_L

LF2 FEED MM41FOLD

S.TRUT OlSVJOXA.

\NTCRFIXCC

KDKPTOR TRUSb i <эо Q\K« о га \NW_L THRUST TRUSS CARBON/EPO\V (24.

_Fj JENT BELVOHS

TOP VIEW R\NG \ 75 • \ 75 • O8U WM_\_

BRUCE SIDE: VIEW 875 O\c. » O35 VUEB (SCALE

» O1S «СВ ч OA-

THRUST TRUSS O.SS (f- CUORO I 5O Olft. * O35 SOE\NW_\_ TRUSS

CHORO 1ООО1Л» O3SWO.LL SECTION A- A MOTETS O10.GONW. (Z) — (SCALE I /10) I FILL ^EEO VENT $. ETC UNES 6.RE ORES Figure D-7: • озг г тычк STRUTS i P;WLO№ SUPPORTS hUE FIBERGLASS гг\ъ 3. TtvNKS »ЯЕ £t\4-TbE AX_. VEHICLE 1-3 л M4Uft.R^LUMINlZED 4 NON W-UMXNiZED^VS >£>M\LTV«C< S M4LON MCT. SCft.RS ROEBUCK ч-СО, ЧЧТ : 37ei/.J«, PRELIMINARY DESIGN OO7 Mb THICKNESS 141 ALL TWMVC SUPPORT STRUTS STRUCTURE «. FITT1NUS. PLUMBING LVNES, MJ\LL BE 4JRAPPCD \N\TW Ь SPACERS. V S SH1EX-DS OF INSULKTVON SECURE DACRONIT\C5j TAPE OR MELCRO. INNER NET SPACERS LOOPED AROUND I SEWN TOGETHER \JENT OR F\LL UNE - THRU BLANKET WILL. BE CUT в- Г\Т ВЧ VENT ft FEED UNES. AREA AT CUT \N\LL. BE REVNTORCED SECURED \N\TW MELCROТЬРЕ ORT\E COT I FIT TOP bECI OfeO FlBERbLASS TO WfTH TAPE £T TO TOO

FOUR CON\JE-RG\NCb SEPARATVON BVA14VCCTS SE^NN TOGETHER ЭОЕШЭДЛ. t TOGETWCR /CV.CRO CONTINUOUS to R\KU (SUPPORTS NOT SHOWN)

S\DE\NAU- TRUSS OPPER A. LO»JER~ WN.6S ARE СОМРМ5.ТЫЕ5ЧТ NOT INSULATED

(_Нг \JENT 4MRA.P EXPOSED UNC WITH A-5 SHIELDS 4 SO SPACERS OF \MSULATVON PI44LOI4O SUPPORT F\TT\Nu fe PLACES; . (as •NEB-1 25 WIDE « ZS THICK \_P4MVNNTE гьоо-гоо> зо N4GAX .ОЬО • \ 5О« V 5О UOIMCRBASE 1гоо«гоо- зо MOLDED FIBERGLASS TOP INSULATION r'AU'tL. BASE BLAHJCET РМЧ (г PLACES) (Z PLACES) U-H? S\OE LH TAMK COMPABTNAENT £. SPACERS CNXLON NET) SECT\OU 5 SHIELDS VI) (BLMVtET CUT TO ACCOMtAODKTE MOUNTING MOLDED NNLON RETWNER TOP BLANKET PANEL I / SO. FT — SIOENNALL \NSULPCT\ON COMPARTMENT BLANKET 12. Pi_tvCES) ENGINE RECESS ^LCRO STRIPS 3G. 3=>ACERS ^NNLON NET) *— LFj \fENT-\NRAP EWUSEO Lrt^ TANK COUP BLANKET. WOUND PLXTE-BOND 35 SH\ELOS(ALUM UNE NNITW 3G> SPACERS t 35 TOP INSULATION PbNEL. SVDEVNALL \NSULAT\ON *HTV\ VCLCRO STRAP MELCRO CONTVNUOUS SE4JN SHIELDS OF INSULATION <£ PLACES) TO INNER NET 8 BLANKET . PLI4CCS) SO < \ ZS TANK COMPARTMENT MOLDED, NNLON OG.O BLANKET V\EW COMP. СОЧЕН. RETWNEW. \PW4-SQ FT 2 SETS LFj BLAN

SCHaELDM4L H.-BSO FILM TOP BLANKET PANEL. COMPARTMENT 7 SPtvCERS SIDE V\EW SO SPACERS (NVLON COMPARTMENT NET) SEPARAT\ON _ (SCALE \/\0) XJELCRO i OOWOE 4. GONTWUOUS- SHIELDS CP4.UM MM SHIELDS BONO TO RAMP t SC\N TO X.-S5O s SPACERS (NXLON NET) (ALUM EOGE BOTH BLANKET S -I SHIELDS (XUJNI MYLAR) , — S\OEVNALL SE=AR£xT\ON BLO.NSET LHj COMPNRTW.ENT MEVCRO I О О \WIOE CONTXNUOUS (S SPACERS (N4LON NET) IS KAVLKR FVLtAS LAVA! NATE RANAP (ANGLE) л LO^NEP- «INS \ г LONNJE Рч CHORD SCH.1ELOAHU -IBERGuASS FIBER6LASS If ~ \~ J FILM CONTINUOUS V/ELCRO SE-NN ANGLE OC.O WITH SLANKE TЗ 1 1 VJEB its TUIC< CONT\GVJOUS -МПЧ \ SO « I 5O TO BL&.NKET EOSES SIDE =E*N г oo • г оо АТСН < 1 1 TAPERS FROM I 25 BLANKET ATTACHES TO UPPER t LOVMER BOND TO AN6LE "i OO ~PAC N6 OTWER SIDE f \ P~^_ i RING TO 10 OO STRUCTURAL RINGS FLbNGES AT CENTER LINEUP SO «\ SO THRUST TRUSS OuO >fe f- - ^ 1 ^ 10 OO SPbCANS LF COMPARTMENT C5 PLACES) 2 \NNEP. 4 OUTER NET—, SEW OUTER NETS COMPARTMENT SEPARATION BLANKET SPACERS I SO «IDE GONTWUOUS MOLDED NNLON 17,SPACERS (N4LON NET) RETAINER CTVP) MELCRO aOND TO R\NG ЭОТН FLANSES П N»4LAU PALMS SHIELD'S ' SECTION C-C OUTER SPACER LOOPS - BLANKET F\LVAS % SPACERS SEVIN SECTION B-B Стчр\сьх. •* PLACES) A- Figure D-8: AROUND $ SEWN WITH TOGETHER 4JVTH MELCRO (SCALE I/I) SECTION D-D (T4PICf4L ВОТЦ BLANKETS) (SCALE I/1) FILMS (SCALE >/l) VEHICUE 1-3 PRELIMINARY DESIGN (ROTKTeD 45° C\N «J) (INSULATION NOT SHO^NN ON THRUST TRUSS) 142 UHj TANK STRUT I OODLA,. O\5>NM_!L

LH, TANK STRUT

V-HZ TANVC ООО1Л- OIS WCkU. ZBOOOlb. t, (г PLO.CCS) г ТА • г 74 « одг »iiv\.\. TENS\Ot4 5-TW4P \ TOP & U>D-PO\NT POST .SO WIDE « O2O t] OF гол, (a purees) J UHj FCZO MW*\rO\-O 3 Z5Olt4 U»l ТМЧК TENSION STOP—

FTTTVMu tTXP)

UNC SUPPORT AOAPTOP. TRUSS « Oil *JAU_ IB68OIM OZSUJbU. M- fe*PU4CES) CARBON/EP04V \_H, MANSFCXO SUPPORT sciiK. oza «IAV.V.

THRUST TUBES (l.O»IER)

LHj FVU. UNE BEUjOtlS GlMB6,\_ BEVJLONS

UNE 5ОСЯА,- O^OWHJL LFl FILL UNE BRACKET LFj MEKT UME SUPPORT .I9O CRCS CROSS BRACE- LPj GIMBW. BELV.OMOS

UHг FEED UNE LHj Пи. UNE ЮО11Ч> O35MJM.V. THRUST R\NG (SQ) г so « г so « ioo \wi4u_

2 68ОЧК» O1O\NWX LWa PRESSUWIUCTVON LINE (GHg) UFjFEEDUNC I C.O OIK • 03S «U4VL

LFj VC14T Ut4E LHJTM4K TEN5KJN STRA.P <£ PLACES) г oo омч « л as INW.V. THRUST TUBE'S VPCS) \IENT UNC BEUJD'NS Dtb.» O3S«MJL

L RU-.FEEO.VETtT 4 ETC UKES ЛЛЕ CRES. г. T«IMK SUPPORT STRUTS t STRAPS wac S. TM4KS _ STWJCTURC IS neCRGVASS СЧССРТ AS NOTCTJ S AUJM1N11EO M4V.AR. Vb 15 Ы1С THXCK NVUJN NET, SEARS RCCSJOK Co . 37 Ог/*Ц,ЧО , 007 &.M6 TVVCKI4ESS

Rgure D-9: (NO SCALE) VEHICLE 1-7 PRELIMINARY DESIGN 143 ООЛЕЯ \JO_C-RO

SVOOIIW-V. \NRIVP GROUND COMP (г /- к aso

ТМ4К SUPPORTS, — TOP BLW4KETT PV.UMBVNG UNCS BOTTOM LF, COISAP 3LW4KET COMP s — вотт

HBEBGLASS STKNOOFF ОЬО TU\CVt, г- > SO VJ\DC TOP вимчкет TO «OOP SPACERS CNVV.ON (SCALЕ-EЕ \/\) I OOD1(4 MJJWI -x. t-MLPvR. РАТ< BOND CNCP». PKXLOWD SUPPORT TO1.-8SO > PLKCES) - гот«i г; Х-ВЪО •NEB О гол * i г.5 WOE — SHVEU5S LOOP UPPER af4SE s.s т •• г оо 41 У NET fkROUND SCft-RF •. isoo Lt r^l ^ SE\N TO OOTCRNET I.O^MER FLM46E 25 Т t 2 OO ^ X-co (TIPICAV.) ^rop 4 BOTTOM) — SECURE A-S K(ЧTТ ЬЕ TOP av. TOP BANKET - LOOP INNER . ... _.. COMP GROUND BLftMViET END С SEW TO OUTER NiET 2 OO >NIDE NELCRO CONTINUOUS GROUND -(OOP SE\N TO TOP TOP BL.P4NK.ET SeCTlON D-D X 8SO i BOND TO COMPORT MENT 'i/O UOOP г оо woe MELCRO CONTINU- OUS «MSIOE HOOP SEVJ то OUTER NET $. e,OND TO HOOP

FIBERGLASS «OOP оьот ^ гоо WOE I OO SO VCLCRO TOP S. BOTTOM MOLOED N =KTCHES LOCKTE (г RETWNER. INTERMITTENTLY ON •WHICH TOP BLM4KET CONTACT M4 INSUL- 3 COMPORTMENT K11ON \ 00 SO MELCRO РОЛСН TOP CROSS INTERMITTENT (г PLACES) TOP OIKSON<4L 9JPPORT HOOP- TCP t BOTTOWi TOP BVNAVCET (TVPICKL.) V\EW MENT OR FILL LINE \_F COMP 4 PENETRATION Z - FIBERGLASS (SCAi-E V/VO) BLANKET \N\LL P=C CUT $. ОЬО THICK -ITTED TO OUTLET Z FUXNGES I SO WOE, REINFORCE CUTOUT 6. StCURE MELCRO STRIP •«ЕВ гоо TO BRACKET WTU, \IE\jCRO CONTINUOUS < \ О О (SO^. LIGHTENIMb HOLEOUT) SCARF SPACERS, 4 SHIELOS ^w^OC BOND TO RW\_ LOOP INNER NET GROUND SEW TO INNER. MET SCARF ISE^ TO OUTER. . BLANKET NET M4GL.E- I SO WOE VEVCRO FUU. COMPARTMENT Т Р ОЬО-ISO'ISO» -^SOOLS LENGTH OF TUBE BOND Z3 SPACERS (.WLON NET) LOWER HEI4D (Z PLKCES) ~O TUBE, SEVJ TO OUTER гг SHIELDS (&.LO1M HOOP ». BSO CONT \bUOUS TO (LF? GOMPIXRTVAENTl BOTTOM еи_мч<ст BOTTOM * 850 at SPM;ERS (NNLON NET) S аомо -о NCT SCVJN TO MEVCRO" SO SHIELDS (АШМ UXLIVR) гг 2OO f^LONS JOINT SAME A.5 TOP BOTTOM BLANKET SP*CER=.lNNLON NET) гг SWELDS (f4\.u CROSS BRCkCE, -TOP SCHOCLQAWV. — RETMNER I OO OIK P&.TCH K-BSO FILM I PERASQ FT M4LMJ.) (ТЧР UKE BOTTOVI) TOP BUXNKET _ . Х-850 аома -o x eso ~\ RETNNE.R BONDED TO SCRE^N TO TUBE H-85O FV\.M (JYP) TOP CORNER RETKINER, QPERA.SQFT) o&o THICK PLACES PER MEVASCR) COMPARTMENT CROSS SEP/\R£TT\ON, — NNLON SROMMET MCLT DO'NN BLANKET g. PLACES) FORASS4 Ъ SPACERS (N4LOU NEtl SIDEVNALL BLMMKCT SN^PS ON STUD LF, COMPARTMENT SSHIELDS ( -NNLON STUO SNKPON STEM гз SPACERS(N-SLONNET) BONO TO MMOLE (4 PLACES) SECTION Г- Г FIRST 8 SHIELDS зестюк с -с гг SHIELDS (A.LVJM мч (SCALE I/O t SPACERS OJEPAAP 5O (. (SCP-X.E Vl) Figure D-10: INTCRNHTTENTLV TWE SH\ELOS (ROTPCTCD £О° (г TERMIN(4TE OTHtR SWELOSi J) SP«vCEUS CLOSE TO ». BSO FILM VEHICLE 1-7 PRELIMINARY DESIGN 144 DET/ML. X (5CA.LE \l\) "0 SUPPORT TR гюо1А.« озо»)мл.

во СНА,. .ого>мм_\_ ол+ FCEO \_\ME

SUPPOWt -38 ORES ft. F\U_UHE ЧЫ.ЧС СМд.

CV4 ГЕЕО UNC VtkOJE

СН4 FILL LINE

СНд GlMBW.BEV.UyNS

UNE RESTRAINT пшамвы. C-C)

FM.V UNe SUPPORT FEED LINES MOUNTING BRfcCKCt BRACKET Z5 CRCS PUKTC ZSi40«SO ORES « И ADAPTOR TRUSS | \_ IM FVjOX FEED V.XNE

ГШХ ГЕСТ» М(ч\_УЕ FVO* FILL FUW F\\X UHE В He FU.V. VJW (> O4SWMJL RESTRWNT SIDE VIEW СЬЕЕ с-<у TOP view

FVOX SUCT\ON UNE. UoGOMk* .035

СН^ PEED UNE

- R ЯЭТКТСО 90» <—' слм

Nerves. I. Ж. F.UL,4EKT,FEeO ^CTC,UNES M»E CRtS г. 3. INSUVATION SUPPORT PJNSS 4 FITTINGS АЛЕ F\BCRbU4SS Г О CON *• * NTOAR, ULUM\N(ZCDtt40NftUJM\N\ZCO IFILV» = 15 MILS TWCK ТУР\СМ_ UNE, RESTW4NTT 5 NXLON NET, SE№S BOEBUOC G>, VWTx 37oz./ydz, .007 MIS TWCKNESS (SCKVE 1Л) Figure D-ll: VEHICLE 2-19 PRELIMINARY DESIGN 145 MCX.OED NM10N FIBERGIA5S RETMNER GROUND (M=9WOX

PRESSURE SENSTOVJC MOUNTVNG RING TlxPE X-85O GWO

TANK N4V.ON ZXPPER — SUPPORT

S\OE\NALL \NSULKTION MOLDED ГЧЧ\_О1Ч Токе PVECE) ETW PER

ALL PROPELLENT UNC S W\LL esr S LMCRS SHIELDS (ALUM SECTION D-D Ь • SPACERS (J4XLQN NET) (SO.V.E T4P\CW_ CLOSURE FOR 5. GONE

5 SH\ELDS(W.UM MVUAR) CLAMP BRACKET SPfkCERS (fWV.ON ЧЕТ) QUO FIBERGLASS

SUPPORT R\Nu г SPACERS BOTH SECT\OM г PLACCS) EOGES- ДО (SCALE CONT\WUOUb MCLCRO TOP INSULATION NOT SUOW4 3OND то ТМЧУ: г. SE^NN то - г SHIELDS (ALUM N4LAR) 3 SPACERS tNILONNET) то п LAXER BLM*PRO4 SUIELOS '"- SE*I SVOE>NMJLBLANKET TO TCRMXNATC 17 LAXER BLANKET NXLOt SPLICEN STUSD O tN 1 100' CTRS DOW* \ACAD

SPbCER (NVLON NE"t) эосчшх SCHJELOftHL X-aSOSRVD BLANKET NXLOb bTUO t WELT OOW4 STUD CNER WVJON VlftSWER (is PLACES) IOENT>CA.L "tO MOUNTVN6 R\NG- O6O »\ SO- TOP Si, О O1A(A9PROX) VABERGLASS SVOEWIV.LL BJLAJNKET - CUT AT ADAPTOR LUS ACWTOR SUPPORT R\NG .O6O- LOCATIONS 58 О О \ A (APPROX) OACRON TUREbD T\E ADAPTOR OJGS TRAPPED OONT\NUOUS 4ELCRO STRVP \N»TH S SHVELDS (AUJM SE\NN TO \г SPAACERS 1 SHIELDS I S SPACCRSWVLCP m NE t BONDED TO SUPPORT RXUS, \OO"W4>t(T4f) SPftCERS £E\NN ТИРЕ IN PL ACt t SHIELDS (frUJM M4LAR) 3 SPACERS (.-«LON NET) WELCRO PATCH BONDET3 TO RING £ ST4JO (Т^ INSULAT\ON SETS SEW4T ТАРЕ О PLACES) SECTION Г-Г SECTION (SCALE, \/J - >Z ЕЬСН SPACER 4 SW\ELD/ 7 SPACERS (N4LON N Figure D-12: (SOLE \/9 1 ^ 7 SH\CLD5 (WLUM WIVLA.R) CONE \NSULAT\ON BLANKET VEHICLE 2-19 PRELIMINARY DESIGN I SHiELO (NS1DE i SPACER I APPRO* t = 10 146 СНд VENT VU.LVE

CH. X/ENT L\N41 BEL.V-OVJS \_\NC О35ЧМЬ,\.\-

J. FIV.V- UNE BRACKET

THRUST TUBi (lZ PLACETS) I E5 O1A« O3S VJA.L.L. AL.

« Z SO • 2SO MtMX. FLO* IENT AL, 3 OO DV A, » OS5 VJ AL.L.

FLOX F\U-

TANK SUPPORT STRUT fc PLACES) \7OD\K* VIEW A-A (SCAVJE \/Ю) SIDE VIEW ADAPTOR NOT TOP VIEW (SCALE t/IO) VENT (SCM.E 1/10) CV<4 FLOX 4EV4T UNE BEX.VOWS te F\L\-UNE 2 5 O\ A • O49 41 AU_ FLOX GIMBAV.BELLOVJS FLOX F\U- t FEED UNE BRA.CKET (г PLACES) гь CRES PL.ATC С1ЛМР (4 PLACES) СНд FAU. VA.UIC O4-O CBES PANLOAD SUPPORT TROSS 3\5DIA,« OiGWALL. (.(Z PLACES) FLOX FEED UNE

VIEW В-В FLDX F\L\_ U^4C (SCALE \/IO) ADA.PTOR TRUSS CftRBONCPOXV PLACES)

RING г га«г.гь« .OSSWAUL т*. A.L,

NOTES. ; i TANKS ARC гг\э ТЬЕАЬ AL i- ога г FILL FTCD.MENT J CTC,,UNES ARE ORES 3 TANK SUPPORT STRUTS AWE F\BERSLASS Figure D-13: * M4LAP., MJUWIINIZCO ^ NON- A,LUVAXN\ZED = IS Nl\L. THICK | VEHICLE 2-18 PRELIMINARY DESIGN 5 N4LON NET SEARS ROCBUCX Co, >1T- .- OO7 АМЬ THICKNESS I 147 CUTOUT FOR ПО. 4 VCNTT to&cs REWVORCCO l OTMC» JkUt 3OND TO TO BRACKET VJ\TM MC\_C«O PKTCHtb SCVJ TO t(LW4

nBCRE\-U.SS ( OO « \ OO (a JCVCRO РЛТС.Н- 3OND

ТЬИК STRUT (С eRbfN4 SW\C\_O5 i SPACERS SSH\E\_OS (л\_ STEP

SEW» 'BOND то STRUCTURE, SCWN то BLANKET 7T<

- -Л IS Dl«k MOVJCft OH V3O CENTERS CUTOUT VNBU4NKCT TO ЛСС,ОМУЛОО«ЧТС STRUCTORC

. MCLCRO SECTIO^^—^ ' Iv-*»N^ E1—> I —E . 0"-4.X>"St*C\NG) MEUCRO PNTCH BOHOTOR1N& SEW* TO BLANKCT \OO«\ OO WTU STUD LANttNKTED R\Nb .O6OT so WIOE INTER MITTCNTT

VbN14\.t».R FILMS 9 SP&CERSIN4V.ON NET 19 IMTERMITIENT VELCRQ PKTCH A" LONG « • 4 SPACING BONO TOWNS BASE BLP*4KE"T SOMTO SPACER. II SPftCCRS (N4VJON NET) SPACERS (J^NVJON NCT) 10 SH1CVDS i(XLUM N141_O.R) UM MXL.A.R) commuous VCVXRO воно .ОАО THICK SHfcNK TO ДШй SEW TO Ч BSD THROVXoH MJDM-NNUA PtVTCM OMER 4; MCLCRO

sex оитеи SPACERS - VAOVDEO N4UJN GROMMCT TOGCTWe» (TVPICA.O MC\-T FORMED

г? SPACERS IN MOLDED NNUDN STUD еь SMVCV.OS BONO TO RANG (TOP (И PLACCS) (g. A.T \ICHT\CA\_ JO\KT) SECTION B-B v/0

OLMJIP PIKKZD OR BONDED TO TRUSS

aoEvgwjL TRUSS •

IAM\N*TEO F1BERSLASS CLAMP O6O THICK SECTION C-C (SCALE 1/0 I (lN5UUfCT\ON NOT SHOWN SCCSCCB-B) SEE \ FOR Rgure D-14: VEHICLE 2-18 PRELIMINARY DESIGN 148 r\_OX _ I SODIft, ' OEOvN*-\.\- П-ОХ VENT UNE ВВЛСКЕТ- FEED UNE CRE5 ВО

R.OH. MENT V.MME FLO* LINE BELLOWS

и. ей., FETED ut*e UNE SUPPORT SEXWl ONLINE BELLOVNS . SUPPORT 125 CRCS Ife MENT UNE П.ОХ F\U- UNE FXOH ^ENT \ZS GRES ft CH4 UNE SUPPORT

СИ 4 ffilMBAL BEV-UOtlS

SOPPORT UPPER WVNffi IQO-l OO« O32 VENT FLOX T&.NK SUPPOPT LWE STRUT fu PLACES) IZ5 CUES PRESSUR\TAT\ON I 35 О1Л. « О2 so oib. « ого »1Ачи_ FLOX FEED VM.VJE SUPPORT STRUT СНд RLL. UNE BEV.LCWS I 15 CUK» SIDE VIEW FLO* FEED LINE \ ЬО D\A, > ОЗБ 4JM.V. TOP view \/\O) UPPER S\OE>IA,L.LT ADAPTOR TRUSS 1/Ю) LOWER RING (\г г 5ОО(*ч« ого г so « 2 so « too Z SOD\Av « . 7075-ТЬ гг>э т», w. LOVJER SIDEVJW.U TRUSS t> г PLACES) г so Di*, « ого WALL TO75-TC, l.OO-\OO • 032 THRUST TUBE A.L. (! г PLACES) I 25 O\b.» 037 »IAU_ CH^ F\LX LVNE THRUST TONb KET 3.0O • 19 00 Dl A - 1 00 • 75 « -O9O \_ ORES

see знеет г FOR

UDO- 7S« O9O L ОАО ТЧР\СЛЛ_ UNE SUPPORT BE1MA NOTT.S (SCALE 1/10) I ALL nu^FEED.VENT, ETC.L.INES ARE CRES г TANK SUPPORT Fmves ARE F\BERGLASS 3 TANKS ARE Zt«T

SECTION A-A (SCAX.C 1/10) t PLA)Ma\NG NOT SHO44N) Figure D-15: VEHICLE 2-14 PRELIMINARY DESIGN 149 гоо п — - (t JOINT — .750 .— ace\NNA. CUTOUTS FOR F\U_ i VENT \_\NES. EOSES OF BLANKET ARE REANPORCED 1 TO ВЙЛСКЕТ >NtTH \IO-CRO MOU3CD VW\JO«4 BONO TO K-BSO FIV-»A

. V8SO Г\\.^A BCTVH a\oca FUU. VXMGTV» PANLQAO SUPPORT PROPEXAANT FVU_ \JENT, $. OF TUE JO\NT BOND TO NCT FVTT\Nb OTHER UNE:S \RE \NSU\J»>TEO (LAM F\BER6LA.S5) SPACERS (NNVjON NET) BOND "^ SE\N -to vaso nv.M SECTION B-B STRUCTURfrA- RVMG

TOP BLANKET BONO то *-aso (*• PLACES соймах spt>ccq]

OUTER ЬРРЛЕЯ NET LOOPED 4. FORM^O 31-tkNKET END 4 TO (NI4C?V NCT SPP>CCR OOCRON THREKD RETAINER (S PVJCES) \AC\t4G- \NS\OE OUTS\DE BONO то х a so ЧЕ1£Л*О BOND CON\CA4_ О*О «. V OO-\OO < ZOO BLANKET LAM FIBERGLASS (ONE PIECE) "(в BOTTOM BLB>P4VCCT аомотовжчскст a* SPACER* .frw-ON NET) воното COHVCM. BVANKCT Z3SV4\ELOS (p*JJM M4V.A.R) X-B5O BLA.NKCT 4i\U_ SE CUT t ПТ MOLDED N4LON TO PROPEU-^NT UNC5 -VELCRO BONO TO CONICAL, \NSULATW3N RETP4NER X 85O FILM и 85О t BOTTOM BLANKET (ЭСАХ.Е \|10) (A.PPRQX \ PER A.SQ.FT) \i\e\N S\OEVUAL.L BLANKET K.-BSO FILM (SCALE tftoj (ONE P\EC€) SECTION С-С LOVNER (SCALE I/I) S\OENO. \NS4JLATEO ТМЧК SUPPORT &TRUT UPPER. SAN to SPACERS(NVLONNET) , (ONE P\ECE) 5SU»ELDS1W.UVA NUXLAU) - MELCRO (.2 OO « 6 OO) BONDED

LAMINATED FlBERuVASS CLIP (£. PER PLATE) S\OOUAXA. TRUSS LAMINATED FIBERGLASS STRUCTURAL. RING, VJELCRO \ OO » I OO PLATE .OG>O«uOO LM41NKTEO FlBEBbLASb PLATE LOCATE WTH STUD (^PLACES EQUW-LX SPACED) О « ZOO* GOO BOND TO PV-PCtE S EQUAU.V SPACED) SCMJNi TO BLANKET RETWNER 4 OUTER SPACER BONDED TO'VELCRO MELCRO COMTVVSUOUS EXCEPT PK4LOA.D SUPPORTS

ADAPTOR TRUSS

MELOBO - CObnVNUOUS- BONO TO STRUCTURE t H-BSO SH\E\_O^ Z5 МЛОЕ) NNLOM RETAINER (TYP) BONO TO x-aso SCM JE\-OMtL Х- В5О (8 PLACES EQOAVJL* SPACED) Z5OIA» OZO (A,LU*A UXL BLANKET t VJCLCRO SIOEVJAU. BLANKET GONVCAL BLANKET PATCH SPACERS (NILON мет) I OUTER 4.\NNER SPACERS SHIELDS (ALUM MVLAH) VEHICLE 2-14 PRELIMINARY DESIGN 150 OUTER. СЧа. STRUTS (.A. RCQJD) 1ООО)Л« О47 \NALL« ZZ GO LONS UPPER R\N6 t^S« O6

OUTBCARO INNER CH4 STRUT (&• REQD) S>DE\NAU- TRUSS 1 OO Dlfk « O47 VlfcLL < Z7 C>3 LONU

CH.'V/ENT LVNE BELLOVNS INNER FLO* STRUT (4- TORS\ON TUBE - I SO DUk « .O\S\Nft.LL » ЗО О2 LONS. —Ч СН» FEED MbN\FO'__ LINE aCLLOVJS ENG\NE SUPPORT TRUSS (2 REQ O) MENT L\NE 2ООЛ « O3S •WW-V ____ LINE - I ZSDlfc* O2S VN INNER INBOARD CMA STRUT (4. REQ O) I OODlb « О V7 W « г7 ИЗ LONS INNER INBOARD FLO* STRUT (4 REQ' I 4O Old.» OvevWMJ.» EA BLONS ENGINE. SUPPORT TRUSS ASSEMBLY (a.

OUTE'R FLjOX STRUT I 4O- OZO\NM.L» Zl&LONO»

O90 « \£> . г О *.NSLC

FU5V VENT VM-VE

FLO4 4ENT LVNE BTLLOWS I SO OIN • О4Э WMLL (2 REQ ti> FUDX nu_U ME SUPPORT- LOWER R\NS 2 О • 2 О « V25 \N • ЗЬ OO D\A - I OO \N»DC « ONfc.LL BELLOWS, FLOX FEED VALME FUO* FH.LUNC BEULO>N во o^^ « ого ^JP^LL

СИ4 FILL FEED LIME PCCO Z SO OIK. « OBSWkU- FEED SHUTOFF \(М-\(Е I BELLOWS (ТУР) FL04 FEED SHUTOFF ISODlb* O3SXMJL FU3U FEED UNE CH« F\\.L LVNE SUPPORT GLb-SAP ENS1NC SUPPORT 1 OO V01DC • OAOT TRUSS BRMXET CH4FILLL\NE 75 Dl^« DEO 4JALL (2 RCQ'D) I SOOtA» O3SWAVJL. г г oo FLANGES 25» I 2S»OGO W«k.LL

SlOEWftU. B-B TRUSS STRUCTURE TRUSS SUPPORT TUBES 2 25 OIA, » РА.ЧЮМЭ KTTN1V4 RING FITTING . F\BERSL(^SS (MOLD CCi> FlANGE-2 SW«]IDE« 1ST > SO Ш6И . 1ST UPPER 10.0 «го -.гот го<го! гот

ADAPTOR TRUSS I SO Oik • OE8 4ALL CARBOT«/CPOHV (24 PLACES)

I ALL TANK SUPPORT STRUTS ARC FIBERGLASS ALL FEED МЕКП ,FU.L 4 ETC,L\NES ARC CRCS TUBE 3. FLOX 4 C\^^ TANKS ARE .O2ST ZV3 T6E4U ALUM 4. MNLAR \S \S M\LS TW\C< S. NXLON NCT. SEARS ROCBOCK t Cb VJt* .007 AV6 TWCKNE-SS. SIDE V1ETW Figure D-17: VEHICLE 2-3 PRELIMINARY DESIGN 151 / THRUST R\ N u

ENGINE GIN1BW.

