The Use of Metadata in Creating, Transforming and Transporting Clinical Data

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Metadata in Creating, Transforming and Transporting Clinical Data PhUSE 2010 Paper CD08 The Use of Metadata in Creating, Transforming and Transporting Clinical Data Gregory Steffens, ICON Development Solutions, Ellicott City, MD, USA ABSTRACT Creating databases is a significant part of the work required to analyze clinical trials. Data flows from applications that collect and clean data as well as from many other data sources, such as laboratories which supply electronic lab data. This source data is used to create standardized raw data (e.g. SDTM), study analysis databases and on to integrated databases. This represents a great deal of database design, creation, transformation and validation. This paper presents innovative technical solutions that vastly reduce the effort and cost to implement the data flow, while delivering a consistently higher level of quality. The technology is built with base SAS, standardized metadata set structures and the SAS macro language. So, no new software products are required – just effective design and process. It will be seen that standardizing metadata is at least as important as standardizing clinical trial data and that automation can be data standard neutral, not assuming any data standard. Clarification of the objectives of data standards and metadata is necessary in order to measure the success of these standards. Standards are not an end themselves; they are a means to the end of creating analysis with less effort and cost and to attain a high and consistent quality. Data standards, alone, will not meet these efficiency and quality objectives, standard metadata, data automation and good process definition is also required. INTRODUCTION Pharmaceutical companies must address the need to define database structures quickly and easily in order to support such tasks as the following. • support clinical trial analysis databases • import data from central laboratories and CROs • export data to Data Safety Monitoring boards and other data review groups • share data between corporate sites • create integrated databases of multiple study databases • submit data and metadata to the FDA and other regulatory agencies and reviewers Industry-level standards are being defined by CDISC to help address this need and most pharmaceutical companies have had corporate standards governing database structures for many years. However, often these industry and corporate standards are stored in .pdf or MSword documents or in excel worksheets that do not rigorously follow a metadata standard. As such they are accessible only to people reading the documents. Storing this same information in rigorously standardized metadata sets adds much value to the effort put into defining these standards and study data specifications because this information is made available to computer programs that can automate database creation and data transformations. This paper describes the value of standard metadata set structures that are capable of storing specifications for any of the above database requirements and others too. These metadata sets, along with SAS macros and a SAS/AF application that access these metadata sets, supports the specification, creation, importation, exportation, comparison and validation of databases. Further, these metadata sets can be used to export data and metadata to XML format following the CDISC define schema. The metadata set structures can be implemented in any relational database or in SAS itself. The macros support such functions as: • publishing the specification in several formats, including the define.xml and define.html formats • implementing all the data set and variable attributes to the database with a simple macro call (variable name, type, length, label, format, etc.) 1 PhUSE 2010 • listing discrepancies between the data specification and the database, including structure and valid values • sorting the data by primary keys • reordering variables in the PDV according to FDA preferences • creation of user defined format catalogs • creation of character decode variables from code variables • comparison of database structures to standards or to other studies, to assist in enforcing data standards and