IMSULAT\ON CUTOUT FOR PAXLOMD [SUPPORT MOLDED N4LON RE.TMNCR 4. OO ON CCNTCHS

MOLDED NXLON BLANKET

OACRON THREA.D

NET) S SW\EVOS (AL.UM ON RETf TOP \N5ULM\ON (ONE PIECE) (t- PLACE'S) O1P» -«Oue ON I 5O FIBERGLKSS ClAMP A

BOND TO CLAMP

- H4LOM SECTION F-F (SCALE (SCALE \/\) (S, PLACE'S) T4P\CK\_ PCR/4.SQFT

RECESS 5 SPA.CERU (N4LON NET (NSVJLPCUON BLANKET й- SHIELDS INNER UET LN4£R LOOPED U.ROUND t SCVNN TO OUTER ПЕТ

16NVLONMET SPACERS

BSAVLKR RLNAS

\ SPACER (.WLON MET) \ SW\ELD SIDE V\E\N 5ЕСТЮЫ 5ЕСТ\ОЫ D-D (SCALE V/Ш) (SCALE \/\) SCALE \Л (ROTATED CNN 37° ENGINE RECESS BLANKET OP ' (ТЧР 2. (SNLON NET) SHIELDS QvLUV» 5 SHIELDS (ALUV/ t SPACERS SvOE^NbLX- F\LWlS t SPACERS UEW lO'V' SCVMN TO MELCHO ALL STRUCTURE PLUMING PKTCHES ОП fc О SPNUNG LINES AND r\TT\N6S \N\\_L. BE X'ELCRO BONDED TO STRUCTOR

OfcO * 75O » ЗЬ ОО iNNER. 4- OUTeR NET LWECS HELD TO CLtxW? \N\TH PLACES) S\DE\Nf4.L TRUSS — оьо * * го «згг о рве] FlBCRGLKSS r?\N

BASE BLANKET SE\NN TO NELCRO BOND SJELCRQ TO STRUCTURE

5\DEVJM_L INNER g. OUTER. ICLCRO C — INNER 4 OOTCR NET L(VLUM NET SPACERS SE\NN TQ6ETHER 3ONOZQ TO S~ftUC~URE 3EM4N TO S\OEXMMX OUTER NET G БРСчССРЛ iNNLON NE 4. IS N4LON NCT SEWN TO \J£LCRO — — — 3O(T4P) FI\_HA=> з SCTS OF г SPA.CERS BASE SLANKCT SEWN Т OGETHCR Figure D-18: г SVA\ELDS SEVNN TOGC MIOLDED N4LOU RETWNER 4JVTW MELCRO PATCHES (. TO \JCLCRO \NAbHER (MELT DO'NU ЦЕМЗ) BASE BLANKET SCULLOPEQ TO FORVA SUO4JN (TXP\CA\J CORNER INNER 4/ELCRO PITCHES ARE BOND'CONTINUOUS ЧЕУОЙО то FG BDNDCQ TO STRUCTURE VEHICLE 2-3 PRELIMINARY DESIGN TOP BLANKET t>\e CUT & T^PEO TO FORM SECTION В-В 1ORN.ER (SCALE: INNER S\OEVJALL NET, SPACER ROTATED TO MELCWO P6TTCU 152 VELCRO PATCH SE44N 4JVTW BA.SC СН4 FEED MM4\FOLO FLOX VEI*T га BELLOWS FLOX FILL UNE FEED LINE I SODXA » O2O \N!VLL . so o\* » о го шых FLO* FVLL UNE F\-O* VENT UNt FLOX FVLL i VCNT BCLLCT*1S Z OOOIft. > O35 >MtkLV. UNE 250 CRES » INSULAT\ON SUPPORT

(oeuac SPHEROI FTJU11 VCNTT VkVNt 4918 >D fc»IA\.L' .OZ6

SHORT (IZ P .5OOUV> OZSXN

TWRUV* R\V*S i ts-i zs. оьо ЭО ОО OVA (4L H. FILL UNE F\jOX TW4VC SUPPOflTT STWT ОДв «МЛ. г «гго-т ZSO VNM.» »дL_ A- A REAR MOV L\NE ZOODVtM O3S4IMJL PLUMBING LINES, ADAPTOR'TUBES SIDE V\E W4D TIVNV: SUPPORTS HOT SHOWN «.PLACES) (SC6.LC 1/10) ! 8O DIX> O2S 4JAU. CARBON/ CPOTW СИд ТМЖ SUPPORT STRUT Olft. * OI5 WM.L FLO* FEED UNE 8 I GO OIO. • O3S >*UkLL

LINE SUPPORT TUBE TRUSS SODIA-v O3OVNML.L ZOOD1(4. OZOWM.L (JO

СН» FILL LINE CRES CXAMP O*O« >ЛО .73 CIA» о го «мл. TEFLON SLEEMC (6O«D TO O>i*P) a FILL BRACKET UNE .га сига «е. SUSSE«st Tгг>э-т«. АЛ. UPPCP. RIN г so * \го «IMA. •TMHUST TRUSS IZSOltt.' O35>NM.L M. VIEW B-B мл. \/10) 1 - TANK SUPPORT STRUTS ABE Fec«SLftSS SUPPORT Z F1VX,VENT,FECO,ETC,LINESЛЯС ORES , 604JE *й 9 TttNKS ARE £Z19-TGEAG>AL j A MXLM» WJJWINaCD 4 NQH-ALUMWlZEO'Vb ISMtL THICK SCC ЭйССТ г SNVLOHNET, SCM» WOeeuOK

VEHICl£ 2-2 PRELIMINARY DESIGN 153 RETWNCR (fOO ON CTR \JE

M4LO.P- FIV.MS t TO Z.IPPCR.

PfWUOKQ SUPPORT set sec в в FOR TOP G> SPACERS 5 -i\_N\S ft ON \ 5O CTRS TOP B1_M4VCET 3 NNLON RETA.\N4IR (7 PLACE'S)

(T4PICHL JOINT FOR CUT a. BEND то FORM ас MO TO WSS STUDS BOND \lt\-CWO ~TO OUTER 5P6.CER NCT

INNCRNET \_OOPETD FALKAS t SPAjCERb SCNNN TObCrmER \SVTH OUTER NET SE\NN TOGETHER 6. TO veuCRO

\VLON STUD ft 3OND TO R\N& SHOWING PLCvC-еЪ) (TMOO KT TO H.-S50 EOGE JOINT) SO%O OTHER HW.F (SCf>.VE \/\) TO ONE TRUSSONVV) 4EVCRO TO \NNER 1 OUTER SE\N TO NET E.CWN TOGETHER оьо • v zs w ~ TO TOP OfeO > 75O « 5O OO то тиае TO CLXVAP 4^ \T И v\ew \/\O) STRUTS NOT SHOWN

ЕД STUD TO МЛКГ BCND

MOLDED NNLON STuO 3 PSR Pa.NEX TOTfM.) 30NO TO RING EN61NE PEDEST^X. (SE as OIA • 02.0 VJU.LL

VEV-CRO RETMNER 3ONQ TO R\NG, SE4J TO PACES') SE\N SPbCER SPACERS (NNV.ON NET) NET )\LL A.ROUNO (W-ONI

\

SUPPORT "TUBE RET ЛЛ NET». fc> PLACED) V4U4P, COMER 75 VCLCBO PKYCH \OOO\b. -BONO SPACING ALONG TUB PICA1- S ST«UT K.-8SO MOLDED OVER TOP STUD'S tVELT OF X-85O Ib TU£ TURu A-S5O PKNEL. Figure D-20: г SPACERS (.MVUO4 NET) SWEUDS (MJJM г SWEXOS SPACERS (N4 LO(4 NET) MXLKR. FILMS J PANELS VEHICLE 2-2 PRELIMINARY DESIGN 14 bP(xce«s> TRUSS ASSEMBLV I Ъ MV\_fc.R й-Оит_ EASE BA-A.NKET SEVOM TOGETHER SECTION B-B T—O EV.CRO - BOND -JEV-CRO TO RINffi SECTION C-C (SCALE I/1) 154 THIS PAGE INTENTIONALLY LEFT BLANK

155 3 2 | 2 с 1> "f*c s о2т § |» i OT Ie- 5.1 oS£e "55. - с I - L 5| fg I , J с 1 . 1 1 |i.|f2 |s fli ; Z ^-c^ ^ Я e> S~ oet ,9 5 CL § оE d^> 2 £cceo -e«| ?•« II 8 * I 1 (3 i "•o - '"'cS &2E cS о Т} о f о 2o2 *- 3S ~'Сл с™ 58 °- |3 и с фс

!]l|i |i{ ! IIs ™ «cl™! "«в 1§£ ч! с с i > н "5 •ои'Зэ ^ |~ -5..S -ост "§ £ о -а I 2 з 3 _ ^2 э»зЗ£ 'ooa. S .| gog? ив о€ё g- с£в о с £ - £ -» -X £ой — * ~ -А^. о. •§ о с fe г» r- 01 о in О in о 0 Ч со ч о •о т en см r*- CO ш 8 г» 8 Т S ю И • ем 8 s ю •о * I 2.676. 0 см з •£ 1 о £ о см in CO г» ч- со о г» CM 0 см о r~ ем г* о> CO со О ем 8 1 - 7 И i 8 • со 8 8 см" 2.733. 0

ем О о X CO см en о ем см со о CO q о см со с§м см о i 8 о S 3 з 8 CO 2 ш s 8 см см CM ц. *" *~ ^ -1 0 q О1 о ш см CO en 0 ш о со 0 CM ч ч 3 6 g со 8 со 3 со CM s s 8 8 ff> *" ем CM "" in о 0 Ч CO r- CO 1П см со г» о in о г» о in CO СО Г» 1 in ем со • 8 8" я г-. CM

§ 3 I см 2.814. 0

0 0 en in о о ч со ю о О) CO о со о en СП in CO in In s 8 3 ю q см е. ii со 1 i 1 CM см ю о 00 in CO со о о ем о со о см CO т к iCM 8 3 8 S з см" s i s 2.440. 0 EIGH T ( L 5 ч CM о о CO со CD ч en ю ш о CM 0 о со 0 CO см в) со LD ш со S 8 8 1 < О см s . CM Ч 1 8. X см" 2,872. 0 У о q R со CO со СП ем о СО CD со о п en ю о о ,CM d 0 5 со со ем я § г 3 8 s СО X См" Ы о to in in ем г» со о 0 о со о (М со со* г» см Ц 5 en 5 co- 8 is i 8 s ем" 2,982. 0

а. ;X ш о. г 0 (Г сэ О» i £ 8 1 1 <1 3 CO о1 и я о TOTA L HARDW A PROPELLAN T ! с TOTA L SYSTE M о о 5> с Fue l Syste m Oxidize r Syste m Payloa d Suppor t Penumati c Contro l Protectio n A Weigh t TYP E PROPELLAN T Primar y Structur e сЕ со ш ERMA L SYSTE M GRO U OPULSIO N SYSTE M G R ATIV E HARDWAR W CONFIGURATIO N NO . RUCTUR E GROU P 1 i- Т rr ts> О. ш 1 о;

156 i

CM en р» on ч- q n in т 5 in • p>' p»' Si 8 з sS Я £ i a я CM 8 CN

IN т р" 00 PI ч; 0 0 О) in P] 00 р) in IT *: s 3 pi S i CN • 3 ss P»' r* 8 Z I о РЭ in en CO in CM р» о 00 СЧ PI оо см ui CO P»' и. я 3 Й g 3я 8 S 8 " ш 00 00 о СП 00 q in 1 p) q 00 P) PS pi CM о я р» o> 8 P-' к i 8 и i I— en q CO to 7 p- р) pc CM CD • P-' P»' о 8 ss 5 S 1 PJ i i

СП 00 CM in in СП in in CO in q о P) P» q 1 5? fi «t 85 is p^ CO i 1 R

00 00 00 CO CD CM ot 0 0 p> P) P» см J CN S s CO 5 5 8 i 8 CM 3 с. I Т о 00 o> ЧГ 00 en p» О p» о in p> * CM 3 N я R • £ 3 P» 1 : s 3 LOX/ C 6 V p> CO 0 00 en o> CO о in p> P) СО 5 8 < 1 s я PS i is я P» ii 1 i 5 о 00 i W 01 in CO en о CO en 01 q in CM P) 00 ed p»' pi r» s A 00 5 Я 8 I p> ?

a. * Jj 1 a I 5 сф к j о > (Л OL m OL ш u. | Protectio n Aweigh t I TYP E PROPELLAN T | CONFIGURATIO N NO . [ STRUCTUR E GROU P | Secondar y Structur e | Payloa d Suppor t I THERMA L SYSTE M GROU P 1 Secondar y Insu l Aweion t \ PROPULSIO N SYSTE M GR O | Oxidize r Syste m I PROPELLAN T [ RELATIV E HARDWAR W T [ Pneumati c Contro l 1 Pretsunzatio n A Weigh t I TOTA L HARDWAR E I TOTA L SYSTE M

157 o> о 1 ! CN i CO t~ 1 i !i i 1 ' ! 1 2 CN ш м j ' 0 i 1 I г* N in со о

CN л CO ц 8 г § 8 d CO со 1 in 1 S 1 о (N 8 1 г in i CO i i я я 1 я со 1 1 i ! E к- 1 со _ i i i I г. i I a со со 1 , с 8 к ! ' о *" ri 1 ш г-' r-Г } I- i О ^" o _ г 1 — — i' " i fe л !г» 1 r» о 8 Я i i 1 со 1 о 00 1 * rf * 1 ' I 1 i , , , j • О ее 1 ш 1 1 Z 00 5 я о i' i Z — i--. -f- 1 ч_r ' _ ' Z 1 со м i i О £ 0) г» 1 1 cd R. н ш ! I 1 1 СО 3 - 1 1 ес 1 i I z \~ • — , — i s 8 i 8 г* 8,8 - 1 Q u. 1 1 1 5 1 1 г»' О *~. «^ z g ti 1 за < и 1 i " rf- LU Ч ! 3 1 i J; ! i 1 i _, ,-_ 1- и " - г» со 1 г 8 со 4- со М i CD со ; •" Г"1 5 CO 1' 8 8 S3 3 S ? 1 1 со CO . (N d 1 Q R 1 CM sis ? 1 ^ ^ • i 1 1 О r» i со : i ; r» 1 1 U со ! I4J со 1

- — 1-+- со 0 8 8 m 8 л CO < S ё 5 I IN icd 6 "iji d 3 "" 1 ! с о fc о Я M г ш 1 о a> i £ с с с £ £ £ Э i a со о а JC с Tan k Suppor t Str . Insu l Insulatio n o Othe r Int . Misc . Support s Thrus t Str . Insulatio n Plumbin g Insulatio n Suppor t Tube s i ш Thrus t Rin g Assy . Thrus t Truss/Tub e Ass y Torsio n Tube s & Brace £ 5 Insulatio n Suppor t Struct u Additiona l Insulatio n

ь Thrus t Structur e CONOAR Y INSULATIO N CONOAR Y STRUCTUR E i in CO CO 1 ! i -л. - i ^ , j 158 ; I (0 3 8 in I ч- "" i 1 • 8 5 8 8 г- in о

ё S C4 8 1 i 8 s о 1 CM 1 1 i о 1 о 1 о t 1 i i s CM 2 о (Л 1 *" 1 i X r»1 S 0 in 1 г» О in in I ш CO 0 i

( f i , ' ш см 8 f". 1 s 8 3 s s 8 о 1 * CM 1 i CM о 1 о о 1 ; in шС ш CM ! < i jjy fi ас. Z э in о о z i о z CO 1 1 i I о 1 о г». 1 p S 09 ш 8 СМ i ^- ОС ' „j i I to D 1 ш П со z H у 00 г* о 1 о 1 ш in ю i S 1 n S 1 1 ast 0 0 о о 1 о ] о I Z 0 i s 8 i r* 1 0» шсм i i1 LJA I 1 и о г0»0 s см 8 IS Qi * •1 I— CO ID CO г s СЧ г- 1 (0 1 со 1 г» я я Qi 3 1 CM 6 0 61 < s i О Z s « О s i и ш CM 00 CM in in г» i со 8 S !

8 8 CO „ CM 5 со я 8к 1 8 r» ss см 6 § * со * riCM d d о о - -

с

ш a ш £ f с в к f£ £ I f £ CO •о 1 с s & a Torsio n Tube s & Brace ш Thrus t Rin g Ass y Thrus t Truss/Tub e Ass y Mac . Support s Insulatio n o Othe r Int . St Suppor t Tube s Tan k Suppor t St r Insulati o Plumbin g Insulatio n £ Thrus t Structur e Insulatio n i

I Tan k Suppor t Structur e Thrus t Structur e SECONDAR Y INSULATIO N ECONDAR Y STRUCTUR E nsulatio n Suppor t Structur e Additiona l Insulatio n i _j_j i _J 1 159 i i [ i

Т 8 з d 5 с IN с» ^ о К 0) п s S 6 N in о о о о i о 1 1 F i 0) I i 3 \ о г-1 i £ (Л я S n еinм £ I— IN о X CO о и О (N IN о о IN s с 6 1 1 1 CO о о 1 1 р ' шОС — 1 OB 1 Тя) 5 1 3 fc D и О Z i с ; i Z О 1 I i О in 1 Я < s s со IN о IN ОС __, I

СО M — Г» (N g «Л 6 1 8 1 1о ONFIG U о 1 Z 0 _J-H -J- , l_ 1 об i '• i 1 i i . (П ш 1 ть 8 1 Г 1 сч и 1 CO о in ш э in CO IN d ^

CO s § 1 8 CO s 1 о о I 1d о а to (N i CN in in d CN a о - CO Г) 5 s 1 38 со 0 о о d d 3 ~ < 1 i

—ь 1 S ш a а 4 ш i д ос Z A к 1 — 0 S 3 A f ОС S га з сО) с (- 8 с сО) ОС <в с a 1 •о !ц. ш а. 5 E о ш .tl а о

Sidewal l & Bas e I 00 AR Y INSULA T Clamps . Retain » О о „Attachment s ellaneou s Insula t я" a a 0 X шU и i ' ! 1 '._! ' i 1 160 i 1

Т r- - 8 (S со i 1 §

О> $ s 1 N 1 о о о О 16

to г» w X 8 о (Ч s О CN d • * d11 1 1 1 мs о 1 о О

ОС ш Z со 5 1 о r» 3 Z г s CM o> оZ о 0 i

CO г*. и It 8 1 1 1 § о 1 о О о о 0 IGURA T 7 о О Z и

7 Ю 8 s I d d 0 8 § <О i 1 о 1 § 8 d 0 о 5 о 0

О Z о сч 1 и Ю 8 N В о §

0) 8 8 7 § 1 8 § ? » о d d d о d о d з J .i а с ш a а ш с5 4 £ ос Z к с П « tt 1 n г к s a О) с с ся i ОС с с 1a К ш •о ! Ь э i ш 1 CD 75 У 1 Sidewal l & Bas e Clampi , Retainer * ii Majo r Join t Auembli c ONDAR Y INSULAT I MIGC . Attachment s о X-85 0 Fil m III in

L J~_ ! i 161 i Ч i * CO 8 1 ! 1 1 СП ' ! i § 8 (I 8 CM 1 1 8 s 8 8 8 8 N м 1 i i о 0 ^ j i 1 i 1 ,_ о 1 я г» to со I— г* Я 1 8 X I 0 со S о О ! i i r> £ 8 R 8 1 CM i 0 о 1 1 on 0 0 * ; 1 ОС i ш m СП о i 1 Q 5 • co- t 1 э ! Z z 1 z n t, о 0 см i 1- A со 1Л 5 oc к 1 о СО 00 in ' «л г» се CO

со co о; (Ч 2 i— U CO э 1Л s г Ц i со см 00 * со

О) 00 CM CM о Ш 8 з (О CO Z 1 i Я 0 о CO cd Й о d d d ** z ' о ш Си trf

CM о г» со л Г» 3 О S Г» £ 2 н

r- r» 8 S CO 8 X ? Н 1 s 6 d * п ri 18 5 s d 6

1 о &

s 1 ш о> a i 1с £ с к £ ОС ? ОС £ 1 0) fe£ с •2 "сa I a Insulatio n o Othe r Int . Plumbin g Insulatio n

D Misc . Support s Torsio n Tube s & Brace Thrus t Structur e Insula Thrus t Truss/Tub e Ass y Tan k Suppor t Structur e с Ul Thrus t Rin g Ass y £ 1 2 5 Insulatio n Suppor t Structur e Additiona l Insulatio n Tan k Suppor t Structur e CONDAR Y INSULATIO N

CONDAR Y STRUCTUR E 1 ш СО t i . —i \ 1 — i _J 162 со (М || i * ! ее uj-l 1 см r- 00 S - •• I ! ° г» i 00 IN 8 со 00 1 8 1 i 1 1 1 1 О a in о 2» in I 0 0 0 1 t t ! 1 ! 1 I 00 00 М ri i i 1 • о 00 1 1 1 гч 8 8 8 8 '- CO 1 о ! 1 i ! i I 1 i 1 1 | ' , i -. LN > 1 8 3 2 1 ш 1 1 1 1 1 i 5 i О CN о о i ; L_LJ Z ОС 1 i ; О а г» rg ' i i • »— 5 8 CN ! z 3 z Д i D 1 1 о eg 8 z s 1 3 i к rj i *- CO 1 о 1 1 Z • ОС ! \. ' ! О n со 3 8 8 s 1 1 1 1 S I z fM d 0, 1 6 о d ! ' RAMS ) CONFIG U j i О О 00 w (М i п и CO - <•> 1 5 r» 8 n 8. 8. a rg 1 i 1 1 in 8 in ет 8 m 8 8 00 1 s 1 1 1 О ю даd d d о d i Z о H—i и in LU S (Л r»

N О t CN s in з. о 8 т 1

асо о r» g 8 in со n 8 8 8 CO iri s S rf d

X 0I0 1ев ш га !m I 1 с f с i or с с" ОС 1ОС ОС К 1 ОС S с S •о m1 It 2 3 Insulatio n o Othe r Int . Plumbin g Insulatio n С Ш ос ю Misc . Support s Thrus t Structur e Insulat i с I 1 Tan k Suppor t Structur e 5 Insulatio n Suppor t Structu Additiona l Insulatio n Tan k Suppor t Structure s CONDAR Y INSULATIO N CONDAR Y STRUCTUR E Ul CO I w 1 I , 1 1 !

163 ш О) 1 и R о s s § ш о *• *"

г» 00 in 8 § о ) d d 1 I 1

00 1 э м 5 8 V/1 к $ s »— * d d •Q

о n s m R S 2 0 n 0 1 о t d d 1 О С ОС ш со s э •о Q z s 3 cl Z CM о 8 to 0 8 о 1- w d d о сс А э о t-. n s S 3 M z d d d 1 I3 1 zto я

ш о: w 1 CVI к ? 3 S е)

8 0 к d s 1 d d 1 1о г!

• О и гч LLJ 1 ЬО ^ d VO - -• S

.- ГЧ « R 8 S n 8 d d d d d со 1 d d d < 1 1 с с a § 5 ш * 1 ш i * 1 6 1 £ 1 £ iners . Stu i ULATIO N !1 cc oc ё ш ос £ И о 1 -i fe 1 2 1| О • и 1 ( A t Engin e & [ X-85 0 Fil m [ SECONDAR Y IN S [ Majo r Join t As * ( Sidewal l & В | A t Mi d Rin g ._ 164 A ! i 5 о> CM 8 r- см CM CM d d d 1 d 1 01 to м en m i £ 3 8 § § 1 о CM i d d 1 d i • 1

со t— 1 о со 8 8 К S 5? CM о d d d 1 CM ; CO 8 § s q 1 d d 1 d о ее 1 ш i z 00 о э 1 — CM 1 0 g S 8 CM 1- л d d d 1Л Z ос o> 8 Б 8 о о 0 iid d 1 1 d 0.018 2 z tjONFIG U i I aОС о 1 IJ —Г" 7 s г 8 IS CM d ** «л If) g 8 8 см d i d 1 о $ d d 1d О Z о и ш «л n 7 3 S CO n ю d d d " 1 I О _-, П) r> CO «t en и CM J! s 8 CO § s N 1 d d i d d d d d d i •" 1 1 1 .{ 1 — ш 8 ft ii p Г и 1Й ос я 8 С £ I i £

JLATIO N 1 в ? t i ie £ ? £ 1 £ I J fc E I a 2 te I i в Velcr o 55 5 A t Engin e & 5 3 I i 1 Majo r Join t AS M X Misc . Attachme r

•CONDAR Y INS l i 1 м 1 L_ ' 1

165 0> о CM 8 о pi § 3 2 1 см in о см 1 см p> 0 £ 3 d 00 о о d d CM in s d 0! in 8 CM 2 00 in 3 pj с с с 1 1 to 1 * £ s 8 О 8

CM (D (0 v 0) CM d CM 4

5 CM о in (0 см O> in о CM CM со о о о IB 3 d CM in d d ID ei CM 2 rf •" о 00 ю pi rt с с с 1 1 in 1 * Ё (О к s 0 8

о in ч- z R (0 о ^ pi d in < (E »f D in in см се in о 0 CM о о 5 «0 in CM о d in' ei pi d d ed in ~ to UI " 5 3 3 3 2 X О с . О О с 1 1 en 1 PI 8 v i и (0 я

CM p» Ш CM Г* Ш я 3

CM CQ 00 i < i 8 5 t CM CM CM in (О се CM о о О CM pj d -' d 3 s id 3 d d 3 CM* 0> 5 со d з s 3 § d с E X in 00 CM p> CM p> g s 8 CM j? 9 P) " 1

. Jf с nj j{ "c c л 5 l§ м 11 ё -£ » со ^ £ CM in г in о о 8 i d 15 id K d iР1 § 1d pj s in* Й 8 т i о 9 d о СЭ M d cd * rf s я £2 о 0 d X

1 | u. I! 1 I ,1 Lin e 0.7 5 x 0.02 0

о Disconnec t Support s

1 Flanges-Manifol d u. il Manifol d 1.2 5 x O.t t

Shutof f Valv e Support s u. Lin e 2.0 0 x 0.03 5 Bellow s Disconnec t Valv e

Solenoi d Valv e u. z Support s Ш во i III u. AN K OUTLE T AW E I > u. K H

166 CM R 3 S 5 § s т CM со r» CM d 8 8 {м i ! 0 d § Я d 11s § S s§ > 1 CM § i <5 1 to 1 * к S

CM t- 8 (D CM d S iri d^

r> CM 8 «•> 8 d s | к я § s d iS d 11S ii d 1 e f 00 § § in 6 (0 1 1 1 si Si in si * к о о CM Я 10 ГМ d Ц ui d Й г- 7. о О 1 ro CM CM со r> •о CM ш CM 00 Si см оCO «/1 d CM s 8 ? С s i d 5 ri d d ii d i 0 f i О u. en о § z fc a! 1 1 o> I CO on LU 3 CO 8 CM 1Л in Ш CO Й «? 09 s d со CO to CM 8 S s 8 2 3 00 c4 d 1 8. s 8 8 i 2 см d d I3 i d d S s is d U E i и U «o O) CM О (0 w CM 2 * CM CM g $ 1

r» r> (T) s m 1Л 00 od 111 d

1 (Ч OD CM S 8 s К 10 CM 5 5 i eJ ч 8 8 5 s 1id d d d 1pj §i Id с F t и r* 1 CM g «§ С CN CO CO 8 я o<4 00 CM CO »-r* d 1 I ,Jt га с ! 4 2 kg/cm ) en 1 в о m n 4 44 .* (П jt J< C1M^ 8 q 0 S t § rJ i q Ii § 5 i s § § 5 g c> d 8 ь i§ a c) и I uj о i •D X I 5 0 r- 1 0 9 i <1 ? X rf <4 rl *• % ш 8 v 5 •D 1 1 P с 2 о В i a u. 1I о K Is 8 ai _ j с О a Э _ i 3 a 1 ш ii ш u. a И £ il 1CO u. Ш z u. л | Shutof f 1 Flano e | Manlfo l [ Bellow » | TOTA L

167 0 «4 in г» 00 г» К - 0 со О)

CтN О9 p> in q p) § § 3 S г4 о" 15 3 § 3 3 5 3 5 d d

с с w С 1 5 s to S се В CO

0) а> «<0i И R 0 j£ 00

CтN о о q о «о. 00 q in PI pj § od rf S 3 3 Ы s s s Pi rJ 5 5 d

с с с 1 6 i(0 iв Р) in * со I— in CN £ 7 W £: d Si о О I- 1- J 1 (N ОЕ ю см PI in CN q in о ri § 3 S s pi d 3 3 •^ d 3 r» 3 d S LL О > с' с с 0 £• 1 „ in (О in р> Q со n * g о N o> m (О И X £ So- i CN q in n in 2 q in о s 3 s Iid § 3 uS 3 s 3 r) Pi § d

> с с* d с 00 M 00 р> 5 8 я 8 s * w CM s 8 s d il

Ni о о p> CN P) CN q in о PI 3 § ad Pi 3 S 3 15 a d 3 rJ Pi 5 d

>. с* d i с 00 to Р) г* И s * °

2 с ~ 2 S3 (* 9 i_ 5 t n 1 1 1 d d g о in q in aioib/ c

(0.061 3 g d 8. 0 Ib/e a 3 d d 3 B 5 s I 8 A WEIG H § d d X d X X 5 s. § 1 1 a» iI с g о 5 a 1 Shutof f Valv e Disconnec t Velve Manifol d 2.5 0 x a t Disconnec t Valv e

Bellow s Ц. Support * -1 il Solenoi d Velve t Support s \L u. ш Y K OUTLE T DEL ш i i 1 i ш 0 •* u. ь — 168 i 1 1 1 8 S со S г*- R *~ ] п „!; 00 г- ч- CM OD г» см см Ч 1 • ri 8 3 ri о W* rii- 5 о о d CO 2 см 5 s 3 1 и (О § (0 i § Ю 1 S

JO К iГn- х и ri Гч о £ S оа 00 5 00 CM см Г. 8 1 5 $ 1 8 d 5 5 8 3 2 о in ri CM о ri о CO Z см i

и 00 со i 10 *

а 229c m 8

^ 8 я in d г. d * и

см 00 г- 00 ? со см in см 8 00 8 1 и d d ОС 8 3 Ц CO о 1 ri ш ri ri ri d о X ш i 5 j i ., О -» p fc ; _ 1 и и (0 in со *• 0 i i 8 1- 6

CO rt in 5 IGUR A 5 in 1 1 1 со X О л 00 8 Й О о CM 8 Г". (O 8 d d О s ri in ri ri ri 1 ri -5 Йiri s I 1 со >• 00 CM 00 * rs N CM 229c m 22 8 c m

63.5c m 1

HP (O о см со я r-. d < ц » ~ N п 00 in in 00 2 00 en Ч 8 г 3 8 d ri 5 00 „ ri CM 3 о ri d d d

t со CO . g in В 19 8 c m g E S ~а 1 4л 4JC .* п 00 ; .05 9 kg/e a 8 g ч t- .05 9 kg/Tan k 3. 4 kg/e a (.0 1 2 kg/cm ) (.02 8 kg/cm ) ( 02 6 kg/cm ) .04 5 kg/ea . 3. 6 kg/ea . см ri

8 • n (.034 9 kd/ c 8 о u CO CO *t F E £ ш f-, 0 U лS h- X 1 S "m § § 8 •0 8 > d ir X 8 X > ш 1- 8 * I s. ri ш с | 0 1- 0) 0 e с 1 Q с ш Э J с а i i

Shut-Of f > Z z Support » Disconnec t Bellow s Bellow s (/> Manifol d 6 00

Support s ш LL ш .J CL Solenoi d V О Jj С Jj I III «г u. u. t- _д 1

169 — 1 ~11 \ [ 1 ~l ~"~1 -I о 1 ml со i "' 1 1 1 1 1 . 1 i ' г. I 1 1 I 1 I IN 10 q q IN IN ш §О d о «N ; — т I

v с с to IN IN IN 5 1 CD 8 1 I о ш IN 1 СО 2 1 «Л 1 1 X 00 ' 1 i 1 О «i in CN q q r» IN IN in d 6 о r» d IN i Z с С О i 3 IN IN IN ! I 1 о in со

CONFIGURA T s I- 1 i ' X оCXL о \- о n IN СО 8 i О 1u 1 — и «1 1—' IN ^ Гх IN и СЧ ^ О о IN •• d *" d *~ rIN-

с с • S is IN IN IN Z , о. 1 о n 1 со ф r« r^3 Q ^ CN 1 1 1 CN in О о r» IN CN 0) 1 i со d ,j d «J 1 < c- ^— н .r' ; , i is CN IN IN 1 1 t К _! ' 1 T- о » ш ш U. d ь 1- ^ 2 i i Ш a? 0 Q in in о a 008 5 1 rt d 3 i « ее 0 OPELLA N 1- Q Q ь оОС. о и ff a d X X e a •3 § ? ss ш 1 Я JaC е ОС I

Line s У 4 1 Discon n EUMA T Q. u. nsr u. U 1 Z fi 0. f i _ i ! t J— i.J_ 170 f J' " г к CN 9fv 1 to 3 1 1 00 1 гч OB S 3 2 ri S d о1

§ u in N N N 0 (D и S S г* (Я 1 ' (O rX ОС о о en 00 о т 1 I 2 N о1 d d d I- § Z гч гч (4

О g 152c m i ОС ш ; m S 8 8 1 * r~ э5 rn 7 1 i «/) «Г со LO 0) 00 О г n I S 1- Pi d d d d «-' ос О F F о U и Z И M ГЧ СЧ Z S S о g CN _ и О Ck£ 2 »— г» r-§: Z S i о ст и a a ч 1 я и f. d с d d1 £ E 00 о гч g 9. S " I о. in 8 00 od со § м 00 00 0> n 1 3 (M 1d 1 1 d d d

§ § t». 09 N ГЧ СЧ ^ 11 •3 lI- .X s) о 0) О 4 1 4 ш UJ i 8 .x IJt J£ 00 M gr» ц u u §

X X и S d з 5 a .X 1 |S

LL Disconnec t .27 2 к I U Support s 20 % TOTA L PROPELLAN T F e PRESSURIZATIO N A w PNEUMATI C CONTRO L X

171 r- CO 0 V ш г* CM й § 1 (О i 1 ч- J 1 I о о ll^ ч- 1 о о о см CD см CM 00 i^ CO О in CM CO 00 in со d 1 • in со со CM О in CO CM о о s О 00 < ! с с с 1 1 in ! g « и 1 * Й i CO ! Г-; СП ?, см 1!, 1 1 1 I 1 CM о о о 00 со чг 0 0 0 00 со (О CO см CO - d in CO о n 00 in со 10 :00 d со ш 00 см in CM 3 S| i с Е с 1 CM CM .- см S CM 1 CM fi g Г s |l r " j 1 i 0 1 1 i СО со I- СП Я in см 0 X oc Si О Э 1 il о - о о (О см со со см CM СП о Я 00 CO о in CO 0 * to со d со 3 со со см о in CO 0) со 3 CO s я 1 J 1 U- — -i. J~ J CO ш с с с ш о о N! in CM £ о см 8 CM in 1 1 - у. а in I to • i 1 см г» 00 0) X CM (d f-. CM о СО J 1 ш -J - CM CM in 0 0 со 1 о to о о о см со см ч 1 о irf CD CM d 3 CO in d 5 ч» d об in со 3 см d 3 со < с с 1 см g S in • 1 8 1 i

9 г* CO in $ (0 о 3 1— i . . .. , CM см см in о о 0 см о о о г! со 4= о in 3 d c-5 00 in о S 1 in з со in со 5 з 3 ' с 1 см £ in (0 1 8 1 j g 00 ffi * 1 ; ! "*" J£ л с I А 1 ш d i ш со _| л 1 8 2 1 о r- § 0 о о О d TOTA L

d 0.1 4 Ib/e a 6. 2 Ib/e a 0 2 6 Ib/e a (0.061 3 Lb/ln l (0.13861Ь/т. ) 0.130Lb/E a 5 2 Ib/ea . 5. 0 Lb/Ea . d 1 1(0.140 ) Ib/ta n со 3 в « d CO CO iri го го СП fe in 3 8 о 6 d S X X 1а X 8 $ см I •о с ц. 8 1 г см « CM I ges — Manifol d OUTLE T Aw e ifol d 3.2 5 х 0 - III 1 о tof f Valv e II 5 t- Z о о to "3 ct i ТВ _J s fi! II ш И. Z & a jjj Э *Z ё 1 111 & Ш а J5 ш i Ш -J .J U.IQ i(Л «f ц. ц. u. J.. i .J — 1 172 CM г» 8 8 о l~ с о 8 I 1 i 1 ш см r. in r> 00 oc т О) см см S о CM a о >8 о s d о СО" см 5 d я 3 d d о d i CJ ^ с 1C s » 1 1 1 г i 1 i s §5 - 1 Ii 1 1 г» я г 1 i S s in о i fч- к 1 и

r^ CO со 00 CN r» CO со 1 5 s 8 8 CO г» 8 q s s CM 8 c\ 8I г» . см 0 со 3 CM Iо d CM d ? CO' CM 5 о d и § § § ' 1 СП CM 0 CM CM r. IT CM см о 8 *- л 35 en ее in со d0 со If 5 S з < NUMB E к Z о со со о 2 СП со «t r* г» 1 3 8 8 CO 8 s in 8 CM со d СО" 3 CM f* S 0 CM S " s ri CM о (С 2 s s s 1 о I ш > in CM см о о CM К CM CM 1 ш 140c m 279c m 305c m

CONFIG L . ш со о в с'ПЬ " s i 1 1 ко со см 00 00 см CM r- CN 1 CN 8 8 о 8 CM 8 ,8 1 «ч 8. s см d rf Й d d d co- 5 о c4 CM 1 s I ь и и u in ш СП CM Q ь in 1 ел 1 1 0 со ji ,_ 0 s 8 < см r» d со ^ со co r> n eg 00 CO , 1 со 8. со CM О 8 R « e* S 1 ol rJ 5 d d 2 rf d d s s s -' .... J F F t и и со со CM IT * t 1 Я 1 1 CO ' О CM | ~~1 a Si a 3 л 3 si •s 1g §• a 3 "Ё 8 с I 1 si с с a 1•» а •fl a J Jt Jt $.ж СП 00 CM л col ^ 00 со in 00 cc R 8 1 a I- s C-J Ы § см с i 1 ? i i 8 5 H (П i fi со u ~1 2 £2 Е £ и •D fc g i и 0) О) к ^ a ё e и § •% CO •p § 1- m к p a Ш 1 ui. 1 g s j 1 1- ui |г IT с a: 1 0 с i с fl u. _J ь а с 1a *a» | ь 1 В el l ow Disconne c Lin e 5.08 ] Bellow s

Support s u 11 Solenoi d V с LL Manifol d 8 iJD UI m & от 1/ Mi 1- ш u. 1 u. u 1- 1 g . 1

173 1 ч Г; in со о со CM 8 £ J* 1 5 со q о о 00 см О) Р in O) см 00 q Ш СП о d d ш со in in о со r». in s о CO г» ем ем

с с с i 1 со 1 1 in « g to (0 8 * со **

m CM О со q о SM со г»' 8

7 ч in U) 00 0 о 0 Г-, in р. {М 00 О ш со q r- о о 0 00 со in :о CM о d CO г» см CN

с с с 1 1 1 15 Й CO 8 * к *

CO 00 CO in « г» .- г CO ^ s Q X CO I 1 о (<- Ч; СП 00 СП О ^ о о о ч in CO ем ш о in in о со см CD О in о ш 00 со u CM о см LU см О) п p- р- О u. с с с ш S in CM (Ч о CM со см см CJ g 8к 8 оо -

CO СП m со CO CO со см 4" 3 § CM q «О о о о см ч г. q in ш см to q in см ч; 00 со in со d § d d CO Р.' см « CM ^ ~ ^ 8 с г г с со см со 1Л ш со со со со S со Г4* ц * 8 < g

CO СО It) 1Л 00 см irin р» 8 ^ о 7 0 г» о о en in со см 00 in о см ч; ci со od ч % р.' i d 53 r»' 5s d N и - _c с с со ein со « in « со CM * со at- со г»

"с ш 1 1 g rf £ Ф 1- со s s 0 1 in (0.06 1 3lb/m. ) CM

d 00 <о in 7. 0 1Ь/е а 2 5 Ib/ea . (0.049 7 Ib/in. ) а 15 3 Ib/ea . 6. 0 Ib/ea . d 4 0 Ib/ea . о d i 31(0.13 ) Ib/Tan k 3) u. LL U. о 1- f-

174 O) ГО CN s § (O о p» о CO я

Т p- CO 00 CM 00 S CN R 8 S fx ;CO s о CO CN § 1 i? § d § 1 d 0 ri d о

k Е и L СП to 1 I ,,. m en с?о! ^ **

CN г P» 1 in 0> p- p» d in CM

!»• со о 00 ГО 00 p» 00 CO (О 8 со 8 CN s S 8 CN CN 0 о ro CN о о CO ц § d ri о d

и и § (О 1 I £ s г * S * С/5

ос CN ш У p» ш я я (0 I d -I s 8 5 2 b 7 со 1 00 0 00 ч- CN o> CO 00 СЭ 3 § s 8 8 S 00 in p» ? 8 со d S CM ri § 5 о d S 3 d 1 i1 О СЕ ш fe CM § 00 см о см p» CO CN CM - CM 127c m со 1 292c m CONFIG U

CO 00 S in CO 8 (Л p» CN ti " s CN CN 1 in p» CO CO 00 8 Рч 8 8. 8 CN d CO з s £ s s «5 d d s 3 I d I d i с: E fj F и CO CO CO CO со > 2 in in 00 О К 3 - * ш 0 si _| ^ 00 CM со со о 8 tn 00* in я к in

p» CO 00 •9 p» 8 s 00 p» - in 8 8 8 d !0> о s ю d CO з i «i d «5 S я I iI F E E {j и CO m in CO CO i 8 CM

Jt .X ^ i •a 1s 8 Л si 1 "г* T* 144 4 4 Ij<: 4 d> 44 d> s 4 4 (N CM 00 in p- CM s p» CO I г ГМ О p» 8 р» 0 CO CO g i 1 s g 1.816 k p i 3.405 k iCM rf и E Ь e» U •D g о

о 1VJLOJ . 1 с 1 I i ь 2 a = u. о g 3 1 Z _p il u. u. ш ш d м 00 1 ш и. 1L | Solenoi d V | Disconnec t | Bellow s | Support s [ Lin e 4 0 6 x | Manifol d [ Bellow*-F M j Shut-Of f V a | Lin e 3.8 1 x | Bellow s [ Disconnec t j Support s j TAN K OUTL E

175 о

* ) 1 0) N d d § W a > ii t о i

0 M (О j; Л) «л , * h- X 1 ^^ ,_ at , j ^ ei 1 О d •- 1 - ^ Z > 8 3 о о i о i ю 5 Я Z и m 0 00 ь п I- ОС 1 •". r* э 2 О r) o о ^ . , О il Z 8 > iЙ и 1 О— С£ 0 n I— (0 Z w о м . и 1 ^ и 2 rhl- - -.f - J. s 0 0 о. § r- i

N 1 in M d з - f in 8 о r-

d d £ •9 » - I I d di in 3 I il 1 d d X X SS Я S! 1 С 1 (Se e Tabl D-8 ) Chec k Valve s & Discon i il oc Support s 20 % M AT I C CONTRO L I - PROPELLAN T FEE D -J & <( 0»- Ь

176 8 8 5 Г* г» г» т _ d i со d оs i о F F - U U 5 8P* s

8 CO 8 г» " s

7 in r»- S s я х d d d о5 О V § § 8 г Z с in с о 8 s г 5 г» I- » § z3 5 N г к о п1 in ь 2г 1 « o 00 <; d d d d1 ,J ш 00 ее о E E и, об 3 о §g _| U 8 s s о0£ I— ^ r- | Z о сч g и $ # 1 я и d z о d F F - V U U §8 Z о. 8 s Ч 0

1 in in g S я i N d d d d со F с < U >- i3

•1a -1a 2 a» 8 i i I i и i. 2 | § X X 1 r* О N Z 1 _c С 1 | ] il ОС I PNEUMATI C CONTRO L I Chec k Velvet , Disconnec t | TOTA L PROPELLAN T FEE D

177 THIS PAGE INTENTIONALLY LEFT BLANK

178 APPENDIX E

THERMAL TEST RESULTS AND ANALYSIS

This appendix presents the temperature data obtained in the thermal performance tests. The material is organized by test number, in the order discussed in Section 2.2.3 of the Volume I document, NASA CR-121103. This material supplements the discussion on correlation of analysis and results in Section 2.2.3 of that document. Figure E-l is a drawing of the test article showing locations of the thermocouples discussed in this appendix.

The analytical models used in the analysis of results, and the temperatures pre- dicted by means of these models are also described here.

Test Results

Test T-l - This was the first of a baseline test series consisting of Tests T-l, T-2 and T-3. The test series was intended to evaluate heat transfer rates of the test article with two different warm boundaries and two cryogenic fluids.

Test T-l used LH2 in the test tank and guard and « 7Q°F (295°K) water in the thermal shroud.

The temperatures measured at points on the thermal shroud, and the ambient temperature are shown in Figure E-2. The temperature spike at 3300 minutes was due to an ovei-adjustment of the shroud thermostat. A gradual drift down- wards had been noted in the shroud temperatures and in an attempt to correct this situation the water heater was activated.

Figure E-3 shows the temperatuies on the outside of the MLI at the upper edge of the test article. These temperatures reflect the fluctuations in the shroud, including the spike at 3300 minutes. The MLI surface ranged from one to three degrees colder than the shroud as measured by Thermocouple T13.

Figure E^4 represents the temperatures on the inside of the MLI at the same lo- cations as in Figure E-3. These values had become very stable after about 2600 minutes, indicating thermal equilibrium had been attained.

Figure E-5 shows temperatures on the exterior of the MLI, across the lap joint. Figure E-6 shows the temperatures on the inside of the MLI at the same locations. The outside temperatures followed the same general pattern as the shroud except with somewhat greater deviations. The inside temperatures were very stable except for the period at 3300 minutes.

Figure E-7 is the temperature of the wet test meter exhaust gas. The heat ex- changer, water saturator and wet test meter were located in an environmentally controlled room, therefore the gas temperature was expected to remain constant.

179 However, the door was opened several times during the test to make adjustments, which accounts for the variations in the plot.

Figure E-8 gives the pressure in the guard tank and Figure E-9 shows vacuum chamber pressure. Normally, when a test series was started, the chamber pumps were started on a Friday and allowed to pump over the weekend. A decision was then made on the following Monday whether to load the cryogen into the tanks or to continue pumping.

Figure E-10 shows the temperature in the guard tank during the test.

Test T-2 - Ibis was a repeat of Test T-l except that LNo was used in the guard and test tanks. The thermal shroud and ambient temperatures are shown in Figure E-ll. External and internal MLI temperatures at two locations are shown in Figures E-12 through E-15. The external temperatures followed the shroud whereas the internal temperatures were very stable,.

Wet test meter exhaust gas temperature is shown in Figure E-16. Figure E-17 shows the guard tank pressure. A mistake was made in filling the water mano- meter which controlled the guard pressure. This is evident at -1200 minutes, where the pressure rose abruptly.

Figure E-18 shows vacuum chamber pressure and Figure E-19 shows the tempera- ture in the guard tank.

Test T-3 - In this test the fluid in the tanks was LHo and the thermal shroud was filled with LNo to represent the warm boundary temperature of the propul- sion vehicle sidewall. The thermal shroud and ambient temperatures are shown in Figure E-20. There was no explanation for the discrepancy noted for Thermo- couple T-705.

External and internal MLI temperatures are shown in Figures E-21 through E-24. The external temperatures did not reach the shroud temperature in this test, instead they were approximately 25 F (14°K) warmer.

Temperature of the wet test meter exhaust gas is shown in Figure E-25. Figures E-26 and E-27 show altitude chamber and guard tank pressures, respectively. Figure E-28 gives the temperature data in the guard tank.

Test T-4 - This was a repeat of Test T-l, after the simulated launch loads were applied to the test article. Thermal shroud and ambient temperatures are shown in Figure E-29.

The temperatures on the external surface of the MLI in Figure E-30 follow the shroud temperatures. Internal MLI temperatures are shown in Figure E-31.

180 Figure E-32 shows temperatures on the aluminum tubing framework. These temp- eratures are reasonably uniform regardless of location. T-45 was located on a different part of the framework than the other thermocuples shown.

Figures E-33, E-34, and E-35 show wet test meter gas temperature, altitude chamber pressure and guard tank pressure, respectively. Figure E-36 gives the temperatures in the guard tank.

Test T-5 - The test article was modified to add a fiberglass tubular strut con- nected between the aluminum framework and the test tank. A cutout of the MLI was necessary to attach the strut to the framework. The strut was equipped with a heater at the outboard (warm) end and was instrumented with thermocouples for about one-half its length.

Thermal shroud and ambient temperatures are shown in Figure E-37. The external and internal surface temperatures of the MLI are presented in Figures E-38 and E-39. The inner surface reflected the effects of the MLI penetration at the strut location, as evidenced by T-416, Т-415 and T-413. The influence of the strut heater is evident at approximately 3100 minutes.

Figure E-40 shows the temperatures on the aluminum framework. The effect of heater activation at 3100 minutes is very apparent in this figure. Thermocouple T-45 was located on an adjacent framework member and was used as a control for application of heater power.

Figure E-41 shows the temperature distribution along the fiberglass strut. The thermocouple nearest the heater (T-41) reflected the addition of heater power at 3100 minutes as was expected. This effect was essentially "washed-out" at Thermocouple T-43.

Figure E-42 shows the heater power settings.

Figures E-43, E-44 and E-45 show gas temperature at the wet test meter, vacuum chamber pressure and guard tank pressure, respectively. Figure E-46 shows the guard tank temperature.

Test T-6 - The test article was modified for this series by adding a stainless steel fluid line section. The line connected between the aluminum framework and the test tank, and a cutout in the MLI was necessary. The fluid line was equipped with a heater at the warm end and was instrumented with thermocouples. The test was run with the heaters off during the initial phase, then the heaters were activated.

Figure E-47 shows the thermal shroud and ambient temperatures..

181 Figures E-48, E-49 and E-50 show temperatures on the inside and outside of the MLI during the test. In Figure E-48, Thermocouple T-519 was closest to the cut in the MLI which was made to represent an assembly joint. This thermo- couple was warmer than the other two which were farther away from the joint. All of these curves reflect the heater activation point at 5000 minutes. Thermo- couple T-55 in Figure E-50 was closest to the pipe penetration and was con- siderably warmer than other thermocouples farther away. This location was also influenced more by heater activation.

Figure E-51 shows temperatures on the aluminum framework in the vicinity of the line penetration, and at more remote locations. Thermocouple T-532 was located farthest away from the penetration.

Figure E-52 shows the temperature on the fluid line support plate at the warm end (T-525) and temperatures along the fluid line. The influence of heater activation is evident at 5000 minutes.

Figure E-53 shows the heater power settings.

Figures E-54, E-55 and E-56 present wet test meter gas temperature results, pressure in the guard tank and vacuum chamber pressure, respectively.

Test T-7 - This was a repeat of the preceding test, except that LNU was the fluid rather than LHo. Figure E-57 shows thermal shroud and ambient tempera- tures.

Figure E-58 shows the external and internal temperatures on the MLI near the fluid line penetration. The heaters were not used in this test. Figures E-59 and E-60 show more MLI temperatures.

Figure E-61 shows temperatures on the aluminum framework. Figure E-62 shows the temperature distribution along the fluid line and on the mounting plate (T-525) at the warm end.

Figures E-63, E-64 and E-65 show wet test meter gas temperature, vacuum chamber pressure and guard tank pressure, respectively.

Test T-8 - This test incorporated a new base MLI blanket which was lapped over the outside of the sidewall blanket. The joint resembled the top deck lap joint of the vehicle final designs described in Volume I. The base section of the thermal shroud was isolated from the sidewall section by micarta blocks. Warm water was used in the base section and LN« was used in the sidewall section to represent the flight thermal environment. Figure E-66 shows the shroud and ambient temperatures.

182 Figures E-67 and E-68 show MLI temperatures on the outside and inside at the lap joint location. The heaters were inactive during this test.

Figure E-69 shows temperatures on the aluminum framework and on the fluid line.

Figures E-70 and E-71 show the wet test meter gas temperature, the guard tank pressure and the vacuum chamber pressure.

Analysis

Figures E-72 through E-81 illustrate the nodal networks that formed the basis for analytical models used for theoretical predictions of temperatures and heat flow at the test conditions. Symbolism used throughout the figures is as follows:

Thermal Conductor With Finite Conductance X IT Temperature Nodes X Thermal Conductor With Infinite Conductance (Zero Resistance)

The temperature nodes were the points at which temperatures were evaluated. Incremental surface areas involved in radiant heat interchange were assumed con- centrated at the temperature nodes. The conductance value of each thermal conductor was based on the cross section area normal to the heat flow, length between temperature node terminals, and thermal conductivity of the segment of material represented by that conductor. Where necessary these areas, lengths, and conductivities were determined as the appropriate mean values for the con- ductor span.

Radiation connectors, which included the effects of incremental areas, geometric view factors, and material emittances upon thermal radiation interchange, were not shown in the figures. In general, radiation connectors joined each pair of temperature nodes lying on surfaces absorbing or emitting thermal radiation. Some radiation connectors, where very small radiative interchange factors would have resulted in insignificant heat transfer, were omitted for simplification. Radiation through the MLI was accounted for in the MLI effective conductivity property.

The nodal network representing the basic MLI assembly with the original miter base joint, shown in Figure E-72, was a two-dimensional network, a simplifi- cation made possible by the assumption of axial symmetry of the tank-insulation-

183 shroud assembly. This network was representative of the configuration of Tests T-l through T-7 and was used in the analytical predictions for Tests T-l through T-4.

Figure E-73 shows the nodal network used to analyze the longitudinal joint for Tests T-l through T-4 and for Test T-8. The use of a two-dimensional network here was based on the assumption of invariance of properties, geometry, and boundary conditions along the length of the joint.

The network used for analyzing typical nylon pin fasteners for Tests T-l through T-4 and for Test T-8 is shown in Figure E-74. Axial symmetry about the pin centerline was assumed, again permitting the use of a two-dimensional model. The figure shows the addition of a one-dimensional model for heat flow through the MLI at a location remote from fastener (or other) influence. This feature was added to the fastener analysis to provide an accurate basis for computing the net heat flow attributable to the fastener and for checking the adequacy of the fastener model in isolating the fastener influence. Results of the remote- location one-dimensional analysis were also used as baseline values for assessing longitudinal joint incremental heat flow.

The nodal network used for analyzing the strut penetration for Tests T-5, T-7 and T-8 is shown in part in Figure E-75. For the purpose of these analyses, the MLI surrounding the penetration was divided into 3 layers, each one node thick, in the same manner as for the basic MLI of Figure E-72. These layers are shown schematically in Figure E-75 and are illustrated as a developed view in Figure E-76. Note that the strut itself is considered a one-dimensional con- ductor and that the nodes on the inner surface of the strut MLI were identical to the strut nodes, consistent with the assumptions made for this model. Heat flow between the main MLI and the strut attach pad, the strut bracket, and the upper strut end fitting was assumed to occur by radiation only; hence, no con- ductors were shown connecting the main MLI and the strut heat flow path. The symmetry of the strut MLI permitted representing all circumferential conductors with a set lying on only one-half of the MLI tube.

The nodal network for the plumbing line penetration, used in analyzing tests T-6, T-7 and T-8, is illustrated in Figures E-77 and E-78, in a manner similar to the strut penetration network in the two previous figures. In the case of the plumbing line penetration, conduction paths were assumed to exist between the main MLI and the plumbing line MLI. Therefore, the diagram included a sub- network representing the joint resistances between these two components. In a manner similar to the strut and strut MLI network, the nodes on the plumbing line MLI inner surface were identical to the plumbing line nodes.

The nodal network for the basic MLI assembly with the lap base joint made ex- tensive use of the network for the original basic MLI configuration. The network for the revised joint, used for the analysis of Test T-8, is shown in Figures E-79

184 fhrough E-81. In addition to the obvious changes in the MLI network and the inclusion of the base joint support assembly, the model for Test T-8 also differed from that of the earlier tests in that the shroud side wall and base, having dif- ferent temperatures, could no longer be represented by a common node.

The predicted steady state temperatures from the thermal analyses are listed in Tables E-l through E-13. The node identification is that used on the diagrams of the nodal networks, Figures E-72 through E-81.

Details of both the computed and the measured heat flow results are presented in Table E-14. This table is a more detailed version of the heat flow summary, Table 2.2-2 of the Volume I report. The analytical basic heat flow (Q., . ), the additional heat flow due to the longitudinal joint (ДО. . . ), and the . ' Long. Joint additional heat flow due to the fasteners ( ДО_ ) were all evaluated at Fasteners the inner suiface of the main MLI.

The predicted additional heat flow associated with the strut penetration (ДО,- ) consisted of three components. The first two, the heat conducted into the strut itself and the heat conducted into the strut MLI, were evaluated at the inter- section of the plane of the main MLI inner surface with these components. The third component of the incremental heat flow was the additional heat radiated from the inner surface of the main MLI, that heat having entered the MLI by radiation or conduction at the opening for the strut bracket.

The predicted additional heat flow due to the plumbing line ( ДОр,, , ,. ) numb. Line penetration was synthesized from three components in a manner very similar to that for the strut heat flow. The entry in Table E-ll for heat conducted into the plumbing line includes that heat transfer by radiation in the line interior at the heat flow evaluation plane.

Examination of the three components of incremental heat flow in the case of the strut and plumbing line penetrations permitted limited assessment of the effective- ness of the insulation designs for those components. The heat conducted into the penetrating member (strut or plumbing line) and into its MLI were interrelated and depended upon the length, cross-section area, and conductivity of the mem- ber and upon the thickness of the MLI wrap. The additional heat radiated by the main MLI, on the other hand, was primarily a function of the design at the penetration.

The advantage of the low conductivity strut material was quite evident, while the strong heat leak contribution of the relatively heavy metal plumbing line was also clear. Because of the high conductance of the plumbing line, most of the heat conducted into its upper end probably continued through the length of the line. Therefore, there appeared to be little advantage to increasing the thick- ness of the plumbing line MLI. Insulation of the plumbing line from the structure

185 at its support points and increasing the length of insulated line inside or outside the main MLI assembly would have reduced the heat leak.

In cases of tests with no applied heat, it was seen that the additional heat radiated from the main MLI was greater near the strut than near the plumbing line, even th ough the plumbing line penetration required a larger opening. The difference was probably due to the extension of the plumbing line MLI through the opening in the main MLI and indicated an advantage of this feature.

The total measured heat flow (QM ) was computed from two components. Part of the heat reaching the test vessel was absorbed in vaporizing the liquid cryo- gen and is identified as Q.. . The remainder of the heat, Q _ acted to Vap LAA I raise the temperature of the resulting gas prior to its discharge from the insulated part of the system. The sum of Q.. and Q » _ constituted the total measured heat flow. "

186 Table E-l: PREDICTED STEADY STATE TEMPERATURES TEST T-l & BASIC MLI ASSEMBLY Baundiry Node» (Temperatures Input) TEMPERATURE TEMPERATURE TEMPERATURE TEMPERATURE NODE NODE NODE °R °К °Я °K °К °R °R °K T1 527 292.8 Т23 421 233.9 T4S 531 2939 T70* 37.0 204 T2 429 238.3 Т24 243 135 T46 520 288.9 Т7Г 532 2956 ТЗ 257 142.8 Т25 526 2922 T47 530 2944 T72 209 116.1 Т4 527 2918 Т26 420 233.3 T48 498 276.6 T73 219 1216 Т5 429 гзаз Т27 229 12725 T49 366 203.3 T76 526 29Z2 Т6 259 1449 Т28 526 292.2 T50' 370 204 T77 526 292.? Т7 527 392.8 Т29 419 232.8 T51 529 2938 Т8 429 238.8 ТЗО 213 паз T52 480 2666 Т9 258 1433 Т31 i 526 2922 T53 528 2933 ТЮ 527 2918 Т32 41В 232.3 T54 443 246.1 T1I 428 2378 ТЗЗ 223 132.5 T55 166- 92.2 Т12 255 141 65 Т34 526 2922 T56 206 1145 Т13 527 292.8 Т35 415 "2305 T57 220 1221 Т14 428 2378 Т36 250 1164 T58 195 108.3 Т15 254 141 1 Т37 519 288.4 ТБ9 219 1216 Т16 527 29Z8 Т38 402 2233 T60 179 978 Т17 427 2372 Т39 268 14Е9 T61 213 паз 141 1 Т)8 254 Т40 464 2578 T62 160 88.9 Т19 527 2928 Т41 382 2122 тез 179 994 Т20 423 2350 Т42 316 175.5 T64 138 766 Т21 251 1395 Т43 532 2955 T65 108 60.0 Т22 527 292.8 Т44 526 292.2 T66 75.1 416

Table E-2: PREDICTED STEADY STATE TEMPERATURES TEST T-l & 1-4, MLI LONGITUDINAL JOINT * Boundary Model (Temp. Input) NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE °R °к °R °K °K °R °к °R T1 529 2938 T23 499 2722 T45 468 2600 T67 431 2394 T2 500 2778 T24 468 2600 T46 432 2400 T68 389 2161 T3 «8 2600 T25 433 2406 T47 391 2173 T69 339 188.3 T4 430 2389 T26 390 2167 T4B 341 1895 T70 276 1534 T5 385 2139 727 340 188.9 T49 277 1540 T71 527 2918 T6 330 1833 T28 275 1528 T50 527 2918 T72 499 2712 T7 254 141 1 T29 527 2918 T51 j 499 2722 T73 468 2600 T8 5^9 29ав T30 499 2722 T52 468 2600 T74 431 2394 T9 500 2778 T31 469 2606 T53 432 2400 T75 389 2161 T10 468 2600 T32 433 2406 T54 390 2176 T76 338 1878 Til 431 2394 T33 391 2173 T55 341 1895 T77 273 1516 T12 388 2155 Y34 340 1889 T56 277 1540 T78 529 293.8 T13 334 185.6 T35 276 1534 T57 527 2928 T79 500 277.8 T14 258 143.3 T36 527 2928 T68 499 2722 T80 468 2600 T15 527 2928 T37 499 2712 T59 468 2600 T81 431 2394 T16 499 2772 T38 468 2600 T60 431 2394 T82 388 215.5 T17 468 2600 T39 433 2406 T61 389 2161 T83 333 1850 T18 432 2400 T40 390 2167 T62 340 188.9 T84 258 198.9 T19 390 2167 T41 341 1895 T63 277 1540 T85 529 293.8 T20 338 1878 T42 277 1540 T64 527 2918 T86 500 2778 T21 273 151 6 T43 527 2916 T6S 499 2722 T87 467 2594 T22 527 2918 T44 499 2722 T66 468 2600 T88 430 238.9 T89 385 2119 T94 469 2606 T98 432 2400 T102 389 216.1 T90 330 183.3 T95 433 2406 T99 391 2173 T103 340 188.9 T91 254 141 1 T96 499 2712 T100 342 1900 T104' 532 295.6 T92 526 2912 T97 469 260.6 T101 278 1546 T105' 370 20.4 T93 490 2712 1

187 Table PREDICTED STEADY STATE TEMPERATURES TEST T-l & T~4, FASTENER AND SURROUNDING MLI

'Boundary Nodn (Tamp. Input) NODES TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE °к OR ВК °B °R °К Tl 290 iei i Т26 492 2734 T47 403 2238 T2 341 1896 Т26 528 2922 T48 451 2506 T3 401 ИЗ в Т27 269 143.9 T49 492 2734 T4 450 260.0 Т28 342 190.1 T60 627 292.8 ТБ 491 2728 Т29 403 2238 ТБ1 268 1433 те 522 290.0 ТЗО 461 250.8 TB2 342 1901 T8 287 169.6 Т31 492 2714 ТБЗ 403 2238 T9 342 190.1 Т32 627 2928 ТБ4 461 2608 T10 401 222.8 ТЗЗ 258 1433 T55 492 2734 Til 450 2500 Т34 342 1901 T66 527 2928 T12 491 272В Т36 403 2238 Т 60 284 1578 T13 622 2900 Т36 461 2506 Т61 277 1539 T16 271 1506 Т37 492 273.4 Т62 276 1533 Tie 342 1901 Т38 627 2928 тез 276 1533 T17 402 223.2 Т39 258 143.3 Т64 625 2918 T18 451 2606 Т40 342 1901 ТГ65 529 2939 T19 492 2734 Т41 403 2238 Т66 529 2939 T20 625 291 8 Т42 451 2506 Т67 529 2939 T21 262 145.5 Т4Э 492 2734 Т58- ^ 632 2956 T22 342 190.1 Т44 627 2928 Т57- 370 204 Т2Э 402 2232 Т46 258 143.3 T24 451 2508 Т48 342 1901

Table E-4: PREDICTED STEADY STATE TEMPERATURES TEST T-2, BASIC MLI ASSEMBLY * Boundary Nodes (Temp. Input) NODE TEMPERATURES NODE TEMPERATURES NODE TEMPERATURES °R °R °K °R °к °K

T1 627 2928 T23 423 2350 T45 531 2939 T2 430 2400 T24 251 1395 T46 520 2889 та 262 145.5 T25 527 392.8 T47 530 2944 T4 627 292 В T26 422 2345 T48 499 2772 T6 430 2400 T27 241 f»39 T49 373 2072 те 264 1467 T28 527 2928 T50' . 140 778 T7 627 292.8 T29 422 2345 T51 529 2939 те 430 2400 T30 229 1272 ТБ2 482 2678 Т9 264 1467 T31 626 2922 ТБЗ 528 2933 тю 627 2928 T32 421 2339 T54 448 2489 Т11 429 2383 T33 237 131 6 T55 197 1094 Т12 260 1445 T34 526 2922 T56 224 1245 Т13 527 2928 T35 417 231 7 Т67 234 1300 Т14 429 2383 T36 257 1428 Т58 217 1206 Т15 260 144 5 T37 519 2884 Т59 231 1283 Tie 527 2928 T38 406 2255 Т60 2oe 1145 Т17 428 2377 T39 274 1522 Т81 226 1255 Tie 260 1445 T40 466 2589 Т62 194 1078 Т19 527 2928 T41 387 2150 Т63 204 1134 Т20 425 2361 T42 322 1789 Т64 181 1005 Т21 258 1433 T43 532 2956 Т65 165 916 Т22 j27 2928 T44 527 2928 Т66 151 839 Т70' 140 778 T73 234 1300 Т7Г 532 2956 T76 526 2922 Т72 227 1261 T77 527 2928 Г 1"

188 1 1 J о. ! 1 с * * 4 i 0 о 0> O) CM tq 0, CM 1П to со r> to 00 « со o>! ^ о. •X. со (О со ю 0 ш tri !>. CM r>. о о in г*' t о £ ч- f>. со 3 r>. ел in ем 8 r> СМ R см 3 см CM 3 S к Mi £ а

1 ATUR E | 5

a> ел см CM со см ОС со СП 00 . to to 8 5) i 2! "EMPE R 8 3 см О tO со s §1 я $ § Ол •m§ r~ го со с¥м> ю in ^г « § 8 i я я И 3 I ^ * < °° I см to Z * IJ 1Л Гч ел CM to г»« ел о о s S 0 сз Oi СЛ 8 а 2 S 00 S § H 8 S я s D СD н Н H и H к н н Н н (- 1- ID р *~ *~ 1- О Z <0 со см 0 ю со 0 см 00 0 «' CO о to 00 со 9 см со ел ел СЯ 00 0 CM о ю (N г» о о г». un ci r> о in CM г~ 00 ГХ ш С5 О) 1». ел S r^* <»• r- 8 in К м S tv ос 0^ см см $ Mi см a CM s CM CM a см Я ем ?. CM i Ml V- i 13 э 5 «г ч 1— г» 00 со со r- 00 ГМ 00 см 0 г» ел о 00 CM ОС CM to CO со г>. CM CO ел in 4§-1 to to 1— TEMPE R о 3 Я г *• §3 8 3 s ^~ * 8 Я §a ч- ч- 8 я см in s *r 4- (Л

со 1 ^ rs. О) ^ см Lu 1Л «о Г^ 00 0) о см со 5 in to 00 о со in to 00 ел g С3 ш tn 1П in H H £ 1- Н Н 1- 1- н 1- H l- 1- с3 р 1- н н 1- 12 £ £ Н p p p b 2^ Z ш$ 0- о 00 см (О гм СЛ о (0 00 CM to CM ел о о 00 CM to 1П е» to см 00 « to in ел UJ U) см г> CM Гх in in см r>- in см РЧ о г>- r*. о Гх ш v: ю г^ ел л r>. ел s rv. 8 8 ОС о Я см я см а CM ,: CM gj CM я я см г ?; к Mi CM V— I ^ <р ? 1 —

О) г^ 'СП О) со г» СЛ CO r». е» см г^ O) CM ос 1^ см О) (О я а см SI1 я iCnM to 8 СЛ см s to 8 TEMPE R о см ю *г ч- со я § л Ч 5? ^~ 5 Я Я 1 ч- «* со 1 S in 4- 4- 4- 8 ^ STEAD Y S I

! Q ,- см ^ ш и J» 0) о CN п ш (0 r^ ел О со ? ш to г» 00 ел t— Q см см р со ' 7. CO s a s S О Р р р Р •- p P H H t- H hi Н н н t- 1- H ь и Z О ^ ill с*. 0- О) 00 0 (О о о ел ел 00 tO CO Г». CM CM 03 00 to 00 со 1П ш 00 CM to CM ел 1Г) V г^ 0 1Д iri со г^ to см r». Гх г^ CM г rv ш S s t^ Г-- 0 CN см § CM 8 см CM CM ш (М я я i » 2 c^ я § ^ я 1 Mi £ с^ 0) !ATUR E O) p~ CO г« ел 00 ел CM CM СП со ел см ел TEMPE R а 8 to s to g Г- я ел о ш 5? 3 S 8 И in CO Й s in ч- со я к s § § ч- со я 1 1 ^- з s

iи ,_ CM CO ч- ш to r^ 00 О) см о ^(NJ ю f^ 3 я см я ^ Э к (- "hi *" s h *~ Ь 1- h- H »- b н 1- к н 1- и P р <° *~ 1 i

189 Table E-6: PREDICTED STEADY STATE TEMPERATURES TEST T-2, FASTENER AND SURROUNDING MLI * Boundary Node» (TtmpvMura* Input) NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE °Н °К °H °К °R °к

T1 204 163.4 Т26 492 273.3 Т47 405 2261 T2 344 181 1 Т2в 526 2822 Т48 452 261 1 та 403 то Т27 ЗЮ 14U2 T4fl 492 2733 Т4 461 250.6 Т28 346 191 7 ТБО 527 2828 Т6 482 2713 Т29 404 2246 Т51 262 1456 те Б22 290.0 ТЗО 452 251 1 ТБ2 346 181 7 та 290 161 1 Т31 492 2733 Т63 405 2251 та 344 191 1 Т32 527 2828 Т64 452 261 1 тю 403 2239 ТЗЗ 263 1462 ТББ 492 2733 тп 451 260.5 Т34 345 191 7 ТБ6 627 2928 Т12 482 27X3 Т35 405 225.1 Т60 288 160.0 Т13 523 290.6 Т36 452 261 1 Т61 280 1556 Т16 276 162 В Т37 482 2733 Т62 280 1656 Т1в 345 191 7 Т38 627 гэге Т63 280 1556 Т17 404 2246 Т38 263 1462 Т64 526 291 7 Т18 452 251 1 Т40 346 191 7 Г Т65 629 2938 TIB 492 273.3 Т41 406 2261 Т66 629 2838 Т20 526 281 7 Т42 462 261 1 Т67 528 2939 Т21 267 на« Т43 482 2733 Т57- 140 778 Т22 346 181 7 Т44 527 2928 ТБ8' 532 2956 Т23 _.404 _ 2246 Т46 263 1462 - - — Т24 452 261 1 Т46 345 191 7

Table E-7: PREDICTED STEADY STATE TEMPERATURES TEST T-3, BASIC MLI ASSEMBLY * Boundary Nodes (Temperature» Input)

NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE °R °R °K °K °R °к

Tl 133 739 T23 109 606 Т45 138 755 T2 118 eae T24 840 466 Т46 127 705 T3 100 655 Т2Б 129 71 e Т47 134 745 T4 133 739 T26 108 61 1 Т48 119 661 T6 118 65.6 T27 774 430 Т49 626 458 те 101 561 T2B 128 71 6 Т50' 370 206 T7 133 73.9 T29 107 594 Т61 133 1 73.9 те 118 65.6 T30 71 4 зав Т62 113 628 Т9 101 661 T31 128 71 в ТБЗ 129 716 Т10 133 7Я9 T32 107 594 Т64 103 672 Til 117 649 ТЗЭ 746 41 6 ТБ5 586 X5 Т12 993 55.2 T34 127 706 Т5в 690 38.3 Т13 133 739 T35 105 583 Т57 73? 40 Б Т14 117 649 T38 840 46 в ТБ8 658 Т16 98.9 654 T37 120 666 Т69 722 401 Т16 132 733 T38 ' 879 644 Т60 61 3 352 Т17 116 639 T39 849 471 Тв1 681 380 Т18 978 543 T40 100 655 Т62 661 31 2

T18 131 727 T41 890 485 тез 556 31 0 T20 111 61 6 T42 831 461 Т64 51 2 296 T21 91 0 505 T43 137 761 Т65 456 253 T22 130 722 T44 129 71 в Твв 407 22 в T70* 370 206 T73 736 408 Т7Г 140 778 T76 129 716 T72 703 391 T77 129 71 в

190 Table E-8: PREDICTED STEADY STATE TEMPERATURES TEST T-3 & T-8, MLI LONGITUDINAL JOINT

Boundary Nodes (Temperature» Input)

NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE °к °R °IC °R °R °K °R °K Tt 138 75.5 Т23 130 722 T45 12S 695 T67 121 67.? T2 131 72.7 Т24 125 695 T46 121 672 T68 116 645 T3 126 70.0 Т25 121 672 T47 116 645 T69 110 61.1 T4 120 667 Т26 116 645 T48 111 61 6 T70 105 584 T5 115 63.9 Т27 111 61 6 T49 106 58.9 T71 134 745 T6 108 600 Т28 105 58.4 T50 134 745 T72 130 72.2 T7 102 566 Т29 134 745 T51 130 722 T73 125 695 T8 136 755 ТЗО 130 72.2 TS2 125 695 T74 121 672 T-} U1 777 Т31 125 695 T53 121 672 T75 115 640 T10 126 700 Т32 121 672 T54 116 645 T76 110 61 1 Til 121 673 ТЗЗ 116 645 T55 111 81 6 T77 105 sa4 T12 115 639 Т34 111 61 6 T56 106 sag T78 136 755 T13 109 606 Т35 106 600 T57 134 745 T79 131 728 IJ4_ 103 572 Т36 134 745 T58 130 722 TBO 126 700 T15 134 745 Т37 130 722 T59 125 695 T81 120 667 Tie 130 722 Т38 125 695 T60 121 672 T82 115 640 T17 ' 125 695 Т39 121 672 T61 116 645 T83 109 605 T18 121 672 Т40 116 645 T62 111 61 6 T84 103 672 T19 i 116 645 Т41 111 61 6 T63 106 sag TBS 136 75.5 T20 40 61 1 Т42 106 600 T64 134 745 T88 131 72.7 T21 105 58.4 Т43 134 745 T65 130 722 TB7 126 700 T22 ! 134 745 Т44 130 722 T66 125 695 T88 120 667 T89 114 63.3 T94 1 '25 695 Т98 121 672 T102 116 1 645 T90 108 60.0 T95 [ '21 672 Т99 116 645 ТЮЗ 111 616 T91 102 66.6 Т100 т T96 130 722 616 T104" 140 778 T92 134 745 T97 125 695 Т101 'OS sag T105* 37 20.6 T93 IX 72.2

Table E-9: PREDICTED STEADY STATE TEMPERATURES TEST T-G, FASTENER AND SURROUNDING MLI

* Boundary Nodn (Temperature Input)

NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE

°R °K °R °к °R °K

T1 111 61 6 T25 127 706 T47 115 63.9 T2 112 62.2 T26 132 733 T48 121 67.3 T3 117 650 T27 102 566 T49 127 706 T4 122 678 T28 109 605 T50 133 73.9 T5 127 70.6 T29 116 645 T51 101 561 TC 130 12.1 T30 122 678 T52 108 600 T8 110 61 1 T31 127 706 T53 116 63.9 T9 112 8Z2 T32 133 73,9 T54 121 67J T10 117 650 T33 102 566 T55 127 70.6 Til 122 678 T34 109 605 TS6 133 73.9 T12 127 706 T35 115 63.9 T60 111 616 T13 130 772 T36 121 673 T61 112 672 T15 106 sag T37 127 me T62 112 672 T16 111 616 T38 133 73.9 тез 112 672 T17 116 645 тзд 101 561 T64 130 772 TIB 122 678 T40 109 605 T65 131 728 T19 127 706 T41 115 63.9 T66 131 778 T20 132 733 T42 121 673 T67 131 778 T21 104 578 T43 127 70.6 T57' 370 206 T22 110 61 1 T44 133 73.9 T58* 140 778 T23 116 645 T45 101 56.1 T24 122 678 T46 108 60.0

191 о z о z 8 0£ 0£ => (Л О Z

о;

О о. о. to

о

оо Q £ у О

о I! Т

_о .0

192 Table Е-П: PREDICTED STEADY STATE TEMPERATURES TEST PLUMBING LINE AND SURROUNDING MLI

Heal я i On NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE NODE TEMPERATURE

°R °K °R °K °R °K °H "к 43.3(46.1) 636 TOOl' ьзз 396.6 ТЮЗ 468 16281 2601293) T048 78(631 ТЮЗ 792.2 T024 34 67 3 (58 7) 525 (6261 791 в 1797 71 ТОЙ' » 3D.» 61 T046 94(102) T104 678(18.1) 670 157» 7889(791 II ТООЭ 461БЫ ЛЫ30.51 TO26 91 506 T047 12211371 T106 T004 621731 34 E I4O6I ТШ6 114 63.3 T048 14011511 778(641 T109 6 13 1» 191 765(78631 534 TOOK 74 I9S1 41 1 IS! 7) ТШ7 136(139) 16.6(7? 2» TO49 158(188) 86. 7 193 31 TtlO 791 1 том B6IUII 62ПП.В1 T026 159MS4I 883191 11 ТОБО 173 11871 951)04) Tl11 635 291.6 TOO? 1Ж17Э! 772(98.1) T029 182(189) 101 (105) Т 061 1851196) 103 1110) T113 575 7>16 тше 170(7101 M4(11&6I ТОЮ 198(205) 110(114) T052 106 (708) 109III6I Т11Э 675 7916 TOO» 198 1247) 1101137 2) Т031 213 1233) 1181124) Т 063 211(2761 11711771 T1I4 625 7916 тою 227 12821 1261168.6) Т032 22612381 12611311 ТОМ 2201738) 1221132) T1I5 629 2916 твч КБ (Э141 141 61174.4) ТОЗЭ 237 12611 132(1361 T056 240 (7551 13311421 TI16 626 2В22 1441153) 7922 TOI2 28Э1М51 128.61191 8) Т034 250(268) 13BI14BI T066 260 (276) T1I7 626 156(189) 2932 TOI3 3101373) 1722(201 2) Т038 385(380) 147(156) TOB7 278 13041 TUB 628 T014 33813971 188.7 1216) ТОМ 290(295) 166(184) TOB6 29713181 168 11761 TI19 633 16751 290 1291 61 T01» 36114201 700.6 1303.3) Т037 296(312) 186(173) T059 33013261 178(1811 T120 620 (5241 7689(291 11 28691291 II TOie 389(491) 21XBI2726) Т038 3101329) 171(163) TOW 33613631 186(196) TI23 620 1524) T017 40В14Ш1 228.7(31061 Т03> 330(346) 16X6 11921 T061 3441363) 191 (7021 TI21 616(520) 268 6 1288.91 TOIB 42в 147Ы 23812641 Т040 3421X9) 190(1991 T063 36013691 IX 1706) T124 674 291 1 3916 ToiB 4441608) 247 (2821 Т0«1 349(1661 194(203) T063 363(3711 196 1706) T126 83В 391.6 TO» 4S3 l«7) 261 12731 Т042 3831388) 1VI204) T128 635 TI27 T031 460(6101 3111263) Т043 35613701 197 12061 T101 (26 2916 635 Hi* 291 Л той 483 IS>2) 2571290) Т044 661571 31 1 13181 T102 626 2914 T136 636

T12» B2B 2922 Т161 626 2033 T2OI 416 330.6 T3J6 431 14331 2319(3346) Т162 626 2911 T202 416 230.6 T327 416 331 1 T1J1 tie 7013 Т163 6M 2011 T201 421 23X9 T326 416 331 1 ТШ •26 2921 Т164 626 2911 T204 4261428) 2361(1386) T73» 411 279.6 ТШ 624 15261 268.9 (292J) Т166 626 1922 T206 4371448) 243.6 1147 3) 7331 416 14301 3J2.JI2334) TIM 62219261 290 1291 Л1 Т156 628 1921 T209 43614441 343 3 (148Д) T232 433J438) 236 (238.8) Tin 621 «261 2901211Л1 то 416 1437) 336.1 1237 II T3J3 437(4431 343J 13461 TIM 623 1626) 29012916) T311 424 (425) 3376(23611 T2J4 438 (446) 243 2 (247 J) Т1Э7 6» 1626) 291 6 1292 2) Т169 626 192.1 Till 422 14261 134 6 1236 1) T236 43614451 24X3 1247 1) TIM 626 »1Д Т160 626 292J П13 417 3317 Т2Э6 43614461 143 1 (347 1) T139 626 19X1 T16I 626 2911 T314 418 КОЛ T337 4361441) 343 3 (346) T140 626 П2.2 TIM 626 192} ШВ 418 130.6 T336 437 14391 337 1 (ЗЗВЛ T141 626 292.2 Т16Э 626 2911 T318 413 3196 T33» 433 14341 334.6 1317 6) T14J 626 2П1 TI64 628 292.3 Ш7 411 33X6 T340 430(436) 23141216.11 TI66 628 1911 T316 4361427) 336Л13371) T341 416 3111 Т166 626 2911 П19 439(4481 34X9 1148 91 T342 416 3308 TU5 626 3B3J Т167 626 3*3.1 T320 4381447) 34X4 1146.81 T348 417 >117 T146 626 2И2 Tiee 628 292.3 T346 433 2J44 T147 626 2923 Т16В 626 293.3 T222 426 (447) 337 6 I34U) ТЭ47 433 314.6 T14B B26 2П1 Т170 616 292.3 Т 323 437(4391 247 J 134X9) T348 433 ЗИЛ T149 626 2921 П34 435 14171 136.1 1317 11 T349 431 136 TIM 626 267.2 T726 414 I43BI 337 6 1136.11 T360 434 3376

T261 414 2276 ТХ1 164 146.8 T137 167 148.3 T363 376 1878 ТЯ1 434 тал тзш 264 146.6 Т 32» 268 1473 ТЭ61 271 I6O» Т76Э 423 237 1 ТЮЗ 271 1276) 161 6(163) T339 267 143» T364 161 1484 ТЗЫ «1 1JU TJ04 963126» 1671169) T3J! 371 1374) 1601163) T366 тез 1464 T266 411 пал ПОВ 11113261 1711111) ТЗЮ КО 13641 1661188) T3M 360 144.5 ПШ 417 1317 Т 30» 11113311 177 11*41 т ззэ Э97131Я 171 11771 T369 367 1411 •ma 411 гол Т310 284 Ш71 161 (ICO) Т334 111(336) 171 1161 neo 36» 146J ТПО 4J1 1XU Till 17» (ЯП 166(187) Т336 111 11361 171 II8II T361 28» 149.6 mi 411 гол ТЭ12 176(2791 1811180 та> 11211» 173(1611 T363 36» 149.6 TM9 01 1Ш пи 167 IB ТЯ7 зевак» 1711176) ТЖЗ 266 149.6 421 TMJ 23U TJI4 Кб 147.1 Т 336 164(3861 161 (1Ш TJB4 1» 1»* 147J T2B4) U\ зал Til 6 166 тзз» 174(278) 1631164 Т36Я 1» 14*4 4X1 TUB ом Т116 2В» I4U П40 171(376) 161 1168) T388 370 1BOJ) 4J2 OU TUT TIM 273(176) 161.6 061.61 Т341 366 147J TJ67 361 I4U TJ6J 4>l аи пи 283(26» 1671169) TJ41 361 146 пе» 364 1464 nm 416 пи nit 1121316) 171(1611 Т146 36613691 149 (149.61 T369 360 1444 net 417 ш » TJ20 311(326) 1711161) ТЭ48 373 (3741 151 1181) T370 366 14X1 411 П1 1 ТЗП T770 1111326) 17X111) Т347 374 13771 1921184) П21 116(1161 \П 1Ш1 TJ4» 176(376) 163.6 1164Л1 TJ34 20411671 1611160) тм» 371 1641 TUB 171 Oil 166 (1871 тзво 371 164.6 T32» ITtllTtl 1611166) Т361 377 154

193 Table E-12: PREDICTED STEADY STATE TEMPERATURES TEST T-7, PLUMBING LINE AND SURROUNDING Mil

TEMPEHATUHE TEMPERATURE TEMPERATURE TEMPERATURE NODE NODE NODE NODE °R °R °к °R °K °R °K °K ТООГ 631 296.6 Т023 601 27a3 T045 158 878 T103 626 2923 T002* 140 778 Т024 157 873 TM6 166 92.2 T104 625 291 7 ТООЗ 148 82.2 Т026 181 100-6 T047 182 101 1 TI06 520 2889 613 Т004 170 945 TD2S 202 112.2 T048 200 111 1 T10D 28-i Т006 189 106 Т027 218 121 1 T049 220 1222 T110 624 2912 Т 006 21} 1177 Т028 233 1295 TOSO 238 131 1 Tilt 525 2917 Т007 240 1333 Т029 247 1373 T051 262 140.0 T112 526 2917 Т008 26В 1Б28 ТОЗО 260 1445 T062 268 1489 Т11Э 526 291 7 T114 291 7 ТОО» 789 160.6 Т031 272 151 1 T053 283 1672 525 ТОЮ 314 1746 Т032 288 158.9 T054 297 leai T116 626 2923 точ 334 18S.5 ТОЗЗ 301 167 1 T065 309 1716 T116 627 2928 527 той 363 186.1 Т034 311 172.7 T066 310 1722 T117 2928 Т013 372 206.6 Т035 320 1787 T067 332 1846 T116 526 2923 том 392 2178 тозв 330 1834 T058 344 191 1 T118 522 290 T120 Т015 411 228.4 ТОЭ7 339 teaj T059 352 195.6 520 288.8 Т016 430 238.9 тозв 350 1946 TOBO 358 1919 T122 620 2889 Т017 447 248.4 Т039 363 201 6 T081 365 2028 T123 621 2895 624 Т018 468 268.9 Т040 373 208-4 TOS2 374 2078 T124 291 2 TOI9 47в 265.6 Т041 379 2106 T063 383 2128 T125 626 291 7 том 487 270 в Т042 383 2127 T128 525 291 7 Т021 493 273.9 Т043 38S 213.9 T101 525 291 7 T127 625 291 7 ТОМ 498 27в.в Т044 162 845 T102 525 291 7 -T128- 625 291 7

Т129 627 2928 TI64 528 2923 T232 440 2444 T13I 527 2928 T1SS 627 2928 T209 481 2552 T233 442 2456 Т132 527 2928 Т15в 527 2928 T210 462 251 1 T234 461 2552 Т133 S24 2914 Т159 527 2928 T211 442 24Б6 T236 463 2572 Т134 622 290 Т1ВО 527 2928 T212 438 243.4 T236 460 2556 Т135 627 290 Т161 527 2928 T213 434 24 1J TH7 44,3. ИВ,!.,,. TI38 622 290 Т162 627 292.8 T214 431 2395 T238 442 2455 Т1Э7 623 2908 Т163 527 2928 T216 430 236.8 T239 441 246 Т138 626 291 7 Т1в4 527 2928 T2I6 429 2383 T240 4jfl 2422 Т139 626 292.3 TIES 527 2928 T2I7 438 2434 T241 433 2405 Т140 62в 292.3 Т188 627 2928 T218 443 2461 T242 432 240 Т141 628 29Z3 Т187 627 292.8 T218 456 2534 ТМ2 62в 2923 Т168 627 292.8 T220 476 2644 Т145 627 292.8 Т169 527 2928 T222 478 1644 T245 434 241 1 тмв 627 297.8 Т170 627 2928 T223 476 2638 T246 439 2439 TI47 62в 292-3 Т201 431 2395 T224 446 2477 T247 439 2439 Т14В 626 282.3 Т202 431 2396 T225 442 245.5 T248 442 2466 Т149 52в 292.3 Т203 438 243.4 T226 438 243.4 T248 443 2481 Т1БО 62в 2923 ТЮ4 442 2455 T227 434 241 1 T260 444 2467 Т1в1 62в 292.3 Т206 456 2628 T228 431 2386 T26I 443 2481 TI62 628 292-Э T229 434 241 1 T252 442 2455 Т153 ЕЯ 292.3 T231 438 2422 Т2БЭ 439 243 9

Т264 434 241 1 тзов 330 183.4 T333 289 160.7 T358 268 148.8 тгвв 4)1 239.8 Т310 299 166.1 ТЭ34 320 1777 T380 276 152.6 Т2вв «30 238.9 ТЭ11 287 159.8 T335 324 179.9 T381 276 152Л ТЭ12 278 155.1 T338 320 1777 T382 276 1628 Т313 272 151 1 T337 291 1616 T383 276 152.6 T2S9 433 24а6 ТЭ14 266 1478 тзза 268 160.1 T364_ 276 1628 Т2во 437 24 2Л Т310 283 148.1 тззв 284 178.6 T365 276 152 Л Т2в1 437 2418 Т318 260 1448 T340 274 1522 T386 276 152.6 Т282 437 2418 TJ17 277 163.» T341 268 148.8 T387 273 1517 Т2вз 437 2418 Т318 288 160.1 T342 268 147J T368 268 148.8 Т2в4 437 2418 ТЭ1в 320 1777 ТЭ45 269 148.5 T388 262 146.6 Т286 437 242.8 Т320 358 1972 T348 279 155.1 ТЭ70 260 144.6 тгвв 437 242Л ТЭ22 355 1972 T347 281 156.0 Т287 438 2412 Т32Э 325 180.6 T348 286 I Ив Т2Вв 43S 241 7 ТЭ24 298 164.6 T349 289 tea? тгвв 438 2417 ТЭ2в 287 158.6 T380 291 161.6 Т270 434 241 1 тэте 278 156.1 T361 288 180.1 ТЭ01 гм 1478 Т327 272 161 1 T3S2 287 tea.» Т302 гш 1472 Т328 280 1448 T3S3 261 166.0 ТЮЗ 278 164.8 Т32в 260 1446 ТЗБ4 270 150.1 Т304 288 180 ТЗЭ1 272 151 1 T355 264 146.6 тзов Ив 1772 TJ32 282 156.6 T356 262 14M

194 О5 о о со со en |v in CO * со со см CM со in со 00 см со ч- ш со in in CM CO IV см со 1П in a 0 о о 0 CO 00 00 со f- со о in ж rv $ о 8 00 со s со со см о a о MATUR E ] LU t- 1

2 ' ОС in CO см ,_ см со 00 со см CM TEMPE F 0 с8о 8 S со s in S 8 8 8 8со ш I 8 2 ^о °1 8 со —r Z 1 3 « £- >•

* ш en о см со ч- CO rv 00 со (V о CM CM Q s g о § о см см И 8 см я я со со CO rv

Bound a О H H н н Z r- r- r- H - 1- н Н г- 1- b- 1- н ь н н 1- r- H *~ I *~ ••

см « in со со см in со 00 m со со ш co co со en см со IV со о IV in со со о 0 CO 0 in in СО со S 00 см IV 5 in 8 со 5 en о i 9 §i CM см CM CM 1

11

ОС о со о см о о со CO en o> со со (V CM rv TEMPERATUR E о s 00 о s о 00 ю s со со о g 3 in со jg .i и s со s s

ш rv СО IV en о см in IV со 0 см со со 00 со 0 s s 3 0 in (V О in S P н Р Р Р Р H H H Z н 'H ss t Р Р Р

i СП CM 1 « CO со CM '00 ;см см см 0 CO со см со СО in ш (О см со en со CM СП rv in со' CO CM ;см IV о со ,(О ч- со 0 en со in CO а со л s $ in * я со s rv in

ОС r. CM CO CO !со CM rv CO TEMPERATUR E о и 8 со en s а см 3 8 о а со 8 8 я 8 s со CO я s

ш О 00 CM о см со СО IV со CM CO О 9 £ Р a P P g1 *" вР Р е P ? 5 г ? P P r- 1 1

rv ^ IV en со en со о rv со 00 см IV in ш со СМ in in in CD in CO co * 1 1 0 CO со CO IV fv со Ч Ч со СМ со со CO rv 0 8 о 0 i 8 со rv rv со rv СО CO rt со s я CM CM i JOIN T SUPPOR RING S . _ , B i ОС CO СП in in со со oo о1 о 00 in 10 in о см 00 8 со in 5 ч- CO Ч со со см in S § s CM я я 8 8 я я я ё 1 TEMPERATUR E ш Q 0 ^ CM со in со IV со со см со IV Tabl e E-13 : PREDICTE D STEAD Y STAT E TEMPERATURE S TES T T-8 , BASI C ML I ASSEMBLY INCLU CM rv со см см см О £ 1- г- H 1- t^- г- 1- н 1- г- я я 8 я Z p г g Р t 1 1

195 u» '- К ч ь .: < °1* Г,° 9 ш го z Б ?-' а _g 8 8 g Г^ (Г о z S| 0 Ё • " ? °i 1- 0 ,5fi о — 0 - о ~ 3 г 3 •о * и Я U -3 •о а ш и S si CiO iф m u 0° 1 О t 0 5 ijl о г

in in ГЧ iюn и 8 о ш Ш 1Г) СП in 1 Ч s IN 00 00 00 о о CN Г1 H

in in 00 CM to S СП яCN to ш s enure d О i g 8 i О о a г^ о n g to ш s ! 8 s rl o 00 ш 01 О) Г1 § 6660 6

u Ifl ^ S 1 s R о § г* ! ОП IN Г) a. 8 о о о 0 о о ffi Ш a fc '? СП о Ч nw „ p u euu шеи» ft О S о о ? uoiioipeu s s л fBuoinppy э ли u> •d|d oiu| s | £ <] рвоприоэ s

Wild OIU| ГЧ ffi p. peianpuoo s - ^г! - n in о s I 0 о 0 1 I nw 0 0 R И 8 • • 8 8 I puoiiippy nw 8 injjg otu| s рпэприоэ i 8 i 8 inns o>u| « 8 рмэприоэ 3 1 i •oi я «за ч а i fi и. 1 -Ill 2 § 8 я 1 1 1 1 § § Ь 0) 2 d 3 Ш и J я £ я g§ | 3

^п г* 1 1 1 Т zi т|в 1 т - %i т !« т * 0 к (- ь "~ Н 10 H z HI

196 TEATS 1-1. i-г . т-з

TS, TS. 11,14 lll.Tt», Tc«, 14 14 «i tit, ire, i"

TlW^ ТКЦ T», 111, TZ4. ' Tib, It*

"ftVT T~4-

T*1. T«*» 1»»» l-«Qutb LfeMll. i LI TWJ I-IO -rtvr T-51

TV ra -M ос о» »••-•£>>

. 0^ TCll. , ТЯ4-

TEST T-fa 4T-7- INSTRUMENTATION ОАМТ UNt. ATHQIMtMT T-

Tl»l»> TbiSiT^nit^1'!1 чаши сдмьи аемюш тмсемм. {ooooD ui -ruau MO н

- •*•"•• •* •" ^^SdMn. mi A9Oft/Vtf COur.NT TEST T-L,T- ,1 - »• AtlOVAC G«Oiff UA1U£. WAPCm'tO" Г _.:s.-"~: • "Ъ •bj-raiTf •meeMAU/STBucruEM. ТЕ.УГ . г-. ис~«. ""*•" ветмиъ - •JA'jViVJic.

SECT b-D> СП в 11 Tl Ill» v^~ -™f >c«i »m> — Iw "S o. 3 FIGURE E-l : TEST ARTICLE INSTRUMENTATION PLAN

197 PAGE MISSING FROM AVAILABLE VERSION UJ Q.

tfc to

. Э О

о о со CN eix с°ч 199 350 0

1Л LU CXL Э 250 0 iLU Q.

LU I— wi'.-'j'ii т-И, - r ! I '

' itf! j ''}' •' -I'l '

-pMi.i.'- — M i to : .I'.lH'ii-M : : LU I— i : !l-' : '' т • ' '!/i ff',\4 r'! 'ii'i7' /• i , T' ''v"Tl:VV^T^J:/'.KLI|jtl:^j i/.Jiif:bv CO ., II /!/\L /.!• i. '' Ii'"1' / '''' 'i " ' •;, •п .i Г~'!" T~ •m~/. ' ii. пt"i т :•:"т .1- .: J j» ли. !':Uiti ..,. .i- .Л,^- ,-- I _ й i ГГ•' liV I V ' 1 ••Ж':" lu-sAtt \ "- •••J i i fiHj i.!'1 T!i Т -' .r 4-т-ттЧ- r -- GUR E ! "i "Г/ ' ' • '' .. U.- ' ,I' )' •1^ -, U 4J!,l • • i ,гчМ •'';.1г "i '''••'•/""/•' In i. ' /'Ii •!:• t . -(•••i.. ^|-;-"-!Г-/7/\-|Гч^ 111 itr ". т 'tit '• !r ii^.iiW^Ms'iJ F '"Г*.' '" 1 v№

Ю o> CM см

200 1 -i :•'' Л .,! t ' :,j ; i 1 'it, .1 •', -j., ;•..••' :;jl|: u'jil' - ii'! i;b in ?!,' L ;i : -»i : ЙФ1 !:J :•!•;• -4 J -fr i ЙЧЙU]t|itjj :[., '-/ t:] 1,':f- f. ^i jlipil v;-^Li,. : ](• { ^ S U^- IMl 1 1Ц • j~T i / ^^'[ЬлН^ЬШ'йЙ{!1; щте* litUi! 1 •?••' ; •^пч 1 '':! ';,it!. Г1 . !! !l". *. Vi. . i• ''i;. ,.'fi, | У '-[*.] ,i .' • "F II'M- : '' i 'L '' t j I' , l^ia *'TtT 7 1 ;i . |г .тр • •^~rrr •Tli ». t i'tj rbi ''•liirf U4:|il- ifJu:i . ь ;H№' Л-Ш . { l ' j tun': Шi ,j:tj ,' - j I ' ' i . '[}, 'T~'] t Pi Щ§- J i i-JiJ-. м- ^ : 8 r I! ! ' 71 "; , ! 1Л !," ,Tfi, 1 ""rtt" in 1 "1ft ,',' t '' til", ' _}!• i,?^., ' , 41f ! • . •' ;.,.;i 'S CO 1 '•'fir l",*^~'t* li V" i "VIC,'! •hliiil" i "••'*" •| ' ' . -\i 't ini Л I • hr\\V!;r : !il'l'J\ ff1 ! ,n • -.- • * • Vi '• ^ <Г ! ; : .,7, -r ; 1 1 a-i-ii:i.;i. .J_ L. 3 .L J .L 4- t-тК' •iihnr •JK .:;^А," • 1 .'лГ !• Lit.

4 .M y__ ' 1 i 'ijfrj. i8 о v- , a--:- .- ' I Г 1 ь ; ^i ^" LJlJlil! CO 1 /• "-. '!• ' Ь ; •I - '• • л :. L . •iJ ' i --'- У': i ' ' '/ i <' i .' 'I :} -LL-'- :-T * 'ini !- ' /• 1 i ;' / ' - /"' - r li ! ,i / ; ' ' ' 7|' ' i ' , i: .|, to r !:•[. t J.1 : i* 't • LLJ - ' j i ~" • ! ' i • . 'j - • ' j., 1 л ']' ; [1! • . '_' -l, -• .. '. . -pr- '\. ' , " is ! i !i :' / " ',' ii '[• 4 'i r-;. . • i . , , i f ; , "n '••' .' • 1 1 i ~ „' 1 !J ' j' .4 u.J .. LU ;• ii ( i • • /[ i. • ' a. — , . \ X ,_'. \ 1 ; i : i i ' ' i ii.u! i'! — . [• , .'" . '' " i» ' ~ " • \ t ~T~ / *."~ i i . • 1 f/.t : : с ' F! / ' ir ' ] / ' ' L /. . / - :. ii. 'J ' j' ., 5 чь 1 — \\. ! _; l : ' ; ! . , ^ • \ , . ' '> . 1 ! , ] , - ' i ! i ' ! ^. \ i i -' со ; I w t - Ji . I i О • i- ' " J СJ g — T- ^ r r

о s in

201 -.-; — — 1- t / *~ //' сч i / I ' • / ' - i- » ' ' i j : • / l~y H ' / ' /' i / j , i ' ' 1 ! / ' ! О . /"-/г , -! -/--/-/ - -r-~H--r-J- -J~r-Jj ->--_ x . / /• / : / ' 1 s ; i •, : , *г ! i • -i N. \ 1 x Ч Ч • I v .1. ' - - - \ ~v-; - v1 Vr -\--'—i -- l V~- — -- •' •! Л '•/.!'•/ ' ' : \ I ' l! ' /'/'! l 1 ! .1 !/ ' \ xx, j 4\/ ,l ' X ' : i v -^ :\-\- \I '-"i r~ \t~- - - • — о "x Ч \.\\-' i )\ * •• тg i. / ^ ~ / ' '• ' ./__ *__*! ! ' ' — . ! V i / ! \. p\ i • i _' . ,'-./ ±-\~! :/'../' :.. ._ /' о \ ' - : • 1 J: ' ! ! ,\ . ) • / , " : X i s r ~ • -: / ' -/! / • /i , - ; - ~ . .1 \ ^ , • / /' 1 j , оо

о \ к! . ' x \ x." ' " " i \ о i \\ Ч' \ !\ I N/ 1Л i , < N * Ч p. ' S \ \ ; i j см 4 / Ч Ч Т ' Ч \ II'!1 v О. \ й'х^1" ' ! i i x : 'N (Л ЧЧ . ; \ \ *v ч f UJ \' \Sч i «я \/ i ' vb\ i f ; 01 ю ' : r ; £ ' l ': § 1 ^ ' , л ! &' ) " ' / ^ 0) ' ! I !* ,', S ' i ' / Е

'• • / \ ! i V- \ i ] i-- ) - \ ' , ) 'U ; , / i i _/ ' i ! i / ; гл -/r , „ r ', . ; -, - -( . „j. 1.-._ ( ^..^

\ , ! ' . . ! \ . \ j i 1' J \ , , \ Ч N \ Ч'' i \ 1 ' - - .-- ,x - :I (x !i-j \ - ix -^- i§ >ч. • 'j !_\._, , \ _ j ^i" i *• см о °0|i5S Ч РЧ >>\ «. p>- !>. (O U- (O » CO S

in СП CM

202 ш

T| г ; --,: Hi- .t . н • / -;.-, .i н л -. '-;. \ ..' i.t J-.'v. : ы , i | t 1 li'l i t. Jf-j „ 1 -' '; !'l i!j '['Л' I J i '||^l , ^vi 8 •^h"— г r.rr "iir l^rr. - "; f .r~'rr TTM! I • '' - ' j' ' < " !•!• '- -'• • i' i* •' ' ii 1 .," •' 'Л !~'.J"::i'_! [ iii*! 'iSrz'JS v,il: JlEni-rijif :hl|t! !ii.< т* Щ4 • : -P:i- :Si 'i;! ' i j ~{7 !•"'".' '^Л I'l/ri ^~ "\' '"[I Ki: Г'^ 8in со •''\~Ч".Л! Г\ J \ Г""" ~*Г,7 '.""и-'*1"" ' \. "J v! ^ , ,'_ 4| .' ... ,- _,.д ,.. .. /i.С) Hi :il'}Lir • \ ', . •» I '•; J -n! •,'. I :.; S.' Щ^&If )- ••! r ! -;f! .-:;'- i f-i fM*iijj.J;^:; ^ :r ; •: ичs rifri i ,:r .t ,4-' • I , r:;i! :.j - i s . -f! ' ;,;irsi'".- ^'_ -' i' : r;' V 8 , .- , \\ r r- i ,7 « .'^-j <•";: ,i."" - T" 4 : 1 1!'•/'!• Г ! ' ' Ч ! , . .}!•;- li'ti " • ! i ' i • ' j ' 1f - ' i • / • • 1 / г- ! • •' j •' i • • i ., • t .

i ! ; / ) i"." ' ' 'j1 I !!!«,u• ; ' i ' / •-,.•• \ . -r- ! - -r ' ;' . 1Э 1 i ' • ' ,' : . , ft » . оs ! i J i " I • • ; i .: • ", " • ~! -i CM - J .' '1 ' . ' _'.,;". ' ,' '.' J > 1 , ' | ! . ' 1 II] • \ . • 1 i0. •' ; ! - Ч со' ,' . , 5 • ' ' f ' j • <°uj3 ™\ j i -i LU ~ i • ' / 1 ' " .-/I il ь H» '* i' 1 1— i S3 i • • / i • • "~и . ; '; '.'"• * с 1 /, 2 '° ' ' ! ' ' " : ' ' \ • ' i "• 8 s «'••• ^ ''V - i -• ? '--•• i/ - —-- »te" 2': ' . i • i 'iv • ' \ ' • S i I— ] к 0> (Л .]Г 1 ! 1 / , i • i '. ; , " v/ ' 1 ! E Ш -4U ' ' •' !l ' 4 1 - :~Л ' ' Л.. .^ _. ; .--, -;- ---.ri т -1) ;. } •' ': .- Г - ;-. :Ь'^ - •! '-.-, 'ii'- 'l !•• § '.L J' ! ' .; .'L- •- '--"- .'-!L- : •-. :„'._] i i M', '• '! i !l • !i ' : ' i ' ; 1 ( " - I "•:" ' ц : ' : Ч , ' . , i , . . M . j '-- . .« L-. -.i ... - Э ; О ; ' ''''. aj , ' ю«ю •• •' ' V 1 /f . // i— 1 ' ' iwfl^ 1 "i " i ' ' .-i/J . / .!l' b-(JH •- '' .. i 1 ii i rr . ' u i ' '

._| L.".!ii.;.! { !"^_, i. j, 1, ! - '"I , I1" • , " ; :i 1 ! . \ ' T l •; - II i - 'i ; -, - , i i - tj - - I t - ,.. i ' 'p '. L Ч i J i. ' ' „ ' : .' .' о l g ...'•\! .u|-! .J.\7 l: ?$.,- v - V.. Г ..; i v\ .• .л1 1f |i -ix . Li • -I.• , A\ .L._y.г \ . • ;- i '. -!г г | ,-i

4^7; r.; LJV Э 0 Q g С2 g3* /-rH^S^^U "^^ч сч

о о S in со

203 ! I i < • 1 ) ~ • i i i i 1 § ! j ' -! - ' l rl-'l>:-! : ! '---i- --i i •' - -j - -- - ._ f i _'_-j. —^- — 1 t,,:-p.^ U- —8 1 Tf r t о ' ' - \ • ! . : ! \ i ' •' i I j L , \ i j j ; ' |" : ~1 "."£

' . ' l I ' l i 4 ^ i ' / i ' • * 1. ' ' * • i !i t i 1 ! 1 1 ; i 1 j ' t ! ' ' . . — _. _ , . ^ . ( _ -

8 Q 1i .x ,••:!._ 1 1 l \ • ; . CO g ' ' "" со , -^ .. "^ ~ '\ ' 'i

*•%. V ' -> i ' X ' ' i , " - — — - N ! - _ 'J ...:!:_ 8 X^ i CO о ^•s CO ' .-(••• 1 4 - \ т i Z> X. LU i | to t LU t ID \ — CM О § i CL , '','"" \ 8 z \ ' i i 1h— ш LU i / Э *~ ^ « S СГ 5 <^" ! s < \ ' - _ 1 , i _ 820 CM j, ш^ • 8 > § 0) _ HI" H C4fc Гч / , ' H (- i \ I i ' i ш f LU • i i— О Ш i \ ~~ оin э^ i о ^ / О 1 i ' 2 li \ u_ 1 '" " " : LU / , ! i ID 1 - О LL. . 8 . о i - ' - ^ О ^i ^1 5 ' , ' — \ ' . ) . _ _ . ' .,_'_. / 1 1 i' • 'i

0 i . -,- - § - " , " " t -' — , I \л ' i , I'- О -j — t - - ii' P ' ' ' ™" S ' i . .. - ..,..*— , ._. , .. ^ ; • — 1 ' " i i ! - ' — :- ' • ,- ' ;— • '!_^___!_ ; • ' i J \ ,' - 1 ' - , ' ', T~ , ' ' 4 1 - , . . ' _. _ , 1 / 111* Lо о и in 1 с 1 | ' 1 ' ' P" I"4 о * ai q o LO с> 1 1 1 *~ 55 Е- in со 1 °- \ 3> a> wj£> л см см о CM 0 CM 9 о 5 in aJn;BJ3dul3 -l- Z ajnssaj<4 204 uit.r_ t: i *.!.!' i- :• nut •1$ь:' el.-. ;" : - ^'! о i ' * ' ' ' '! Л- "H '•" ь." J^ljf П' ~ 5Г 1 • -.._,-. | \ - i ! ' _ § H. L -_•{• i 1 <»• : ®"j •r,' in ч.. J "!"'u-: / ', * Jt" i - '- •i:' -•; . ' О : t, Г'ц . „ ' i t - .-•?,• U- t ..! IU i^l'f^ rf,-1* ; . . i ;': : ^j.r Г-Т t 1 i : ''• "a~ П \ ' :< i— i- 1'" 8 --.!:„ Vjjfri ,L:- in 4 '<£' IT CO 1 i "т ." Г 5> ; \ .j.j O-- rr-r? »«J i X ' • i ! '' • i' о .*'Л, ' „ \ .О L. ^1, l_- :tQ-, — О LU 8 \\: r|iii. t , -t ; ff-; Г," I I j,i.*J-.J. b • ! - f j li. s I! ч LU ^ 1 q . : - J f LU CXL ф •1. ^ • t 1 ™N -), i .0 .. .; i. . о \ i • \ --- *T Vr \ I©- t .._!-'- o ,;. i- i J|; i ' -rV ±] I;0. J \ Д* 1_ \ "(-' 1 J;l 200 0 250

~ Minute s .i-' 200 0 250 i. \: ALTITUD E CHAMBE R -,l 0 ! r |! n e ~ Minute s ГЕ5 Т * l - TEMPERAT L 1 1 С • . Г, , I E i ? ill • т*7 ~ !.' 4" i' \ ...._. o: /, 6 -•- ^4 f'f n 1 'i ,ii U CL V „P Q LL it.r LU -.in о ; iii -li 8 £ ' "Т,'Г Vi 0,7: f 8 й 1" j .1 . i . ! '! - ! ! ; ч 'i, '1: ^ эО LU -•- - ul \ ill i :,' ч *i i', Q£ I ! ' ^ ^ : * л ( . • \ "~1 f ', 1 j •- - . '- 'U i > *j . . . i GT » О .',; ' . M ;' § ' •1 • i :' 'Г \ - — 8о LI '•i ! r,' 1 i 1 , - j" . i,i i:^ ^L;i - .'i 1 • , ' i ?lt "лi 1 J - • :,!- • t ^ _! г , 7> — t 4 ~ irr I O~ i. i . . 1 5 " i ' "-Op- - -5 ' -." ч. ' >. " '* ; ; . L£!ii _:v:-u Jir • ;-t|-' :l' >r о r ;t! . -Si-— 8 ! :П "- Ю • ' i •" 4— о *• r. 1— "-Г-- -2-^~. fa., ti-r*l Ль :; b:T" id. r . !- ') ' - О " /JJ -> _. ; _,._..._.. i : .i i , .-' . :. j; Г". ,-.' 1 - 'i-'d its* Q ! Г .,' ' /' t - i' '^ |-- -'.* 1 Xх 1 о ir> I U. CM c»i о см «- с о 1 I JJOi -ni ~ajnss3Jj 1 1 . 1 1 1 i

205 70

290 - rtz. -1 t i;_rrrtt - ^tt -f-nti MT.,-,^. _^i{—j, rrt г-|.г';тr т i ;r:!r:rr - - :~h—r НГГГГ. '1.гл.п::г..,- з. -_ :.: n_- ^^'-n-b-^iri-. ш

2 280

<и °к

270

500 1000 1500 2000 Time/v Minutes FIGURE E-ll: TEST *2 - TEMPERATURES 295 70

65

а, °К f 290 / _ vL-' тз I 60

ЙЙЖ^^TSLiii^iLJi^.^^-^- ^ - •^Г-~rjb,5- £ :.. -r 55

285

500 1000 1500 2000

Time ~ Minutes

FIGURE E-12: TEST *2 - TEMPERATURES

206 Multilayer Inside Top Guard Area

Time—Minutes

FIGURE E-13: TEST *2 - TEMPERATURES

207 Т 7 7~т 1 1 • ' - - -... : i ' !__: i -•-l-i-l--" - тг , ;_j: j-j i !_• I' __! i .! - i - .._.; . - • ij ..._ • i___l^!- <_. ' ~ oo T i о | •-.1 .

iLU a.

iu a: D О

8 CN

208 75 -"-гг-.т^-л-.г ~"^Г~ - -ч-. -—.-,..: _ , _.j_,_ ;. _; - t - " " ;«:« -• i-- -.- .„— j - _ — j -?£Э-=!г:г -£r^ T-30 нлй r\ (Ul/n 385inc1l -".'" " .*'"*£- ..=. •:+ - : -..:":il.~_ ,r:t:j- '. rj-'q " -1П-Т ~ гг:г] "ijjur : ^:.— tj_- ГЧЗ'Н J >! ..'., •!„--.-.; .-„-u--t| •"г^^а 2=ljIU .rrr:— .u- ^- .^-- '.-..- ,"._v-i.. Г -:j ^- . \- 295 :: ~-ji — •i-j..- ::: ^ •; rrr~-itr-^rrfc- : j- - r-fri=n ~-""!т-'- I-- 3-- r 1 -- i :: — П „ir_ rfc — . !.• — г. .- j . jx r'JT .u:i 70 а -Г" |- -'-Г •< -r- ' : : •,-t-.-- — rp.rt[-•-j— .- _»- ir. *»("! . ' t i: D "Ч ~ Л"^?- -~-^;^г 4 m " v-TIp -. i./. L ?. -S^J.'-i—I/ ~4l: :' -4-'-r ,' :.. : -__- .„ : - °K ЩЦц _.. L-_-J b^!z21i™j;5 '_!..LLr_.- J . J --_ 1 г ^-- 1 ' * : . ' j.' - ., .T:. ' - : ; F. 7 .~ v ; - ; -! / ti .j i -Jr-.- • - i " • 65 *Ч~">». ! / : . • 1- i . • i • . ' • ' . _ i •./. . i . : :. "i . ' - ..л" 3 -.!- , . i „ _ -J. 290 ~" — г * * . ; i t- i " - 60 ,1.!.".]~:"1 - - , ' " " ^- • ~ t I 1 1000 2000

Time ~ Minutes FIGURE E-I6: TEST *2 - TEMPERATURES

15

10

kN/M2

1000 2000 Time ~ Minutes FIGURE E-I7: TEST '2 - GUARD TANK PRESSURE

209 Pressure ~ 10'5Torr "T I ^4_-_hj - - ' t '- •_!'_' 1 ' i 0 1000 2000

Time~ Minutes

FIGURE E-I8: TEST *2 - ALTITUDE CHAMBER PRESSURE

— ouo ' , ' : ' : , i ' " "; 85

H- . -__ .. j ; •''..'""'" : „j _ | . (-. . -j— .._ 1 ! i ' . ' -310 ~ f -- --|— f— —• 0>

, ._., ._...7 .^^...^-L .„.. « & °K °F ~rTi~"jV^' i "-;{"- ---r-7~ ^ri •;.*!'"->'•-- H r "' : -I- "- •'' ! -\ ]- '~" • - -'-'-! »i- l1:.-!- -' «JIT1KO 80 \ -к i!~~"T ""'--":~~г~~ ^\7~m/vp::- ! • i , I/ i -'.' '.-•.:'•-' ! . ;- . •! у '• i . - '. ' . - , 1[--;. }: :-.-:{ , j -, ] -.,и - • -1"-1" • ' : 1000 2000

Time ~ Minutes 210 FIGURE E-19: TEST '2 - TEMPERATURES i ' ', i, ! , ; -I. I Г , j^---,; -• i i i i '•!'•.: ''' i ". 1 1 '' 7 О X • ; • •!. •: -»'-' 8 ..' ' 1- ''.Л.'..:•;". / .!';!•'• 1 V ' ' !' ', , •';-'!- ' , ^-'" . j" ' . , *' ' ' i ; ; .1 к t- , J j • t ' ' • / , i . ' , i •' • ' ч ,, ! * * ,• i ' ,/ i ( • , , , i о . ,'.. : ' ! l"' . S • ' ' ' ' . i ,! . ' '' i i 1 i H~ ( " i ' " " . " " i " ~ ~7~ '• ' ,' i .. ' • ' . • • i * " *• Г f ' i-L '„_ '..'!' / , ' • г ' »ч и --,- - 1 \ ' , ! • •.' l-ii.!. i . '''i'" о , . .•— л •' ' . *! ' "",'•" ' ! !':' го i ,' ' ;. i ' • i , 1 , i .. 1 . 1,, .-_ . \ • ' -"' , j •;.,- ' - - -' ' "i ' " i to '\ '' ' ! '. ".] LJJ . ' * ; j 1 2Э / , , , i i ; 1. "1 ', l i I , ( I \ • : • ; 7 см ^ / , , . ' '- ~j ' • ' / " 1 0. - , .._ 1 ' 1 ' i ' / ! ' , i ! 1 'i t- ,11 ' 5 . ' i t '' ' ; 1 J. Ш Ч f'c ._ , , . J'4 * ~ 1 г ' i' 0 *"" / j , ' i , ..\ ,"~ 1 I +•» . L 3 1 1 Ч , , , "'. .M т , >, ,' • { .' ' о £ со Ч ' • ' -' ' -,. - i it О S 4h 2 I ,,'( ,, ' Л , , ! ... •\ 1 /"•*" CM I 1— :

1 : ' 'i о тэ ;f i i CM 0) , ... -_ . \' -'..;'iu- 1 i О LU 0 , - \ -Г': ' i * * » * . L о. ; * ' 1 »- to з CM col Ю Ш „ . _ , m.l.L. ООСЭОО1. i.'. о . ._« |... '_•;... Э Z 1 Н I. ! ' \'\'":\ •;.'" "t i -i[i 1 : I ^^^ , i о £ " 'Г LL. 1 - - . - - ;-- '-- '- ]-- 1 — '.-- -—i-—, 1 . \ - - I /i • / . - г -. 1 - с 1 ! : : • t \ | . i ' • i Q г о - -;-•-•» — 0. ., - ~~~ ~, "* ' / i ^ "^ О r \L (0 ' i ' / • ' i i' i 't!i *"" 1Q ^ О _ . ./_ ._ _L 4— '- i- .1.' ,' \ '. J j „ г ~\\ - ' 5 ; ч ' i : ' \ ' Г ' ' ~ \ \ * ; j ,\' I j-_ * .*• [ V i ! "

; J ' / j ( ' :~ "Г! _ • . _i ' , . - \; 8 ~:i;. in ] •> 't' L ' ~~ " i "i — t:U! -;.' U- J /- ! • Л , 1- • _ i ^ _ _! .i •"' r„ L 1 ' ! i I I .-' -I 1 _ ,._*.« ' _ 1[. . """"l 'j__j .... i i | , i: • ' i i / — ' 1 /: •" 1 / i i. i . 1 ' i ! 1 M • S § и. 8 ! u. ° |V i i 8 ~ " • i i i £ S £ Е £ см см см см § о 8

211 --..., , i • :• т/ i j •; ! ±'Ll. !- _:-L . .14-- : 1 ' 1 - -1 , Г i .. ' .' J i " : ' V'1 i ~'-"V!'.iJ *!~ jl Ус \ i, __ ,'''• - _ ! ;- ' V V ' -; M1'-. •• ,Ll-7-;- -y' ; rrv-'j-i'-:- •--"-- ,b V' ,-i^h , -Jr. T ,i i - i -. . / . -i -•! !- -, "JTi ' .* * » / ' i ' . ' , ,• j , , •,.,_,. .,_. . r 1 V ;- - t ' '. ../ -. , :... L..J, _ A 1 . :- : . _• -"i •',.:.' i'. ''Я /--'т,' 1 L r > ;•.i~ ,i f1~~r> i ", .1 •• •' \-i-i .!-,,- , '••"' f :•"• '!• •~ 1 t - '. ' - 111 ' /t • i • ii j ' ' l ' ! ui " : - ' / • i ' ' i ' ' . * i !: • -I 1Г1 Е,( .-;, :• Х--ГД-" •' _: л' -< . . i ' : ~~ \ • ": ' " , л "' -.-i! -УГ ' l" Ч ' . ' ' . i ' j ,1

i i *. ' i ' ', V 'i i i-d- ' 1 , i, p| UijJ

: u> (o 2 со CMI Time — Minute s • .= '•/*.}. :J. —- - o- О О О О О I Ш S i i ^ ^ ь ь н \ 1 v ' 1 Г: / .• - , "\ ! 1 1 j FIGUR E E-20 : TES T * 3 - TEMPERATURE S 1. , , | j

\ ' " ,;!,! i _ .!;•_^ ' .' ..-1 . -.. 1 l r 1 1 j i ~i ' '. * ч

• - ч . . |- , .i i / ' i ' ' i / • j ". / \ ' ' ..' [11 i ; Ч ' . — .i 400 0 450 500 550 600 650 700 750 800 i ' i i"" i :. 1 i о о о с ю *г и. т с? u- 2 8 5 0 CO со 0 1 о ^ ю о О 8 ° 5 и * о §

212 • •

, "(I 1 1Г' ' " " ~ 8 . , , ' II Д i i ' * !' 41/ ' , | , ' ' « •' II 'I/I , . // ! В . , i ' • ' ' V /Л ii . . ' Л 1 » 1 \l о : : Л Itj | CsO 3 IV ' • л i/i (I V . Лч% - lift • чц 1/f . • — го < Ч 'I n I ! V 1— ННН i U ffl to i i )5 1 LLJ ^v 13 У*\' / // / • V Ч > Я Q^. ^/in LLJ /т\ / / <я 1—

i i / i 3 ' , - ' ufi i i ' . _ OS 1b • >VI / CM I 1— i i i i i Л / E .

. 101 II ^ ' III 11 f/ 1 If IT / / 1 , — 0g ^s /7 /' / i , о LI- //: i t i II f ' i i

/ft f i i - - _ 1 /// У / / /X/ / ' / - - - ^ ^ х/У / 'J'"1 ' 1 I ^'k' ' ' ' "' i \ Y A f\J Ц» / - *

• , •/ / / S // /;->- s , . ; ^- ('' .' ' " 1 ^ ! 1 1 i i A о 0 0 0 0 u. 0 О S 8 V си ем см см ° см см CM ГО 1 . ' 1 ' , ' . ' .' ,' 1 ' О О О чх О го см •- Дь о ° djrnejadtuaj.

213 I 1 !l

- !!!.'! U i •".'.'И F: /л.. ( ,. «1 liP'.hr •it?*.,. |\l 4,

. I •*- »\.-- i ,. i г; rfi l 1 »iiw-i !' .

1-S'liM-'•I i , > vL' \\' i':i to ir ;" u: • Э f ' I t и 1 iш , ,;«!т' о. I. " /t u i f! э !«!!.'' •'li :,'• ', - t - ». .-

: 'И .'. i fc j'Vri"^l TT - г' -• 10 -J.|_-.4. J '1.'

I ' 1 Д' ' \ ui ' ' Г' '* - j- r - p i «--!"-,4i1 1 ' LU '. t i м •" г- - - Of -• -!-—fllJirr-T • D inro MH/i }» I . ' ' -1J , О

..; a , i i. -Г Д! J J II L "H/W' i- !*/,-/ r ' h-, h'

I ' ' I '• i I" -H- •V s

о s о

214 «л UJ OS

I—

2 UJ 0. i £ i i H a> t/1 E UJ H I-

(N O4 UJ UJ Qi

О

8 8 §

215 РФ in ri f i 111 111 I t'-tt 4Й 1 i •ч i If): hit Ц «ail i'tiiV TifT :ш tf iw 8т i4|ijl£ iii " г- flrtff! 4.JII.S1 ли'i,v :.г, :r:: к!. -it•"V! r '.'№•iltij.IT |Ьu- foW !!?'• It)!

Kf ir Ml !!';:' /iilSi iibi'j'ij; it,!!.'. -ir-nnii I'll -!.. ^ШК-h till '*"" 0) ^jr t r Ь m- с iu'Jl;;i t '* •j'i) J Ий 1,1!.' ' !'ii\V IT '^CiV t-t— о ; '• :j :ti 'ifl'V1 • '.b.i: ijljj'l JAi Я-ЛЧ 8 i!ih'' . \\, 11 '..in VI .ii U1 Ji '.i to ! " ,'i Г Э Z-ii-t-l p-i oij^H-'-rl-'- Kf- д! 'i; iLU /Г P. ilt'l!! § и fit ' \ ^^"r.^T^l^FITjTl,i'i'; . - .[.Ti (Л UJ 1 »— :^.j Ч:• '1- -Яv J JVM ,'"' g ю CM • .j.! •It •4[ -ij «' ' "Mi: ш ш frl о: : Jib __j.i^] \iI_,j! . лw [',:i V i ••'•1i ,Г L .:j|'-?-JJ-HJ J.'^il'iifi ii ю 1Л. i 1Г. .I'll", it ят TTtrrr -If'' цiII м' ! Iiш ii-!г "l'i1 M\tt o r ... "•/•: {,-/il~ti.'/T 'i-" i . 'IVi'" 1 -41- 'U:

, ,\-ri '.'|t.~tr:~Г71* s о 7 Я

35

216 ' 8 ? ; - -7 -/tijV • , '•- 1 П § 'L i .1 ! -. - / 1 •• • I|. 1 ! .' J :;H /i ' . i ' i. . i ' i ' i 1 I ' .. i i ' ill 't//f 411 • t' ••:/ i •I*«! {Ii ol: ' •'. "•; '.i. i , ; : 1 / • i . •„,_ I . 1 ' i 8 ; ' 1 . 8 ' i • ' j еЯ -ii 111 , .. T_ — гт- :•:_ — i i i Ji.1- ii; Hi л . , /f ii 1 ' _ ' 1 / _ \ v 'I» 1 '. 11 yl 1 1 J / ' '• / ! 1 : ' : : ; - . 1 " !.' •~~ _.u Jl^_ 1 (' .1 t *ij lit 'ii. ГГ ! ; ; J i'! tf iff I !' i \ f ii |jf' ill! •!'' i ' • • .i -1 [~ . i i. ... . jц 1 if - l , "1 1 , t" ! .j! u; со . ' ~ "!' '-!' 4ih л. ii> ш ; . F ,'« f п.l ч. <-»x _ .. . •_ . ; .jL . i — -jL_i 1 1 ...... »- У^[ . ti Г , ^ i , i // .4 •'' ~^ j . . . t t 1 ':!i 1 ' ' t •i -- О) i ^ CM » iCnM ^П? L . . ; . ' ... . ~'r~ ~\ 1 T V i, Vi Hh-h £ . tjr fir LU l \ i ' if . J 1 llP '•и .!• ! . i . i r f -H i P ' i • . 1 x. 1 T Г ! 1 Г ' -' \ \ I v j .;; t, о £ со ' -i- ' 1 — ~ _ "Ui 5 S -fc 11 1 '; :_ "\ii .. •.ft - , г, /•/i ГГ "i •n N ' Й . !. !l , Л:--• •~ '•• , , i I 2 ; у ' /: -:, 1- 1 'L/ /i- , i. r'J co '-;•• i" '••• r--/ , if" r .П CN .. ir" , i 1 : 4 1 Г У/F i LU • !7 /CO ,r л /J 1L О li l ~. 1" ;""" "л ""- • ;_ B Ift Q; . "• • и ; i • ' i ' /i ' * _ii' W /:^7 i ' *~ Э /, a f \- л 'i' О : ' " 1 ' ' i .1i -j'. О^ _.. ijji !L .'i u_ "• " i " ! i ! "I- ' ' / ±;\, if firii :j : i . ,, j. . / • w' if 1 1 t; F • ! ;. NL -,-t Л i *rr Ц' nr j о < , i 1 '; 1 ' fr P 1 i'i' Л1 Г"'' ' -1'---1--г-- •I/ f Tr" 7t7] i .; 1 pГ ! • : i! • - ' . -. i j. j.. 1 -i :-' xi : '1 l_ ^ у , :., jbf - i ' i • • i •>l• !, ./ W >' ' • *. ' i * •и • j / [j •• ' i .* . *. «.. 'il ТГ; J"\/J i '• *~ ~nr F- ' ! • : -t-'-^J _il_: IV 1 f i /•x/T 1 • и 'J ".' 1 [ j '-I. : i.и; f-r alii , ...... j.....:,^ —- -— 7***" ;l Jp" yf ' -'4 -.-Ir-^ ~ ~ T! Л i.T" 1 •' I "v §

1 1 - 4 1 , ; i -, ', /'fxiO'"'//\ • . ' • , ,1 ! 'li ;'- i • i J / .-•; ' "•-, ;V ! ;_ j •L" -''lx'^'^' ' f 'i ' i :- *•: i.i ,A'; rf| T *- 1 --4- j_ .. :rr ГГ' ,.',4. t— b- ~|,-t -fr: : "r -J?^^r[ t i i j i '• с 1 r~^ ч i2 a 1В jg С• f f iN О N M s 1 1 1 1 i^ 8 2 О*• i в

217 . i • , ' i ' Q

, CS , i {(J | „-Яс^г- CO J! i \ '• \ \\ff I i ill» i'iii '. • 1, - ' r ' i t - /'Mil | , / | / i liij о Г i i riii ; ~" s ;i; '• i i iiii i , ^ 1 ' ,' i i 1 i "i \ i « i i I ill - -j;- " [ i •- i /.in. , •: \ . i \ \ M.I i 1 i !>!''!' о \ "* i \ \ \\\~ " ~ , " 2 / л ' / 1 Ml/ f^ I \ \ \ 1 U i , / •'! in • ' / ' ; ' 1 1 tit ' • r V ' i ' м \tt - -L . ; \ ' J i \! 1? 1 о 1 i > / M Я 1 _ --- \ -j \ i- '\\1V -L :- § g i . i , и ; у ; 1 / ' / iff! • i r iLU - / i ./ " : 1/S i™" a. i'» !_ . » ! _.'.4\^ ' J ' -L _ 0 Ш : s « •- • \ i \ н »'ii ; 1! ' , / 'i III' с ._ - » -TJ—'r 1- i ||| • - > 1— Iч '' ;i ' 'N : . *

"I'h T'"nlU;T^'\_ g - .:/ .L !. |./_L_ ////'_!_:_'!.. $ ' ! '' : Ч \! i ' / i • Ч ' // ( 3 ' • x' / "' y/Vi 11":

/ !/. -. t'j'J 1- ,- | 1 I " ' " ' ' 1 : : i -. • -'\ • ~-i i §F> S M о «•» 0 N g- ^ С

| 1 8 о o>

218 1Л

О.

I со

0£. Э О

219 пи t'l 'jllJJi iJt M ф J iiiil;! I'll ill. jffi i' 'ii Ill.1' ' FP i'li hi iii I'iiV if !!i fTjT , Г I 1 № 1 1т! I1'* iis иц1t J 1 "rf • \"!::V'M: V-Г- '•', 1. 1" ^i!, 't _L _.;._: J.il< iLiU-iJ i; u, 1.1 TP7 Ч ;, li ! Ilit !]•£ ••'/ , ' M I It: ji :i' i •м: п ' I, "ш'Г |ii ?•1 '']' t * ' ~ .•{•i Ч пгр; ffl • i , ;$ i.' ] л LU. _! j it:* 4! ;bt -1-J. ';. iLLi; a.и; ii'.T V] 'J- , .1!'!!, •.и • i о j.'* 'л i.' J J ... t о 'i'. L;i ' -.1'f J ,i' ' . in I . г 1 ' ! f Г И: го ' Г 4!*i d: .'I' ji. llilil 1 1_ ft; /'t !|!j Т' V ]'j: т" -.' т 4i.it' ••ii 1L1 1 ir.: hr'r „,- f' I ". * I. l;y ' I l'l" о L.L 1 • it . 'LJ ;.-, i i, •~ и ~, •* ," ' ~ If i * ] IL ;• ~ 8 «\ '•'.,'!'! i rj'ui иМ; 1," i ll.l .1 > > i !t '.1 ! ,\ i I , ; "! 1. i ::•> .1 .!- 4j! k 4 I. Л .J,L - 1 ''l 1 ~'. —i ». 1 .' '.. " ! 1 1.Л. 1 i ,' [ '',,•» . ' . ,ti,i I,. '•;;. II• il lч) , tiHа, д I! ,и n ;' ',-.' ' 4 ' ' t . •'•'i •' Л-п. •t i ; /!.! •. . .I- г; ; • .c" . ' 1 " ! !. .!"';; jjil •**r*-f*i il / 1Г 1 о ' '* ;'••:•':'; ,!'' •• Hl.r r?" 8 со ; (О /.. i.i- [iJL . Ч- -' •1Г:1:Г j,: •;lr t/ "Г! J '} !л.-уП.ьг',.1 : ; I , V •'. j j '' : , . f • 1 /, I ' '!' , ' ,. I i ,'j'i . I . ! ,<".,! .' '' ', 1 Jj-л^ ':JL; j.u,- -! ' ( l . 1 li , '|. " '.J! I ' f ш ;!.-. * ;-.. !i _ - а. *;•, •_l •- . , - |: ! ,• "' Ml' 1; 1 > '*', . u^iu .. 1, ' О) j ' "7! I- 7" ! J • 3 • i. .... 'i : ' ;i u э i : ii.Jt. i !M I. • ".} ,'! . ' ( , ' .1. ,] с ..!.u ._L.. L^'A.ii ! S —. •rj- со -8 i f**l "-,' ~f\ * Г"" ~*l"~*""j Т~^"Г* . i Л . ; i \ , '"''-i' I 1; . \ 1 , 1 't'. 1 0) -'!' .it j . .-1L. V--1-4 ' л. J -t - LU i;' 1 , i M ' •и J!i ,' де: •И:1 T.'. .-' } •'',- '-Г-]-!'-- '!! 'I ill!, Г, ! _^. f ' * ' * / lit ._ '' iii 1Л Д: u / , L^^ '" ' ^ * i t ,— ' •._ '.-^i . - -''! • ' / ' , I i V ,. ', i '— • ' "ТГ •'-it — ' , 7 -__. -• u 1 Т "; I "7 f;' i . ". i 4!.*t •n- ~• - V --- '.'.^. " О i , • .1 !'' '-Hi'- л ;L-AJ, : T -4Й-- • , i ; i »i .-ij-i-U-iU i -^тi-l!. Li- i -•*. .v f L -I- '-'-;•)',- ,1 ( « • _ ! _: .iJi-k -r 1 , F Ill , 1 ; • |. ; 1 ' . ГТ !*! ^Т"~ ~Ть" , t - i';.- г, л ' II i^Iiv L Li. r I I ~!7 J T, ;hr Mil! i'i.'br r "• " u ,"l 1 I'll ] T -T^;^;. "it. ~j~ j . •r • ^7 „ :i:r • ,, ,"• 1 "1- 'J. '<_ 1-i~. 'i ; • , ' 1 . . ,1' ' . !, ' i • •'• \ , ' '.— ' « . —I *у- .... |— ii»' .... ]..,. и T ' ~* 1 •In M'.fr" • ri"' r i .., J '!;'• ,< ',_/• •f" ,r p* "l i • ; . ! , ! -4. IT.TI?; t*T ~. /~ V .'1' ,'l i ' I г.'' „ ~L " ,.| . • ;, i JlP" • M. ]\ — 1 | 1 -' f _ i ' Ч-Г- 1 — i ': "Г"' "17-L .1' I I, Г .1 , j -I о i 1 ' 0 S^ о"- 8 § Р-Ч о g 1 1 8 о n я Я

220 8 1 Jill •I • .: ' ч i ,'j s i 1*1 1• Si< ,< ' i > 1 •if 1 i'f! о 1 0 j -i -ч-« L _ .•-. 1ш .'.Ui ill S "1 ', i'l II i|:i |||| -!. ijj .,' .; : i • . •.>*,'.л! i"! 11 j Ж i II 1 1 .'JiiliSljSlI ii 1 [ V- II ! 1 !•' l! --' ; —jAi i t!if '$t {jjj J| 1 I. .ill M ! JI li t: i.; It № if 8in ь hi ! .',; ' .} ',' I .' 1 11. f^ , !|:! '•!. i-i'' ' и,-1 [hi. : tnrr ';1 ''jj'?f[ 7 T;i! i; l о .^''^^^"Ш' i..i i' • "ii * '.i'!" i" !' ' :. '. : ' !' .-.«'-." :|J:;i! 'IS ''• '- т й -Ui-f_ •• !. '^ . '.'. . 1 l,"llj Ij. l. Jill j! ' < 1iA со , i ''i 1 I- •' ч ^. ]!'j 1 '! , !i!| 'Hi UK i • , '. Г t Г ' • i ' . 1 .11. 1 , ' '/_!! ... ,l} / r i'll '•! 1 ,1 : [I К . 1 Л - j , in... ,ir r i I'H 'i i,, i'l ' ' . '". '.7.' . ,' И' : 1 .' 1 ii . . ,_ \ "^ '>!,!" I * "*" "*.'."'* " T' ' ..if. _ " ' b,'i"i. — ' "^"••* § .-,! •'Т'Гм' i.i , r in': i ..,.!',;;. и. ,i ' if.. - ,• :1 .j.jl '1 ih~i- ' • '. " ' .i "'''!! i , :',' "., ' >!j I'll "iIII 1." if! 7 f -• * — Ч *~ *rt**" т.Ь* Г,: со "' :" • ' "i '. 7.; '.Г ." "!- 1 , i,-' • , ii , : ' ;' -V'-i\ i -' : '•! i , i.' ;'i \ ', -L. Ji i: ,L'- !' ' « ' ". ' n- .,- (Л : :,:l LU :. 1:. !._ § f , i; . -i .' !/J • , ' - 1 '':'•' ' Я i .! (О : i •1 !,.'.'>!'•' • i _.i . i ' Qi i, о : Ш , ' i. '''" Т , . '' - ; • i ' i ' " ;' ., i оэ "' Jl Г s '.. .', » !,ii r *i CM . 1 ''-.;' : .; \ °- .' .' 1 Л 1_ i •(•!'!'•-L- 1 /i , i i /" :•" i',]' • "i" : '' , •• ! <'"-' f f( H\ [;;.•; ;. t , ч ! ' t f ' 1 о U : ' '; , i | _ . \ „ !.• .:.ri ; * L. L^ 1 ,, , ш •in " 8 l , . '* ' ,' "'" I : 1 1 к О 1>. ' • \ ' 'i ' 1 с " • t * J У •1 " '" ' - i ' : s i i • '•:• I'' 3 .1 ;: X -J "i ,1.1: i ,-,i LLJ • . -:'f. с CN J, '•'''' '' ' '1 5 1 4 : . Г, Г ii ' t " ' -i L 1 " '» ". [ "j "'_ E " t ш ' i. ' -x! -''i , i .1 '; Г . . . - 1 ' . .')"""' / "* 1' ' '•. -J H i — ,v о ! / . . i. . со r-ij 1 ,-ri,-;'- , '"-'i "! ' "''' '»!'- in I-' - s i i in '!/ ;• -' -j' .4-/ ]— 1 :*-" -,'-r- • •; ••- -i- -.1 to . 1 , ш • i" 1/7 1 j ' , ,j~ i : ,•' T ,; '•!'• ic' r <7 "''! L ! ; -.ilii. j.J i ^' j . , , .v/ . :.. • - - .' i i \ Ч l.T.i Г *":"'* 'йC1i NI , i : ]^:'.''i'' ^j. CM : 1 , -•'- V '"'l I 1 i " 1 . ' , ; " "•'•( -Y k г 'i Г /'< : о . • • ._ '' / .— -,!-г- 1 ".'" " ", "j ?Tj j;'" 1 i :*tr: Qi • i \ ' • >; -t_ " ! . i {•• i i 1 I1'1 ' i ' : , | !.' - *'J .ti'-L."- ^it -J_1M. § О , i ..' _.. <•) '•'l ' ''u' ^ • '• .; „' L . :Г ' ' ' . '' Ч i 1 " j 'l i 'i ' V 1 _^_ -- - - ' т— г -ji— !.- — ' -:''- "•f J ' '1 ', : ,i * , Ы,. *' | § JL. "Т "Т —~*-г * 4-Чг !'!-,.- l . ! М "- s 1 1 i -i^ , I'l, f - Л J . Ь -' .•' i " ~ -. ''" , r- , 1 l IV 1 "i, "r 4f' "6 .' '1 Г ;" : — Ill ,"".*!" '' ~ "'T ** 1 "~* _.,- ... . 1 i. , L; i!' . „, •'l .1 . J '7 . , - 1 , 1 Vi , * X , i '' ' 1 о - — (- — |~(—/i -. — 1,~~ J м ' f ( " [ ' 1 Г ' •i 1 ' I ' / •

0 <Э сЭ С5 q q q О CO (N i^ CO CN r^ jjoj. gj)l

221 i • , • ' ! ' j • 1 ' ' 1 : ' , _ _ , L _ i .. _4_о 1 . ! '' i : i . ' . , i , L - " "1 ч8- : .' ! ' ' I i ':' '", i; J \ '• i i i i i . i ' > / 1 • " j " "j " ' I о \ i ' i i " ' • • о •_-,. ю \ ' i " Г* 1 • -' ' о t I . ' i ' ' — g i • Г ' ' ' • ' ! со \ / !• i i - ... •: --H '._ Ч ' • | i _ ; ,' • i ' , о о ..!.. (j. ..:..;. • ! - "~ Г о -- i i / ' ' • • i ^ '''!'..' о i ' •I ' ... i i , . — j l rr i ' , > ' со i / ' ! i | i \ I ' • t j , | i ш - .[ CM ' ,- ; «Я I ! i '— 1(О 1" ' "1 \ • _ J. _ _ '' i > Е о ; / • ; i , . , -! . - г V см 1 ».._'.! • | . z I j , ' i , ;- i ! ' \ ,. '• i (— 1 , t ;, — - _ .. ._ о Q < i О ОйС / ; : i 1 i , ', 0 I , , ' i ; 1 с . « •< i ' ' . , ' •5 0) —' ) , ,1 ', i ...}:'... _ J.-, 1 0 / ' , ; ° | 1 i • ^ i I i .". н , ] i о, СО • !i - , i .-- ,i i /. • *.*- ^ • , *••; - ~~ '• j . 1 0 - 1— ; *x. , r i s и ' 1, - ' • " ! '• ~f , g • \ к г i • , '" • * - ' — -!' i " - ,— . .! ._j . jj — _ 1 • 1 \~ ., i UJ i ' 'p 1 -l.. ' ', / О i ! , •":• ° ", ' I T" , ;; ' • j ; j , ' Г i ~ _ r_ v i j ! ' ' i | ! / о t : j 1 . ъ . X - J ]_!.„. 1 ." _ ._ ' / , • ! " , • i~~ - -,-* * ; Jl. § •\ , 1 ,.""""","'- ; " * " \ , _ .1 . _!. i 1 : i i 1 ' '-Ч'! ! -. . j ., ., . I _ t i j I i i • . i . i о t • ,_ о i I ! . ~ ." Г ," "~j~";""j" "" ~ Г 1 !" ~ 1 ~~. J' "1 "l о 1 ' • ч - ' ' _ - i ,. i , '. i . , , " . . * ш I ":,' / i ' ' i ! 1 I 1 : О 3 I ' J "• i я Ч со CM •- г о0 c>4 1 s < ^ OlSd r ~ : DISd .

да CO

222 ;J :.,-._..' „.... J J . .. -U;i -.--: - , - , ' . .П " ' . j- j.*.$ l !•: . is i,; '• - \' ',' i . rfij— i '•' ' '.. i { ' 1 , i ' .J!1 L i. ii L - r j i '''''• i ! •!••.• i. ' » 'i •'ц !г.гл '- \ .- ..' ' -. .. '-.• *~~* .; г . 1 . '•'.!,••: ; 1 1: ' i':i ,i. ••''I'vL . . ' 'i ', i . • / V). V j » " T.i" !)."• -.4 " ! ,!- . 1"! ••:.(••••!•.• i - г i .1,* -- r^ 1 'ч • 1 л / i i ;_ i; \i i ' •'• i ' . .J'j. " '/1 I \ , I — , t : \ - 1 ' /' § !,;' Ч L_ i ;i. • •} ' ! /. _ i '.\: . . __ — ..^ — — i .„ --4ч- ' ! / , 8 : г i L _ ,:•!( : ^ o> !' ' . J_ i E '-. r • • . i

' '• _ \ L - и :_. Time — Minute s t r + j- CN / ' ' , J. i ^ :._ ' -. -•• / \ '"I" ч ,I "ib-- ' t " /i • i j ~ /[ ! - \ i-— ..uAj- — t —

\ > « > i FIGUR E E-28 : TES T * 3 - TEMPERATURE S ' 1 ' __ -' -1 » _ \ ,, I ' t i< \ "*i " - \ — '- . • i j. _. T • \ ~ : 1 rj 1 :l 1 1 \ _1\ .- 1 8 T^tT ~;,rt- . . 1 - \'- ' , , I — r- » . -h i , / . .. Л . . , 1 iil o_ -" г 1 1 •' 1 ~Jr"\ 1

л 400 0 450 500 550 600 650 700 750 800 £ S u- S £ CN U. см т т ° т т T ° Т 1 1 1 1 л о л (N ^ CN CM О о ajniejaduiaj. aaniejaduiaj.

223 • i . .; "' II lj|; ! |' > !!ij i : !i|| ;i J/\.L!:: :iiiii: i\i | •i?!'iii i ii 1 " i1 . V . )!•! tl ' . ii !!i! 1! i , !> Ш- Г л '.Lit ULU' 1 y\-'.j\ -'-4-4-, V ftf t in i.i" T- t ! t i Уi/ , ^., I. 1 i ''if ь 1 • tr '•.h-, 4 .4 - -'г ! яJr " - '!'.< •'it ' '!!• 1 j' ; _;•__,: tt il' ' l_ [L. L ! . О''- ,i • , // , j4^ _ I! lT' '.' i' ''t ! X**^' ! ' ' о г jl о ' I* 1 , - '- ^ ю • j' ! 1 :; \ '"'" го i " , ' i'' !lil''j : • 71" "~ \ ' l" ! i i • • 1 ,"j , '' . i i J" '' " 4 , S . ! • u j i ', r ]• ; . : ^ , '--' s, . I . /i ;. -f-K ' 1 ;;-F r . : v • 'j. '1 'I { '• и - \i , i '' ',' 8 : . • 1. ' • - 'i. ''.,i - о ii , i 1 i >•:<* - - со , 5°°°°° ii ' j ' • i' ,' bt-HI— HI— \| ... L i . -. — , > ^ 1 . и i ! v со ш i j Ч " ' 1 i // L , E 1» | •, ' . . !, 0 \ ' ', P§ VU \- • ;.; \ ' . ,„ V ! Ч1У - 1- -iii. — ••• - -f • ' ir X , ! J / ' и , Q э "Г : о 4t - u • . „ — . — u ^^ CN ' i/ • i - ; - со 1 1 \ V 11 , i _ L __ ' I :_ ' ; u ! • /" И ' u i "i <1 .' ! ! < .j. • '. L -- t и 0 // , / . in « — __ - '~ Э // / О и "1 \ * 1 , I ' 1 > —- - Ц : '•"•" • r~ -— ! - » • \ • * о - 4 -. . . _j_ -- 1 — ^ \ • ч ' 1 *^^' ~ ^ / . - ч . . . ^^4 — j— -- V // i ч ^ i : /' . - . ,; N. ' . '- - __L- i —— 1 I - - — о . 1(•;— , ™ ! " ' i /Л in ' ' J^i. ' L. • Г П i : • : * 1 . j - - ' . . !-. I - ./J •:i - .- i...' „ ; .—У 1 ' I ' • , - -Г J-J H: / - - 4 • 1 ; ' ft i 1 •' "lГ • 1-1 s

о 8 8 г>- см ем см

224 i\V _— jj'. v \L ' . • ii \ M ' • : Л "t ' ; ' I о уг 1 ТГ|Г •'• i - \ V V •• - •; ® \\» : '„•Ki1 1 s i/i'• i' \Лi .\ •-. • • .!. •; „u:v.s '_. _чл {•_.! \\\ii \ •• • •. _ _ \ .' f .f\\, i, •' /V IT ''' ' ' i Г »i : ! • ' 1 \ \ • ' g /i ' • 1 i '! 1 CO -." " ' ' i i• ''•"' :.. 1 - i i .-. j ; i

- ; ' ?- I '' ^ 1 .' ' i I / M / M \ oo LU \ \\ \ o; ' /, // . - - L - - , , / i ' ! i M • , 8 *~ i ii i CinM ^o2 I !' ' CL i J P 5 Ш \in я- , - - 1— .V II. , .. --•-id. . . _ | 1 ^ 1 / и 0) j" • \ Ii . ' § i ~." ' ' ll H • / ii * - 0 CO \ ч : - • - - i it о - -- 1 - ii i ii 5 °° О ii t ' 03 ' " H ? ~" " j «- '' 'J^/' ' ' ' о \ \r ' LL. , • j ii 1 \ il 0

" ^^х. Ч\ \ \ . j. ! /' ii '. ,-»/». . i Ц . i . ' .

; i я , i 0 . .// ., .. . ; i \ \ i • "". . • ' 1 j _ *И. t . — i , . 1 ' '\ \ ' i k о и. о о СО О Г» 8 8 -. g 8

8 CM го о «M

225 il .; . i'jl -i- I u I'll ~ - - i. » ! | ~~0 * : : .- i n i "\l!fi . ; MI i • 1 i / n i ' и ! " ' '. - '. I " , о о Ij , - I Mi го ! " M ' ]• 11 - "i »i ; и !'.'» r* it i i i / |T , /i ' \I M\\ \\i \ > ' ^ _8 i j/ Ч1 !*~ со i /i \ l //' .M/ // i ' l/ , / i / ///" • 1 ! • ш / < / t i 13 i Ii i ' ' ' i i — ! \ ' ! СМ о2 i / i 1 1 1 1 i о. < i 5 ; ii LLJ <л Ь- 0) n 5 1 о Е N- ; i О 5 «tfc ' ~ ' ч 0 i I II СМ e1j (/|_^ i l } If Е LU Н 1- I ! ' ? : i.' 'i i' с«5 i " . • 1 1

» •' • ! . ~ T ' i ?!£' ' ». l_ /i э i0n> О ."-.' / н' Д LU i i i il , t i j ' It I i, \ i л , . ii» \l 8 "• т- л i - ~ О л 1 i t 1 i ^ ' i ' , II , i | • - i /' ,i .1 ' l /l ' 1U i ii 11 , 0 ! I ! ', i /i ', If) ! f -| — - - l j , !! -! In ^~ i и * j-1 \ -! — i ii h- . . i\ i i ! : i i» i - - «\ >\\\SJ - : i L ! i ii i i i i l 8 3 5 CM 7 -M- If) ю р § ч- о *

226 i i' t— * ! i V VM • • -~.\ т XX\ hi LrVi. in /?/ t /-,- ... о !'t 8 !/1 CO in !" \ч in ! i о in • i о i,i it i i i l'" i iii i

о in о in in in гм in i11 ul

о8 I см

со LU UJ a; О

i8n

8 8

8 ex CM

227 1 ; i\ '. t. , i : -i : ! -• i ,--; ', i i "T .".; г i / ! ', • i . ! • •! , . ; „_.. , .; _ -^ I , | | j i -! - ! ; ; l.J . ... i- 1 1 ' 1 1 о [ПРИ { • •; 1 1 \ : 1 ' I s .лЩШ \ 1 1 со I'lpl ill .. - -_1 t i ?; \ ч 1 t 1 ' м.О ITi[Hi li и i &£ I 1 ; t j i ! i i " ; j 1 1 I \ WH) l Hftl 1Л , irh № U; 2 ttf tttt a:

| i \ s \ 0) nSi I j!fl - il+» з E; ib IHl о / " X, i i ill 1 о 1 iiii го Q Illl ,Jl It . i r О i | S t 0 -i-4 ff-^ i ft. !:J t" CO . lj>. м I ,. i; \ , i i >|! :, i -il .1,1 „,r ~ •It ;,l, да и. u .' j!; t 'I ' -'i о t1! !ii- tf i'! ,,. .. ;.iJ I'i ,'.I' • " t т '' •' 4 I". \ ll.'ll- W lit / lii fii _ 1 - - - -. - - t I 1 / , 1 ' 1 1 t,, № о 0 U. 0 ,-r; со г- о <° г Mi X,| Ш ^wfe 1 1 1 1 1Л \S g £ CO 8 8*8 см

228 Ш1 1 I'll t 'Ш Ч -Д! fit r '• 1 i Ii! 'ТГТ T "IP iik 1 r ТГ 1 ц • г|;г-, ЦТ| .III i J J -'— i •!• 1,1 ( Ii 4* 1' t 1 • ill! №Ч j № т P j_ ш1 ii iI f i- "" 4гг iili g'M i It 1 T" $ iiil II t 1 Г;] ! ii i! i; 1 i 1- fit It! ill! lil' ii: ii Ii - r iiji liil §П1 ш J ILji! j i i, i. ij .1- г ' '1 i i f1 i 't 1 il! |Ui "tf* 1 fj] ш illfPj! 'i Mil !!•' ''ч 1 LuL ii! Ul ij i " I'i Jiil-l' 1 IJ № i ; iiii -il il l: 1 n iii !!} ii i'i '!L LJi i ii fl r • П" •p||4 ij .lil 3!4- ii jj' • Hji ilk ill ij .iii ! : uli I т Lj, 1 Г jui P- :][:,- i1 «rII 1 !; liji ii' 'il !|1I!!! Ч Ih ft u US - .uu. iIE , ') j| - i i. nil i;'! i !, ' h* !! : !r Xни ';!' !|;i fi |i in 1 •ib l.i' L Mi ';t. "'!i и i :i> / i; ! •i : !u "I'll'u u!_ i'i '•'"' -tb J j i r\\< ii'. hi, in Iu. . .'i i L i :T|" .rf i'ii 'iii -x . „1... ,,1: '$. ij. -41 Jli ll— — J! id |; 1 T •I- 1. s>>• - . . 1 jtii гг. i ' \, ^, •t : ( 'iii ''}•' 1 •rH- "j ' I ;; 1 i -' —u Jibj'L i-J .JJL — , 1f 1 ;j •V • i ; 'r/ i ij ' il ! . . u ~r '-' .л 1 ! 1,'"i it. ,' i' У ,.n l-l 1 r :;'i Э. 1 •'I- in, J. .-i *•;- S ^1. ±1 "*!i— r ! i '-h '; il jS '•-'; n't ;•! i i /1 .- J III !_ _ :Л j- i "T^ii",' HЙ K[; r * 1 ,' i V li1 J 1 i 'r t: i ", •r; \\ - Hf --1 i!*' -U~ ГТГ ^11 r~ 'if Гг -i' i • il'i .и: -i'i CM 4. •Ы •Hi -т- H OL .4 r- r". 7' I IL '•!" liii 2 _:„ 1П $ " il \

lllL i. Time — Minute s oil ilii :>; _1 , •b •V . 11 " •- £ /ti 1 t ri i ; r'- Ш = .-*- л- FES T * 4 - GUAR D TAN K PRESSUR E ••; ._.^. _u. ",i ''' Г it - •"" f " ; i "17 1 8 •• \ и и ",* "I •i in JO -j; '.i • ~• 1 i 1 .t • - it" ! • II J I!' I — *— !i" ^ •1~i: Ji'i.- iii : I

i # \- '- ! , -^ • CM

* ; i FIGUR E E-36 : TES T 4 - TEMPERATUR V'i /... ; , r'f i -H i < и ~' t i, 1 ~—i i, i! i'j t i ' i .•i .ui 11 ' .•, •!i F ,1 f ,t • t 1 I FIGUR E - l\\< i • i ,! iii: 0 i —— . 0 j i i, ' • i -tji t . i : ,^ 1 ' M г . i ч -i. ill;. Jli J. jIL. i! " \\ — r f[" "П 1' ~" 1 r I P 1 1 i;; ?•.[ ~;f ' 'i! i '';! «-i !. i ' i'; .V ..t ,1, '' i ' • il Л. '

- 0 50 100 150 200 250 300 350 400 -' r "i ^r 0 in q g.g, in 2 S- 8 сч T ° f 1

о ZW/N>| m in ^ о CM ,T CM ajnssajj aimpiarlni9 1 229 1 : ' i i . ;| • i ! ,• ; , j! ••' • ~P |y' JV ;•:}! :nj •- H' r ч- т- i.; L,.^Lr;;>5-ul ::, " 1 • ,;j _ ijpn; :,'••> • ! ' 1! ;, L !"/!^:Г1 . i • .!':•• ,i; Li • $ L' '''' J ' i i ._ «2°^т°5а '' -. '' ' '1 i YX : \ ' ' ! rtininS?5S?L ''•'•' , l 0 i\ - i \' - i - - 1 .!. ; .. . - о -' ' - i bv i i • 5 M'I , .;•;.. \s i. • *K-" ?' - - i \' ' • i I • XX '.•Щ »% • •• i , h xHftN •V/ i '< - I . ' — i-T .71 - ' ' --- ' . N{lL/ , , !' j о '':' ! _ о 1 , \ _ i \Ctl ': ' -' _ (i I i j j & ; i со If v ' . , i , '/Ml i i /Г? . il 1 Ч • — - ! i>,; i i • ii ; -. tf.' , - - -j ' t\ 1 ' о CM CO CO .' j. ЬО 000 ',/ / ™ " ! * !rt i ' ~ LLJ LU § О£ |i[i[r .• j ' Q£ 1 э D it' ' U f 1 ' L ' I'- ' V. ,-y i / oc ^ , 1" ' 4 V LU О. >v i '\ -3 Q. .. №л \.___ V \ / 5 ,V'A \ ' i о LU V \ \ • — LU \\n \ сgм ;"t \ \ U *л \ \ •• • ', ' 4 - - * 1 vi.4 "4s\ '\ «: \\ i l - ', - ' . 1 is i S§ \ • О) III /•' ' ^ • S ч t Е ь- / ri I /' ' *~ \ _ ^~ о •= .. w / о со OCM OCN /? / , 0 о CO см t Л Ю LU :'s i i LU HH? '"' / LU , III • ;/\ V™ '*/ / Э VJ '/", / ' '/ •-* m О л О i/- LL. iN^i'/v ' \S) \ I A ^^ ь j - I - - to /. 7/ /' ц/ 1 ^ < :i; /' П> | ч» ' a1; l H •""' \ , *u • i iii / "• ' j 31 i In , \ 1 _ ?П ' N — _ i n„n / _ 1 _ 1 v*\ - -^^: _ л э fi i \ — i ix, / i i ° Ч х ч ""~^ — " .— iiij/i -' - -, - , If t , j Ф f 1 , i /i., : \ IB t I , • ' i Hi • , ' /'* -т .. HJ l i ^ * ' i ' П \n \ ' i " il ' • ' ' ' --^^ • " ',§!" : i "; "g SH ,- -- i - -r - - ' — , - - M 1 МП \ I | |lif '-I ! ' " a]. . ) ' III'1 'I С j 'л\\\л , ^i о i с? V i о ~ ь^ о1 \ — ; $' • « . • -- я i i° s / ; p i \H\ I " ° | CM i fi i i i Al ' 1 , 1 IIUll '1 i ' О IL О О LL О О 4 Ю Ю О § I - О

230 ш CXL

LU О.

I «О

о: Э О

231 I* iГ ' ~ ж 11 ,-•, ;•' I I '. '[Г* * иж ui, It] H- V, 1 ,1 'n IP Ыth.il •**r- -.+t• lit fib Г'"' "71 ••' ^Sr ч 1 1 ijl' • 1till !ч, uj ,; Mi '•/ ч Hi ,!.V t I: ;< о Ч i- i о 1 1 о • ; . ; ' Ч1 fei -ulЫ- iV .л _. ! _ /" ?' "f! гг-Й "T^ Г-i I . 00 It -4. Г ill <• ! ~ , ' • Г " • . • 7~ о I'i в/. i о J~* *P ;. ~" M "~ ё Г' .' • * j : '•- , со '." "j —, •• ! IT JO i • ' r 1 1 i , i f Ji ~. ш '.fl -, , ",\ -;:' — - - 1 - i. .i ,1i .: "1 > — J- Д i ~~ —- -t- -0 00 , -— 1 СП - - L -.. .'ГТ t -- Г • 1 Гt Ч vr • • T 1 ~1 < i!::] i~-" a ,.., t-.- -' . .• 0£ t n Ш 1— О. Л — --'- 1 t i *\~ о 5 \ о Л : ю 1 , CN S о со' T"1 _J CM ,- , f ~ • 3 -j. V. л " _. Е 2 4Г I- i- ,','; - _j НИ /- - о> U _. J ' ' . Е UJ .; -f4Гf !* f- о ^ 1 >i//-J :,i 7 >_L:_ _ ~" / LU 7 /r W'ill " r-~f Ш ' - • / t - /4 "П — э / f .1 о ' -1 I - _ 1/ - 1 § rft 1 1_l , i 4-fe 1 ' -J 1 r in ,\ .11 -Ц-Л -0»j ::, -1 5-л i : • ,1 " ь t -; , 1 i 'i -1 —i •iaH '• — ' _. — . 5 *~ R - 4 i - - 1 Г! "1^ 1 ~ .,— -i- — t — i • 1 Г •— 1 i _ ""' • i I I_ i ! „i , 1 . i1 1 о j i S i.. _ I "U [ ~j 1 i **i i. - 1 „i i г | I , • Ш 11 11 О г i f §| a -'iir g), s t f< 1 CN|i & UL о о О о г» ^ (О

232 . . ; . - .. „ f *• i i i * I . •:'! f ^ .: t ' 1 ! .j 1 J л.: • — ; — 1 — гr- -\ _it -U !iii i , 'i "I""?'. ••-ii 1:1. L « о 1 i 1 I a > 1 t — 1 . i i * 1 . u. ii , • •• I i / 1 if i f i J i 1 |j • ; - !-— . f 'i j» f ; : '; - . - i i < 1 О : I*, * ! О ~ s r •-. '.L. ^~ - •4 CO ; 1 "1 > ! i .1,' f • ; Ь 'О • 1 i . _,,. 1 \ i 1: s - и - t i i х г «U-. . .1 : X ', ' 1 _. JA- — rl \',i i • "- - сiо , JО -j -• , \ 'I о * ~ ii« t- П7 о -k: ! • • i 8 s ...-...- ',, t, C*> t/> 'l.. - Ll1**^^%Лi il .. . , i •iji ш •i' i . .J 1 _ 1 1Ц- D ' iJi 1 I ' • .- ---г*- CcL LU 1 iU- i.i! i ! ii 1 " Yi X I : i— „1 _ '•! ' i | | ' 1- L .p'.C •4* --i if;

i 250 0 ;,p- i 1 л н TEMPERA ! LU j - I .i ' t ! •Г' i ,i te s i— •, • - : 2 1— 1 r 1} с I r 4i .L, ii- '• 1 , ' П' ГГ ПГ _l ilu i!}i — ; , : Т ip" Eс ts*>- э I 'l ц 1 ' ш :.: •vLi.--i-.-.--l о E ю ' 1 ' 1 Г"" 1 1 il Ц о н • . . .). ! — . . i ' '7 • i .1 . /. •i"i •I . I I ' I ' CO I I— , 'i il' Si oo i . ;i. : 1 '1 1 - ; r' r E ш ( l;' Г ^ '_! 1: Jl ;" . • i |'I ^ш "П : r ' • 1 CN 1 1 Qi . - J.j._ r ~ -т -'; "I,' r ; :• i 2L] " i; j! - .'--i :--i\ ~• -г-*— t 1 .: '. О (-) о ^ i ; .;;4 ! | - . - < S £ 1 CM O£ — frr 1 , •"••Ь , ' : _- ~ i '. i ' .M * l 2U j ' : • ( Й ^ ~ -- - -f ' • H Г О llll -• Г, f i i * 1 J^j I ', "ii ! :-f [ | Л T I 1 1 i ;_ ; t ^e л .:_: 1 4-' .L *. i i -1Г- " — *i 1- о t ! UU. 8 i i •* -"ч !i 1 • ~ e м' Ti' ''';! | ' - : ' : - о i - r i :"/Ti~ L U u.r " i i < > "' -] , K- !,K it! ( ~"\Г . : •!• | ' j i .. - , i 't ' ' "t I , ' ^ if.. : ЫН/П18 i ' i ;[»_ i '• ,, Р 1, IT V ',; L, " ' l' 1 ^ - -i -v -ti — rt! TTtT f . i! ]"•; Jii if; .Lil h CO CM •- i i ' i i .. lib i ПГ f. • . •/К I/ i'i 'j о jaMOj jaieaH '*!' r_ :•!' ill'j-i о .. .n~ j --£..b- i : ю ' ! . л. •- ', •'• . Г.", *4! 1 ! M -. I; rj 5 • ' i ; :' I*' *; i ti ,1' ' *i ;/V .1,' a ! ,1 r t-'i >;• s r; i P" 1 о 8 = -1«L J!: !S. •i -8 !-i -• - tN «- h-tt -FИ nr 1! 0 о u. о О CM О N I *T

233 о о л

8

со

оо ел 8 о т и -1.4.1 -'-4-1. со ' -^ |- I И < —!:. „1*\ i-- I i i en ' i • Ч1 ' , .(- :- { -j2 I-, j U--:i'.

I ft

5 UJ о ш о л

8

234 l '.: fA '," MM /i!|j — .jU ~tj.iili I/---: s f" it ~ Г if ! 1 ' • i I!.. Iji, :|il ! .... i; ' •;:i ;;ii ti'i - ':''1' ; . t t • _ L:, Li-1 /. 4;, I и;;j Hуn' jiii ; 'ГП-! 1\". j • , 1 . i • II 'j •'u ; I..] ji -- - .--j ', IT " h i : 'if! (!!: i Г " Т Г "*Л , . Ti ""-I i'f, itii !!i; • '.: •i . -Л..Ц •'"iii. l!' г . " •]"Г-Г \' ': ', , •.;, •,'i 1 !h; '! 8 IT .i. J : .'|ч;V 'f й-." , i i и • 1 |L| il — r r-SllL ~ -' i." ijj. ]i!, 4i i i , 1. i i." j[; 1 tft -— — _ - Ji - 1 1 i'i .,Л r_[ it,- -> ..л. ill. II Й t 1 1 'it • , '! ' t 11 8 . •:: i •1 •:'- 1 ir in 1'!' V. CO 1 , 1 т ^T , 1- i« !'_ 8 , I , ' i— L* 1 f w .:' , I ' „ . L i, it- i-tl ;l :r-r j: j- II I , _ • 1 !j .'.. 1 '•'!'• III -- =»^ . i, T' * — _ i, '. I 1! 1 ' ilii '"1 r ' ~ - T"i~ Qi ,'• 'l 1'!,' 11!. .1 '£:• -ti.1- • .' L _ 1-.4. Tr n i — '"" , i «Л " CO -F -.-• •j. ... ''' ', 'iriji • l' i. Гi ** '"!' I i i: CO h . _ IT гт*~ - : •-..f ф,- "7 / f u uu L ~.ii. 41: "~ -U. •ir . • "1 "IT lil 'x.l :i: i'iQ i-' ^L_ ~> V'-i ;'• \ Т I ' , . ^" J ' •;._. j_i. 5 Mr " ', 1 ! Г. " "*M, ~ M ' !' ,, , 1 l_ : — '•J •. Hr. £ - , :-: „ '- г r TT : • -H;- ' T M с 1, /-^ г \ ^! 1 t i 5 I J — 1- •¥• 4 I . 10. '-~^r— N ~* -- - i у -r- -Ь f,; "' i 'r —fr: - v ! r- ' Г -T'l t- -— s j . i •' л , It. •li ;П: i " Л f 1 T V.'t 7$ v r'•I'- • . ,!- .r .- . ll' 1 1 111!. udl ~~T> * * i : 1 . ' i-' . II rM - 1 . |. , *7»" h- f пи чХгР" i . -Hj JjfJ -T ;', ;Vfc '1П '- 1 1 , 4 •:1MirI • 1 "' f 0 D Sd c э un CN * сЭ ю «м

235 T-702 £702 300 - 80 / T-706 . < T.703 / T-703 ' / т-704 Г" /I T-701 / T-701 у>:=~|=-г-„ f'^\ СЭ — -iss— °*r=:^ta.-'=x ^л х~^-а — =— ' " — ~ — •fszrz"^^.. 70 i ^•S*4Pe-=y"'\"5~:--- "-^ ^

290 60 £ f°K °F SL 50 - :„.:-. y^ _ -^\_/" Ш /

280 /... .д._ - yf. \__X 40 ;

1 ' 1 .1 1 I 1 1 (3 500 1000 1500 2000 2500 3000 3500 4000 Time— Minutes

T-702 T-705 300 oU / 1 T-703 / T-704 ^ V [ T-701 t =r l y 70 . *-=.=^'*"~T . !""! ~ ^^=,-^'=^4S^=rf=^=^r^ I^f ^.a-*!**?^ -, - - - - • - - „ 29° - ._ ._.._. ___.._ 60 g°K /N-^ - .- r ^__ _ _ .. .„_ £ °F 0 E .t ч,^ s^** ^- ' — ' — £ \__/ \T-AMB - ~/ j.' -,-• \ «-_ __ . 50 "•-^- — ^—•'•• . .,„ ^л^-^. — 280

40 i ,i >i i ' \ \ , 4000 4500 5000 5500 6000 6500 70C Time— Minutes

FIGURE E-47: TEST *6 - TEMPERATURES

236 -,,- - ,-« т" ~г<; •\ . \ \ Ji ' 7 4 П -- '-' - ' — - г -1 !- § 1 1 1 : i 1 * . 1 1 i 1 ' -- -_ 1 -1— -_1 . . i -^' — 1 i : 1 t \ •II' I. i I Л -. I - ' „i 1 1 1 1 i 1 ' Г ' / 1 I о •'!•",! ' i / —. S » CO ( 1 1 --•-:• i " •' - 1 , ;' 0 со i " CO ,

т.'^ (ь~-£ ncj 4Л LU i 0£ ' t— t CM 3LU . О. I г h I ! - i- - _ , 1 < | о Е ' ! ' ' ! \ 1 I «о § •= -Ti-«o-

! i " i H / У / / о LU : / / / g LU ' '.•. ..: .' . ! / O£ ; -v\ \ О : 1 > CM , j1 -- i t f о 1 ... .i ... . o> 2 8 1 ! : , 1 H "J , ' 1

.. „ \ ):• о ;*",:• /т: § ! 1 ] S М ' j "' j. ./ • in " : " j 1" " Г • t / f / J ; ' •_ — 1 ' I ' i1 1 1/ 1 '" ! о t~. § 5I Z g\ 8 T *' r ' 1 I 1 in aarnejaduiaj. S in 8

237 o> .- tO 3 LO ' t~ h~ 1— ' 1 : 8 8 {//* in •• ' // / - in ,—• * со • ' * ( CO "О \\ \\ \ 0) // с / / ) i .' с / II I 0 f / (J // 8 'II i И s 8 2 г. , ,ч 1 1\ i Э \\ ; ' , \\ \ i II о \\ \ 8 S "M> t_. 1 § 1 I s с R 3 1 in 1 H \ \ 0) 1 •** 1 : - . \\ V о 1Л \ \\ \ 0 '"-• •• \\-\- Ю S00 яin \ V i" 8^ h- IK - . . l.i 1 Ш // я 1 1 • LLJ 1 II ? - - - - ' i i ' оЭ О LL \l 8in / 5 * - »' i " tf /J / / ' • • J 1- '" 1 l~ ' ' 1 ,

1 ' V 1 1 § 1 1 1 I 8 g 8 ' * о"- g § 8 * I 1 1 'ill1

£ сОо in Ош CM

238 1 ' ' 'S I i i S 1 !& . ' '. I ' •ч- 1- :-! li i - li • ' . 1 U ' ! .. - J \! : « . i • ! ! ; о : ! !j j ! - CO • I t >• i > In i 1 18 1 ' , •!. 1 ; - -- > Ц \ ' if i \w i t i _ 8 § f ' ю : • • /i i ' - * i (О : : It ! ! • \m \ ' i li / ii i i i • • \v i l о IM• ' со ' ill) 1' s — CM ' - \^\ \ . ' ID ill! i • VIII) ,1 1 'nil Г »4\ ) 'b'i /, if 1 D С 'l!! _ § »-•-»- oo >i i ' _ /Ill in in in in з: • CM Ш Ш 16 i з 4 с f ' \\\l i , /i, Ч> ^^^ »»\i j H I1' N 5 •^inЭ» \i g il i— о i И1 i о - / ••'• i in 5ГСМ;i _ ,-cО o ьf £ ш in in in ~ ' " ' \ /If Г jj. ,J_ .J. 1^ /* / LU \UI 1 . Ш ' '"4 1 ' Т 'им Э ! ' '\iv\ i ' О illl 1 ' о nn 8 - ' till i •- —8 /III *~ 1 HI M\\ \ 1 'ii• «in0 \W IH /jj) /' i ; ! vi i i ' In i Vi 1 - ; . »iini i/ i _ § 1 / . ; ' A' f : " •'& I . • - --г- »// -i»r- -- — 1 1 ' i i |H 1 1 i . ; .'!!! ! о „ о Тг^> - г • 1 - /{{.;• .' -1 — r - - ^ 0 S \'\\\ V i t i in i 1 • «\ \ 1 ' i 8 $см 9 SVc)

in сСчП

239 1 1 " ' 1 .4 о , 1' 700 0 -- - « .- jj •Ii iri 1 7; -j-ji -i j! L ' ! 1*v ' " l|l П ;.'' !'[ J. ' 11 I;: .!.! • . .!•' "• {' . til. » '•I ' i 'i i 1 i ;•! 1 ; 7 • т -'j i: 1 i • i l', 650 0 _. il.:, ill' \- i Ml г i ' '\ H l'1' т ч f t Ю ( 5- i — LJJ , .'j | Q£ !• 1 •!:; j 1 1 , •i ; ! , t'r T 1- ' 1:. • 'i 'l.l !'! и i' 3 J i ,.-! '-' J4- ;.' ; LU с '•' т Q. I \] ' ii !; 1 1! i , • ',, ] , • г LU f : i 1 1 i I— • 1 ii __ 0>/ J..I iiii -j. 5 • i J :i. -ii ill. н i '-i ' "1 "ll "l ° =^ • 1 ' i, "I 1 i I ^, ' i ' ' . i•ii . • ;': i! • ' 1 I 8?; 1 i . ". •,[ \ - •'. -,т i i/ It .!! is \- ' j '. •>-\ .: ! H .. 1 i : ! . •\ ] ' . .i. о , ; \i \! \, ' «о -i.i 1 -- -—• ij. T ** V 14. \ , L <*• т *- LU ' s7, J .: i LU ( i ! \ i ' Q£ i. ,- i'_ J 13 " t i • ri- Ьт.р i "ii i' ' ,'/ О , .л t . • 1 ').! ... M 11,- 7i in ' 1 ~r -i I " in • in !;f';-CO j •1! ^ • . 1- 1" in . 1 /л In -.-- i • ••> t ~ L '- - 1 r> ''j 1 1 !'i 1- f -,1*1 14 l ,1 " " J Г'г. ",i , 'F- fe U-U :,i^ I j if I 1 l, w 1 1 'i.i' hi i* , ii i 1 ; •i ' t\\ П1{fГr fi;i • /' ii: t-* Г jil . ii- Mr" I!" ;'H Ii' r i , - ~rV -1 tr; П ll , *] • , ifi : ti n 400 0 1 , f i I!', ,7^ -' l' *' '• il *\1 ill* .Ф 'k' с сэУЭ рч T U. Ч Г !g s г о T | /V 1 1 V g о^ g g ajnieaadtuaj,

240 241 7 It ~ 1 T~ т,; i' t •). Т- 1.. itr :-Г 1 .•1 ;; 1 ".'' .;,- ;;,', ГП ill1Г If- ! i' ! ' i ': "1h Ft,' Mil ! 1 'i ! iii 1f m ii 'W iif i id : № .r i~* Th it!' it It H : ,1 nit ' , tf-i Si; |. - r:t ,i - i'l: !']! Ij . •II \- • l:li || •ill ! H -ill i) UL •n .^' if t: 1- 1 ',' if t • it $ •i; iu! $ • И 4tt Iin «in •T^ •t . I" ! 1 i ii' r Г 'if. t I |L: >[! •1 ii! 41! |Ш -- L2 -t- l-U L T -- ili Ji- : ii. ill! il| Ii' К i' 14- * . Oii -4f 4'r I£ !l • t t ; 4; ! .Г гпт t T lit !li. i- • . i * : , m- fill ;!й }i' till IF 1 1 Iff j. i 4ji ifT i i; tit i о IL ill, -U Iji: ' t!" о L! •t^ — - i... -> i|i| Lu in г !T • Т -I i - ii' ' ' 1 •j T 1 i го - V 11 tin -i if If ' :r! 1 l ! ( H 1 I ' I'l' .' J. ill 11 ' , г 1111 j; , 'til -:• ь-- r't _l [ ' i'' -t •{' - dl tr- ' i n i ' 1 1 •i! . • Ttl -.1 1 •Г ГГ r i 1t 'MI .i ' \'-' ii'i i! 1, ' l -U- _i_ i ч nil iiu --, r -U 4- J .'ih *t i "t!< -- : I'll i.i !T 'r i ;; i ;; f Й|[il • Г г ' "• Т 'ч 4 iT • 'i ''!| Л; I'l. i "i t Hi ' ,'it 1 •U" !t' ll| t.M "'! ji' - •- r'- V 71" 44 Г ii*. T Г" * t ' ii 1 i 'i • ii. i . 'Г |'i .ji i'M '4i' У H Т" 1Г i.| Hi f! Г f !' .... l 1 - r- 4 Щ -rt JL i~ - •n "r il l/J i- ГГГ f; £ £ и гЬ i '. 1 IT i.i ii t ii i • ш . •;i r' * , j 1 T.I , ' "iij i! L: 1 $ 1 1 1 1 . ; i ;' , ' i t : 1 t' „ i ij- ii, Ua. '"l r — г i -1 4 - .Г ii h' , i r'l . 1 'JI i'l Hi. i!F i" i 4 ,'li t.! ; 1;" i.i 1 •r , ' ' i ' i . i i -,!"( 1 "l if ! ' t 0. _L li 1'li' •!:> ji ~ - -T i - '7T7 ,l' •• if ; 44 ' , - t", ;n ti'i !;!• : i 11 , '. i 1 l*f , r l l! £ ш 1 i ' jiti ' 1 iii: i . ," bjl •i .1 t t" : l ti, :,! S *- -: **4 TT :yl •U. ft; С I : — ТГ * , - ijit 'ill ; ,'. 1,1 T f i' ,i ' П i'h i. ; i U i'l' i, •t H ;•!; ''it ,. i 4s L П 1 1 r i.i ••"; j;j- ,i' i l" 1 i ' } ;hj 1" --. 1 ii-i jk ч Iii. — 1 1' 1 -•4 ~~ I' Т 1 "^7 I'. isr|r' it! l . . •hi ;[1. llil ii 'jit i'i' t : i" '!li - ,1 il : 'i r ' t t H I- in , ; i г . CM h'l ,;t; Ю j la! n ! eg -.1.1— in . in- j ift: in - - ii Li. in ~4 H 7T i ,. :[r| 4r *T"i 1 H- - л ' CN - • - i i h- 'i , H i/ jijii' ; h- - 1"' J "ОI , , ,' , • • , i .! - •i ~f • ! л 1 ' 'I! 'i , ', if.i pi! I:;! 1 , . i . ~ " * 1 tit 1 ; ~ Г".' I i i'i "И • : t . 1 ' ^~ f 4 i,;: 1 ! i ^ -L - r. i ' i'i f " 1 t rt ц 'i t I t,; 1 ! Ы IfTt , •*- .„ r '•! t i f Г 4 1it •iii - О l" " -4 ' t - 4- --Ч 1 1 i.i: ' T ", j ,'it .it: .1 ' t, ,1. i-ll. j! i .П' -- - il i'it . 1 ! *- ia • mi. iL. - _ . 7- lilt r i r" т 4r ~ •h ji T* if•<-r •rr 4~ tfjl Лг 4- -*-- : - 1 1 i i. t'l. li 1 ml r ,:i ' : ,\ ii 1 ' l "b -- — — : .ii -,- .ij •" a, - - i, *~t ii ;•;- ! t~ r ?! T .•, ,4 - ;j; I— i ' ii| ii ' 'ji 'If it» : 1 • •- r, Jr.. ;': f • - •i • ' r '!, tjjj irj! 4, .Ц . ___. _. .i-. ^ 'il --' '-V If 1 г'.— -in ЭД i ~4 .'l i T ' , .• " Л 'i' л Л ; "i'r ft'. !h 1 'r. aii ;i' :i't ji ' H '}'.' iff] «i 1 '! ' '• I. Ч •I'l. i. i T •t: : 1 11 i if 1 : til :' i i' И fi 1 'lit •k if' .L< -u 7 Г t'" !'!' ! t •'1 liittpl L |T^ 1 ! "'t ! t:T •; It i { i Fri : •! ]1|; i;', t,I I'if ||;, ftp- Й fi : r* rA i ', 1 1 Hi •-H till fn r' 1 '• t t::. ; ! •:• ",'t (i. 4 •!;W •'ilt IfK tf;i ' 1=i in . .L: • rr '& . i 't (ii,it' i'fi irri trtT l'i «i. , ~- Tt 1 L г : 14 •IT. i : i 1 Л. t; l 1 h: 'i' •ifj 'V ri. t : F-R iln }T fttl ' ffi'Jt' *L :ч jis — • ! P и;; .U i' ,• !. .J. 1 1 : 4 1 i, 1 . ..:• !:' -.И: tr; 1 1 :fi 'r «r H ! '- ' ii~ V •f -III Гй! 1 i: Ut' it S ! U t ."" • '-' Fr , :i 111 4г!- T'l: :••; Л!- 1$ p; jpi r nn «hi S ° S О U. S О S •Т О «~ Ol CN

сSм с8м 5см 8 с8ч о* 88 5

242 о о § 5? s oo s V s CM (M С"0 CM о см

243 1

I «О

CO

О

jamoj

244 оs

—i — I .

L- > I ,_ „, T" * .. .,r

о .' ..i - i- '...; s i Г_!_д см

{.: . Г;-i . -,.! -L (0

LU i i a: ! ! I

! ! !-J 1 ---- LU

' ! i 1 I J _1 . 4 t/>

Ю LU I LU OH ! I о i i8n

Tt f

О 0 li. oo r-> о

сОм) о 8 245 i 1 .1 " 8 ' i 1 " 1 I ! i _.j. 'I | ( •i ['•;- ' t ! ; ' iJ- j 1 ~j i i о i 1 \ — S ' CO 1 -- 4 i i I - i i 1 i __ , ; | 1 i 1 i ! 1 i о L . 1 f N ! i ! CO j ; ~ i ' ' 1 . 1 . ' j • 1 , : 1 g 1 ' [ [ • (О |- - 1 1 § i j ' ! , CM

, N i l ••• ' I ! ID v . о «/> '-j-l - — - - | - - . - о »/> ; 1 (О Qj i с : у 1 — О ^ • • CM 0) - E ; ^Z - i- -* -r- l . *~ . _ 2 1 i о •"" i . i t • i ' ! CM 1П и О£ _ _ _ - -. CL f ! r 8 " I s i 1 j \ - 1 1 - - r -r- 0) : i -' £с ч>^ - < - 4- -t - . - . - : i -v - "i i 8 U r- —— __:_------;-h~ l | 1 - I- ю : ~7 ' 1 i • ^ 1 ; j ' LU г i _J _. 1 i i i i i - '! - -•- , - i ; • - s § J. ; ._ i.. . ' . . ' -!-_ о i ; . ! _ 8 > • U. " ' -iI - : in ' i ; • 1 i , i ! ' -4- i j . — , ,— I — i 1 1 . 1 !.„ 1 * T _ L -1 - ! i j ! . ., i i j • g ~~r i r Г •' - -1> ~"~ г">7 , 1 ° , . ;i , l • т см о со см

in

ajnssajj

246 1 : i, l • 1 . ч i ~-' 1 ' — -r "1 - •~i'ff!: __ . _ "{ -j" Г - — - , . . . _ Ix ' i 1 1 - -—- - - . :V ! — r - ')"""! " - i - i \ ' . ,_... - '.. 1 со ex • 1 to ; \'(: - i.. •' i LU 1,- 2') i !. Г' , , : _H j \ ^ T f _ — — ! о , ,.! i f- — о X**" • _ л I ^ sin S:=: i 1 см ^N . ,;! i (0 5 '' ' :• , , } 1 'l'. • i •c' ' ' 1 Ч i X • 1 _ ^ | - , J-; и - ~ r i — T*1 ' li : i 1 8

JJO±c.Ol

247 §го

«л см LLJ о; => S LU О. «I с tx

О) to

hs Ю

О

«- CM CO Tf О О О О h- h- h- I- h-

248 1 • • :_ .. f^tt ffi ;i f } ! 11 Ifil -.;- uCM CM CM ty trt •; о •- 1 in in I'i • >- см '"!-! • Ч n 'I'; ш ш • i , (— >-h- " \p j 'li: & "i '- 8 ' '•! , ;r : i r* CO ?1 r1 Г i . : - i - -'- i-;* - с 1 ' " I •!'• .ti !_ ! .:. m Ц..1 •fi ""i" i • 'i ';r |. •rf ilil f J'[ 1 ,:./ '•'• . !L 1Ы. I со ' Г n' n;; 1 Ш ^ П" Л'! i". т: Г T! it |] «it II И 7" ! ' С\ 1 r- _j. I ', ! lit! , 7. i i i 'i 1 8 '; P ;П1' ,1-Ш in ":" j" ii CM LU M о: • t't Э .-Ц- _ ! " - Г ": t И .. -j-H |; iLU -; 1,' . L 7i О. , ll —1 ^ ui ti ~H f! . tf £ Л"ipП: ™ »» !',, Tt"! J" I -i -j i / '// : !' ! •i с с tx : 1, ilt (ill iit i :i : i ' 1 . i !li! ill t i . , I -,r~. ' i . li-1 r ; f Mill} .,': ! i !i ft цiFI M'. ' t i' ! i iii11i ,.f ; I .ill 1'I И: GO '"T IO "i ; 'i .tit м;ш --/! ~

in o> о in CM (0 g

249 1. -;_|.p. L_ - r-j" i J_ :. -4 J-L J i ' . i. _ ^ i со ; ! 0> . j- • i 1 h- \ -- - : j ' ' -чa -•• j ' j r " Т < \\ - n • , ' , 1 i i \ i * i\ - - \ " ]' i со frt LU J-: i CM со CXL 1 . in , ш D 0£ •• Э i • и'! i \ h-

LU i , - ; ^— , in \ - Э ю ЧЬ . . *~ - . ! . (-1 , 1 CO I ' LO ! 0> LU i b- -f- - I •-- H \ 8 f> '• L^ / 1Л ю /' , ' : 1 ' о ! Ч) LU / / !" LU 1 t o: i i j i Z) / I О •_ ! i u. О - '-I „-. _; j-- -« " - i ' , i 1 N I CO — J 1 in — t I . i - - ..Li . t ! 1 ' • i 1 • ' Ii i:i ; i : -:- i '- / i . " i / - - '- \ уII '•/1 • ; i г j — !- , / ' \ ! «I О IX i " v \л 3 a e § 8

8 i/ 0 § gЛ »лi * s CM о C4

250 —К.

I , i •• .[, T ._J !.

i I I i : • • i I l „J-.-L- ' l - '- ' ! ; • 1 1 ' . 1 ' '" j ."_:'_ "H -. ; • ! C£ in . t 1 j I UJ o. • ' i. i ..!_.! _,_ ,. i uu - , I S •" ; § ' -- >-- --•! —— i { --у £ Г-ч a 0) (/) : E ш о -r Tf1 -' s J/ _. . , — , _e . -_ _ t - . ! i - , _ .. ., _U -.• |. Qi , -, ; , 1 - 1, О - - - -_ • ;;.__L -4-: - ' -I - ! ' 1 * ' . _ . L L ._ ! I . : i .1 '. ! : .i

•t-ri-r о •1%' S 1i J_p .. j —, _.^LU._U-_ \ s s о 8

251 1 ; : • ' : ' . .1 - J -! r - 1 — !. . . —j !. _•, , •- r | • | ' 1 ' , ' - 7- -Ji ч1- , "T i ~ о . • ~ S , : ._ J _• , 1 /.:M , n 1 j , ; ! i i ' • ' i " . '- i - . 4 _ __J ' . i , j j -r I***" " ' ' ' I ' . • _: *- '. . . " "i " I i со i - i j . . i .. i . i .•- — i - ' i . i : i i i ' - 1 ! ! - -,„ . i - , • 1 о ; s со . CN . J i _ i - LU i 1 0£ 1 ! 1 i _ i 1 ' • , i ш о. I !; ' О ! .. ! г • • i : • 3 с , ! i 0) . i _ i . _ - i §ю •= i ' Ol Ч) 1Й i i CN Ю CM in _ . H - £ ' i j 2 ;.. , h- Qi H Э • 1 , i • ' о О о i о I . • ' . ' . 1 " "' ~ , t i i "i i ' i 1 ' 1_ _ L 4 i . j ._' ' . ._ . 1 J . i .' 1 . ' i / . — 1 i i '_ . L ' ' - ' / 1 i • т j I . ' • 1 • ! i/ / :- -,-!-! / I ---•--!/•- / — — -4---'/-ч- • - ;-- f 1 " Г " " i i / \ V ! ! '•/ т ' s/ i 0 0 in s I3 s § u. " т i

о о T " Л i i oo о §CM CM CM CM a ^ g § s

252 .4.- , - ..

со

го

D «Л ем 2 оUJ. CO Ш

iI !4I t «л UJ I S t H- 0> _J т i < UJ UJ о

О

Г-. S см

c-Ol —^ ajntsajj

253 - 1 -1

_ . со '

о с8о

§ CM to to

£ О

i О о S ft

UJ 1Э О

8in

i ш о in 6 3ISd J. о ajnssaaj

254 § - 1 • •- I '- A II • о Т'Ш1 П ; 1 : i i8n " ! • 1 CO ,

i i ! '

' - о8 го

V '

• I/) CM ш \- Qi //'

1 / го оэ •- ^ см 0 О 0 О 0 I § ш

^ 1^ h-Ь 5 i sS %oTo й> fc 8 Ю «O 4) i I. 1 ,v, '•'"/ •-

О V\ VA ^ ,/Г

/ 8 •u "-•' ••'- - * - , 1Л 1 1 828 001 CO1 CO1 1 1 in оо

255 sо 00 со <0 л ев о оСО CоD «о- РоЧ о<• г~ г», г- г^ г- г-- Ht- 1- I- 1- *5- 0) - (О Ч ! J с о > и

to 7 3 1 i * ^ •* ^ £

о с - 8 I ' л | 00 \ 0)

LU

о , ч8- ! " ' '" • ' J _ ; .« , о *• * ' ' '* ~ • i i §о г- S § 828 Й1 С1О «Т>1 III . ю о ю ю о) оо оо г» со оо г Гх см см ем ГЧ

256 °к °F i . - т-65 , i : . . • ' --' -_j____ -40 T-63 . | - . 230- . , _ - i1 i - - i- - - - f . . I — ; , i : т-67 11 ' ' - l 1 i , „ -60 ^14— ~ ^ T-6T~ 220-

: -80 ; " ;-T7: U^-±^i^ 210 . -.- - | - !- ;-- •; — i— ' - ~~|-- ,-••• t( | • i :

200- 100 -. ' ч- М- - т -M - ; 41 ', г~ г -|i - -,--'-' L- 1 ! j , 1 :

- - ; :__|_.! . . • -j. _j._ L j--4^ - | -- f 190 | г 2 — ,- -- Jl-611 ,- -i . (TYP.) ' r -" . ' -• • ! - К |T 614 " T-620-j ' ' T-69 ЛТ-614 i , Ч , ! §180 Л£ ' : Y — „ " ..,: — ~ 140

170 ^•T-618 T-612 " Г j i . .._ , __.j_ _t j _ .. .._ j_ ,. T i • ' i" - ' i • i j I 160 : ; ! i ' ' "•" I -180 -:i -" " ii -' -;' - r f" '. ' ' ~ _ ' !" ~ " * " \ 150 - T- i •-" " - , T-524 | , Time-Minutes _ _,._ ! __!_ -..,,'.":— L _ ' —200 140 (} 500 1000 1500 2000 2500 3000 3500 4000 T-65 °F °К -40 230 " T-67 ^ ?___"_ " ' "."_ 7IZ L.."

-60 T-61 220 1 ! ' i- 210 -80 . . '._. '_ : iL _"__L__ 0) i t ' , D 200 -100 • а • " i \ I - ' _! i-' J - i_ i j. ' -, , ' ! 1 190 ( -120 - -д^-B14 '--•-' - ' -i— -\ - -,- j- 180 /V-X"" l\; .^ T RQ ' - — - - -140 ' i 'N ~ f — \~ — r_g20 (T-C1 1

170- • ^T-612 lT-618 160 . 160 ..'.,. -180 150- ~ . ' i 7 " , Time-Minutes _• _ 1 T-524. __ - • . , - _ - . _ . - -200 140- 40ЮО 4500 5000 5500 6000 6500 FIGURE E-67: TEST '8 - TEMPERATURES

257 T-610

-240

120 Т-68

-250 Оё. °F K О) -260 э T-613—7 : а т-64 1-615-// ; а> -270 _

= __ ^===_===_. -280 =Л Т 100 Т-619 - Т-621—£ L. Т-619 <• Т-621

-290 I 500 1000 1500 2000 2500 3000 3500 4000 Time—Minutes

Т-610

-240 120 T-68

-250

О) э га -260 £110 Т-64 -270 Т-62 Г—. .. ; _^> т-613 g.... • ——— Т-615 617 100 -— -~г^Г"т- -280 Т-621 ^ Т-619

-290

4000 4500 5000 5500 6000 6500 7000 » Time—Minutes

FIGURE E-68: TEST '8 - TEMPERATURES

258 C.:F 1 " i 1 : i j 11'! щ 1-ii ji| ill1 * 1 " , "**1~ т* t • . t. ta " i ' tii :.i: • ' 1 •г* illIt! ' UJ. uu ,iu r1 , Hit I' 'Hi ," !!' J uli -1. - - - iilr r- С" ~ ~ . у it: 1 \ '.-, ." !fi' .,• 1 i!. !_ , t 1 __ '•:, liu л , ,! i; 1 ¥ 7 Г !•'[ 1 "* : 1 i- - -il ll-ll -'- - ; [ ;.•: i: !• , - ш. al- J_i i ;| i, ' ^L •erly-*iii**—l '•; — J.i 8 ~ i i • ' ' 1 . ; ' L • 1 * i ',•': f ,. in .! ill. u. •^7 , i . ~' \- о H b- :. i ,' •• ^ ч ' i: i i • S " " ,; i (О j / i - 'L "~ „I i — i [ со ; i i ! ш in ; \ -. Г: . I ! . - - 1 <ч ij •it in J i J'! 1 i ' i_ -г* — гт~ : , Г "7 > i 1 \ T :: '. . T ; ] /Г ' i '^ I •" M' ! : J_ . О. -lj- rr* i'i ь 'I i "' . i i S (О 5 ."} !••' ,: * • - LU 3 I ,- r H I— л — j I . —— H Г - • -H 00 1 л ш in' 1 '.I- - -_j i in 5 CM i 1 • т in " со t t>e i, r~ i Cj. 4 '.: i ч l ~ _i - —.- , — ", э :i t • •• 43 1 1 - - i - • I 1 а> "" 1 ./ - — .1:. — ; -, ,i 1 Н Э •1 , - - -r- — .. -~~ О 1 — , "• 1 1 1 . -i :, ,t!l . i : 1 1 " '"! '|i . • 1 i :•, ,. ! . ,1 •• ~.~ •t J J Ji: ')! j II is i •- 'i ' i — 1-i i i '. . i i - ' i :** i;r i Г i _-i [•- " 11- . *T~ h^ .(-;i T,7 , • .}', ' ,, 1 ^_ ^>- -'•/ to: u< ' i j **f ':. , / I.1' 1.1 ! 1 1 i ' // 4 I f — i J ';i 1 "r -u - '" — ' — 4- rrr rr*^ .ii. Й * -n~ // U / i''i i i i-J4 о о Э о г». § V Ч со и s\ч см § г T

in in ю in X S о •- CM

259 1 ... . " *"i _ • • ' • 8 1 ; i J ~г ~ . - _- ._•__- • - _ $ г ' ' *-» - - ; С —Т г - _ i 1 i _ _l t О) 1 ш о.

8in - . § i-- "Г ffi ^£ I i i с 00 " 1 ;;;7 t - '-- f 03 ft - i \ - t - - ; . E u.i • V ' , I - " • ! i Г" •i /', ' i " " — . _— '. 1 1 i " "i1" - - 4 V .- ОС. — • — — i t- — . - о /: :; "i _~J__1 . 1 '' '~ I ! , • ! i •i ,- ' j — .. — . i ; - - ! , !-_ l_ — , — . ~t — I 1 I •_. _! . 4 "" i — ' p J j i • "' S а. о

о in * о О) О 8 со CM CM

260 и - — i- 8 --!

1 о I S 1 CO , i N §о - t e CO

^ • 0

CM - i . i о D

i

CM 2 0 Z 0. < ,

« — Minut e I E 0) ' 7' i H ~V 18 ' ' о I Г " i i' "n oo ' ' Г j. -l!._. L. 1 | UJ

1 ---;-* UJ 1 ._ _ . _, UJ ОС ' • 8 ! ' . _,' •.. " i ^_ Ю i c , ! - i ' _,i - ~: i p . i ; I [ I

0 in о CM «-^ «— ° 9ISd 1 1 1 "°lo.0l n 0 In

261 -о 0) э с "с о и

UJ

8 ,8 1 CO • _ (и0> L°U^ i ь 1 ОС. i СО t ! ! 5 \ \ о 3X 8 О ( i i <о V-» . i 1 ш - - Q 1 h- \ 1 1 / _i о <• 1 ^ 1 " S Q CM in ш '-J CL /I 8 2 Ъ / D С CO , з ^ . .• O. / 1 i /

JJ°lg.Ol ajnsS3JJ 1 I | in о in

262 * 13 ОТ!

Т43 Т45 Т47 Т51 Т53 1 Т ^ I N/1 ' T48 ; + " 4 MLI .T49 . >T52 "^ 4 " Г^ Т™^ \ Т4(Г -1 -1 Т40 T50 T50 Т40< "А- •*• 'T42

Т37« !T39 *- '31 , • . ' ™ GUARD TANK

Т34< T36

Г 33 Т31 T33 l-rt-} Г55Т50 T50 T50 T50 T50 T50 Т76 W г^"1 r TTJ T56 ' -T58 ' 'T60 ' T62 * 'T64 MLI 1тб5.А 'Тбб T 1 A Т28 ip ИД 1 /1 V^ V ^ 70 1 r'ffi I T77i 1 |T . » iA i j^ i ^ 4 • - • J Т5>Т59 Т61 T63 170 T70 T70 T70 Т251 Т26

Т22< ^Л- SN T24 T23 < ;« i•

Т19 V* WH T21 ГИ

1 1 -^ С Г>'0

Т16 *~ КЛ T18 _| _| TEST TANK IТ71 Q i; :;: , T70 < Э О о' 35 0" (Г со Т13 V" •/>• T15

10 77*П

'. :i '_

•«- 0.33 (TYP)

Т10< «л* >+ T12 Tit

14 О'П

::< ;' ; 1

i T70

Т7' л- •A T9 T8 45* T6 T3 W f ЛЛг » 1 / г T0 <л •• - MLI " I 4 Т T4 T71 T1 50" t1 SHROUD BASE

FIGURE E-72- NODAL NETWORK - BASIC MLI ASSEMBLY, MITER BASE JOINT 263 Z О

э К; Оz о

о

2 о z

со (х i

О

264 о Z О Z и о

о Z

< k Z ш о

и о_

i.

о Z

о

265 0825

-Ч h-0825°

368'

SEE FIGURE E-76 FOR DETAILS

, T017

STRUT MLI

T0t6 (NOM 152 THK) INSIDE TOSO SURFACE T049 NODES T006 THROUGH T048 T017 T047

T046 STRUT TMS

(1 OOD, 017 WALL) T044

STRUT INTERNAL BAFFLES

(AT ENDS AND AT 20 INTERVALS EXCEPT AS T006 T008 RUT BRACKfeT

TANVwALL

FIGURE E-75 NODAL NETWORK - TANK SUPPORT STRUT ASSEMBLY AND SURROUNDING MLI 266 TX15 TX43 TX57 TX71 MLI TXOly TX 29 1 • . < •: :16 TX 44 NOTE SOME NODE TX02 - TX72 T> 30 T> 58 NUMBERS NOT SHOWN FOR • , *r < 13 0" CLARITY i". 17 TX 15 TX03'V -V TX73 T> 31 TX 59 > < , '

л XI 8 TX04 т Ь тч' TX74 -ч -^ >o ^ TX05U -л. i4x75 sГs ,K" *i' :* TX 51 I [ "^ тЯ52 ^ i'TX76 п 1 ; ГТХ77 I TX6543 ^ ТХ79 STRUT ATTACH PAD ^^^пиУГ 1 ^ TX; P^B5 ^^ л AND OPENING FOR ТХ10Г ТХ80 STRUT BRACKET T M»T^> 52 ' T> 66 > ' , < (20x20 PAD, M < TX 39 1 0x05 OPENING) ТХц л ТХ81 Г 25 TX 53 " TX 57

, < , < >

TX to TX12 n •\- ^V- л ТХ82 :26 T> 64 T> 68

if 23 8 4 , * , <

T> 41 л TX13 A -Л/ <—\— ТХ83 C27 TX 55 TX 69 MLI NODE Г LAYER X '

OUTER 1 < , •у ' > < MIDDLE 2 INNER 3

TX42 ТХ14П ТХ84 X28 TX 56 TX70

LOWER EDGE OF MLI * 24.5'

FIGURE E-76: NODAL NETWORK - MLI IN VICINITY OF TANK SUPPORT STRUT PENETRATION

267 0825

ТМ1

6 = e X-850 385' AT THESE NODES

JOINT RESISTANCES- MAIN MLI TO TUBE MLI INSIDE SURFACE \ NODES PLUMBING LINE T003 THROUGH 2 ODD 035 WALL T022

PLUMBING LINE MLI (NOW 152THK) * - SEE FIGURE E-78 FOR DETAILS TANK LOWER EDGE

FIGURE E-77. NODAL NETWORK - PLUMBING LINE ASSEMBLY AND SURROUNDING MLI 268 . 160" •

i

TX17 TX31 TX45 TX59 ТХОЗв h у *

< > ' у ' r « , « 65"

TXJ2 TX46, - TX60 OPENING FOR ч TX04 r V V PLUMBING LINEN. TX1 i (20~D) Nv f ' » •9 < f •

rxis TX33 TX47. NTX05 TX61 тх5 TX48. TX62 ^ •rx;fe • rTX49J • 1Г' ,TX5

TX40 TX54 TX12 i TX68 TX2 6

_, * w* ^ i 320"

TX41 TX55 1 MLI TX13 \ TX69 TX2 7

у »• f Л у * т

TX TX56 TX14 1 i V < 1? > TX70 TX2 5 MLI NODE LAYER OUTER * r* r « 4 ^ л MIDDLE ^ ^ INNER X

TX01 1 TX02 TX15 TX16 TX29 2 3 LOWER EDGE OF MLI

FIGURE E-78- NODAL NETWORK - MLI IN VICINITY OF PLUMBING LINE PENETRATION

269 TO.T45 . T47 . TB1 .. ТБЗ v ; ч т v j - j / Т44 I . , ' ж >Т48 . 5ТМ . . , ML) T48 j. ^TfO "_M. '. •тм \ Т40 J> T42 ^ ' • 41 10 1C)"n

Т37 T39 •+~ ^Ъ

« T50 8 0 т IS GUARD TANK Т34 •Л •»»• T38

Т31 . J,,! 56T60 T50 ТВ0 T50 T50 Т76 чЛ- —i JfTje> Гтво ж J Т8Б MU \ л_• тГО | Т 28 ч TSB L ^ТВ4 . J Г™ / j ^ i ^ j ' Т77 •A Ф i j "ПЗ^ Т57 T59 Тв1 Теa T70 ГГО Т70 Т2Б vv Т27 !6 ^ 13 Т22< •

Т19 -л Т21 » ^ 7 R Т1в •/J Л Tie

17 Т116 TEST TANK i>Л Т116

т 4 Т13 V4 Tie v^ 'Т71 35

T113I •/H T116 SHROU D WAL L

^^ 0 iVfTYP I • Т10 -/ T12 11 o"n ^ 11 Т1!0< -/H T112 ^

Т7 Т (TB SEE FIGURE y- E-80AND V / FIGURE E-81 I V T70 i FIBERGLASS 1 RING *" X 45" 1 те ТЮЗ i • Ч• Пл*Г -f jf V 1 i TTB .1» T1O77 JUMLI >T7 1 J- ^ J 1 0 V » 1 1— - j • Т4 T101 ^"^ fi AL RING i SHROUD BASE Т1И

FIGURE E-79- NODAL NETWORK - BASIC MLI ASSEMBLY, LAP BASE JOINT

270 о э о ос со

Т71

MLI

Т172

SHROUD BASE

FIGURE E-80: NODAL NETWORK - MLI LAP BASE JOINT

271 Q D О EC

T71

SHROUD BASE T172

FIGURE E-81: NODAL NETWORK - BASE JOINT SUPPORT ASSEMBLY

272 DISTRIBUTION LIST FOR FINAL REPORT NAS3-13316 Boeing CR 121104 Vol. II

NO. OF NO. OF COPIES RECIPIENT COPIES RECIPIENT

National Aeronautics & Space Administration 1 National Aeronautics & Space Administration Lewis Research Center Ames Research Center 21000 Brookpark Road Moffett Field, California 94035 Cleveland, Ohio 44135 Attn Library 1 Attn Contractmq Officer, MS 500-313 1 National Aeronautics & Space Administration 5 E. A Bourke, MS 500-205 Flight Research Center 1 Technical Report Control Office, MS 5-5 P.O. Box 273 1 Technology Utilization Office, MS 3-16 Edwards, California 93523 2 AFSC Liaison Office, 501-3 Attn Library 2 Library 1 Office of Reliability & Quality Assurance 1 Director, Technology Utilization Division MS 500-211 Office of Technology Utilization 1 J. W. Gregory, Chief, MS 500-203 NASA Headquarters 3 JR. Barber, Project Manager, MS 500-203 Washington, D.C. 20546 1 D. Petrash, MS 500-204 1 Office of the Director of Defense 1 A. V. Zimmerman, MS 500-318 Research & Engineering 1 N Т Musial, MS 500-113 Washington, D. C. 20301 1 Director, Physics & Astronomy Programs, SG Attn Office of Asst. Dir. (Chem Technology) Office of Space Science 1 Office of Aeronautics & Space Technology, R NASA, Headquarters NASA Headquarters Washington, D.C. 20546 Washington, D. C. 20546

1 Director, Planetary Programs, SL 10 NASA Scientific and Technical Information Facility Office of Space Science P. O. Box 33 NASA Headquarters College Park, Maryland 20740 Washington, D. C. 20546 Attn NASA Representative 1 Director, Manned Space Technology Office, RS 1 National Aeronautics & Space Administration Office of Aeronautics & Space Technology Goddard Space Flight Center NASA Headquarters Greenbelt, Maryland 20771 Washington, D. C. 20546 Attn Library 2 Director Space Prop and Power, RP ] National Aeronautics & Space Administration Office of Aeronautics & Space Technology John F. Kennedy Space Center NASA Headquarters Cocoa Beach, Florida 32931 Washington, D. C. 20546 Attn Library 1 Director, Launch Vehicles & Propulsion, SV 1 National Aeronautics & Space Administration Office of Space Science Langley Research Center NASA Headquarters Langley Station Washington, D. C. 20546 Hampton, Virginia 23365 Attn Library 1 Director, Materials & Structures Div. RW Office of Aeronautics & Space Technology National Aeronautics & Space Administration NASA Headquarters Lyndon В Johnson Space Center Washington, D.C. 20546 Houston, Texas 77001 1 Attn Library 1 Director, Advanced Programs, MT 1 W. Chandler Office of Manned Space Flight 1 W. Dusenberry NASA Headquarters 1 C. Yodzis Washington, D. C. 20546

273 NO. OF NO. OF COPIES RECIPIENT COPIES RECIPIENT

Notionol Aeronautics & Space Administration 1 Space & Missile Systems Organization George C. Marshall Space Flight Center Air Force Unit Post Office Huntsville, Alabama 35912 Los Angeles, California 90045 1 Attn Library Attn Technical Data Center 1 J. M. Stuckey 1 Office of Research Analyses (OAR) 1 I. G. Votes Holloman Air Force Base, New Mexico 88330 1 E. H. Hyde Attn Library Jet Propulsion Laboratory 1 U.S. Air Force 4300 Oak Grove Drive Washington, D.C. Pasadena, California 91103 Attn Library 1 Attn Library 1 L Stimson 1 Commanding Officer 1 j Kelly U.S. Army Research Office (Durham) 1 R. Breshears Box CM, Duke Station Durham, North Carolina 27706 1 Defense Documentation Center Attn Library Cameron Station Building 5 1 Bureau of Naval Weapons 5010 Duke Street Department of the Navy Alexandria, Virginia 22314 Washington, D.C. Attn TISIA Attn Library 1 RTD (RTNP) 1 Director (Code 6180) Bollinq Air Force Base U.S. Naval Research Laboratory Washington, D. C. 20332 Washington, D.C. 20390 1 Arnold Engineering Development Center Attn Library Air Force Systems Command 1 Picotmny Arsenal Tulluhoma, Tennessee 37389 Dover, New Jersey 07801 Attn Library Attn Library

] Advanced Research Projects Agency 1 Air Force Aero Propulsion Laboratory Washington, D C. 20525 Research & Technology Division Attn Library Air Force Systems Command United States Air Force Aeronautical Systems Division Wright-Patterson AFB, Ohio 45433 Air Force Systems Command Attn APRP (Library) Wriqht-Potterson Air Force Base Dayton, Ohio 45433 1 Electronics Division 1 Attn Library Aerojet-General Corporation 1 AFML (MAAE) P.O. Box 296 1 AFML (MAAM) Azusa, California 91703 Attn Library 1 Space Division 1 Air Force Rocket Propulsion Laboratory (RPM) Aerojet-General Corporation Edwards, California 93523 9200 East Flair Drive Attn Library El Monte, California 91734 1 Air Force FTC (FTAT-2) Attn Library Edwards Air Force Base, California 93523 1 Aerojet Ordnance and Manufacturing Attn Library Aerojet-General Corporation 1 Air Force Office of Scientific Research 11711 South Woodruff Avenue Washington, D. C. 20333 Fullerton, California 90241 Attn Library Attn Library

274 NO. OF NO. OF COPIES RECIPIENT COPIES RECIPIENT

1 Aerojet Liquid Rocket Company 1 Chemical Propulsion Information Agency P. O. Box 15847 Applied Physics Laboratory Sacramento, California 95813 8621 Georgia Avenue Attn Technical Library 2484-2015A Silver Spring, Maryland 20910 1 Aeronutronic Division of Philco Ford Corp. 1 Chrysler Corporation Ford Road Missile Division Newport Beach, California 92663 P.O. Box 2628 Attn Technical Information Department Detroit, Michigan 1 Aerospace Corporation Attn Library 2400 1. El Segundo Blvd. 1 Chrysler Corporation Los Anqeles, California 90045 Space Division Attn Library-Document» P.O. Box 29200 Arthur D. Little, Inc. New Orleans, Louisiana 70129 20 Acorn Park Attn: Librarian Cambridge, Massachusetts 02140 1 Curtiss-Wnqht Corporation 1 Attn Library Wright Aeronautical Division 1 R. B. Hinckley Woodridge, New Jersey 1 Astropower Laboratory Attn- Library McDonnell-Douglas Aircraft Company 1 University of Denver 2121 Paularmo Denver Research Institute Newport Beach, California 92163 P.O. Box 10127 Attn Library Denver, Colorado 80210 1 ARO, Incorporated Attn. Security Office Arnold Engineering Development Center 1 Fairchild Stratos Corporation Arnold AF Station, Tennessee 37389 Aircraft Missiles Division Attn Library Hogerstown, Maryland 1 Susquehanna Corporation Attn Library Atlantic Research Division 1 Research Center Shirley Highway & Edsall Road Fairchild Hiller Corporation Alexandria, Virginia 22314 German town, Maryland Attn Library Attn Library 1 Beech Aircraft Corporation 1 Republic Aviation Boulder Facility Fairchild Hiller Corporation Box 631 Farmington, Long Island Boulder, Colorado New York Attn. Library General Dynamics/Convair 1 Bell Aerosystems, Inc. P.O. Box 1128 Box 1 San Diego, California 92112 Buffalo, New York 14240 1 Attn Library Attn Library 1 R. Tatro 1 Instruments & Life Support Division ] Missiles and Space Systems Center Bendix Corporation General Electric Company P.O. Box 4508 Valley Forge Space Technology Center Davenport, Iowa 52808 P. O. Box 855b Attn Library Philadelphia, Pa. 19101 Attn Library 1 Boeing Company 1625 К Street, N.W. 1 General Electric Company Washington, D.C. 20006 Flight Propulsion Lab. Department Cincinnati, Ohio Attn' Library

275 NO. OF NO. OF COPIES RECIPIENT COPIES RECIPIENT

1 Grumman Aircraft Engineering Corporation Space & Information Systems Division Bethpaqe, Long Island, New York 11714 North American Rockwell Attn Library 12214 Lakewood Blvd. 1 Honeywell Inc. Downey, California Aerospace Division 1 Attn Library 2600 Ridqeway Road 1 E. Hawkmson AC10 Minneapolis, Minnesota 55436 1 Northrop Space Laboratories Attn Library 3401 West Broadway 1 I IT Research Institute Hawthorne, California 90250 Technology Center Attn Library Chicaqo, Illinois 60616 1 Purdue University Attn Library Lafayette, Indiana 47907 1 Linq-Temco-Vouqht Corporation Attn Library (Technical) P. O. Box 5907 1 Goodyear Aerospace Corporation Dallas, Texas 75222 1210 Mass! Ion Road Af!-i Library Akron, Ohio 44306 Lmde-Div of Union Carbide Attn C. Shriver P O. Box 44 1 Hamilton Standard Corporation Tonawanda, N. Y. 11450 Windsor Locks, Connecticut 06096 Attn G. Nies Attn Library 1 Lockheed Missiles and Space Co. 1 Stanford Research Institute P O. Box 504 333 Ravenswood Avenue Sunnyvale, Calif. 94088 Menlo Park, California 94025 Attn Library Attn- Library 1 R. T. Parmley I TRW Systems Inc. 1 Marquardt Corporation 1 Space Park 16555 Saticoy Street Redondo Beach, California 90278 Box 2013 - South Annex Attn Tech. Lib. Doc. Acquisitions Van Nuys, California 91409 1 United Aircraft Corporation Denver Division Pratt & Whitney Division Marhn-Mariefta Corpora'ion Florida Research & Development Center P O. Box 179 P. O. Box 2691 Denver, Colorado 80201 West Palm Beach, Florida 33402 1 Attn Library Attn Library 1 G. C. Skartvedt 1 United Aircraft Corporation Western Division United Technoloqy Center McDonnell Douglas Astronautics P. O. Box 358 5301 Bolsa Ave. Sunnyvale, California 94038 Huntinqton Beach, California 92647 Attn Library 1 Attn Library 1 P. Klevatt 1 Vickers Incorporated Box 302 McDonnell Douqlas Aircraft Corporation Troy, Michiqan 48081 P. O. Box 516 Lambert Field, Missouri 63166 1 Airesearch Mfq. Div. 1 Attn Library Garrett Corp. 1 L. F. Kohrs 9851 Sepulveda Blvd Los Angeles, California 90009 1 Rocketdyne Division Attn • Library North American Rockwell Inc. 6633 Canoqa Avenue Canoqa Park, California 91304 Attn . Library, Department 596-306

276 NO. OF COPIES RECIPIENT NO. OF RECIPIENT COPIES 1 Airesearch Mfq. Div. 1 E. I. DuPont, DeNemours and Company Garrett Corp. Eastern Laboratory 402 South 36th Street Gibbstown, New Jersey 08027 Phoenix, Arizona 85034 Attn Library Attn Library 1 Esso Research & Engineering Company 1 Commanding Officer Special Projects Unit U.S. Naval Underwater Ordnance Station P.O. Box 8 Newport, Rhode Island 02844 Linden, New Jersey 07036 Attn Library Attn Library 1 National Science Foundation, Engineering Div. 1 Minnesota Mining & Manufacturing Company 1800 G. Street NW 900 Bush Avenue Washington, D.C. 20540 St. Paul, Minnesota 55106 Attn Library Attn Library 1 G. T. Schjeldahl Company Northfield, Minn. 55057 Attn Library 1 General Dynamics P. O. Box 743 Fort Worth, Texas 76101 1 Cryonetics Corporation Northwest Industrial Park Burlington, Massachusetts 01803 1 Institute of Aerospace Studies University of Toronto Toronto 5, Ontario Attn Library 1 FMC Corporation Chemical Research & Development Center P. O. Box 8 Princeton, New Jersey 08540 1 Westinghouse Research Laboratories Buelah Road, Churchill Boro Pittsburgh, Pa. 15235 1 Cornell University Department of Material Science & Enqr. Ithaca, New York 14850 Attn' Library 1 Marco Research & Development Co. Whittaker Corporation 151 N. Ludlow Street Dayton, Ohio 45402 1 General Electric Company Apollo Support Dept. P.O. Box 2500 Daytona Beach, Florida 32015 Attn C. Pay

277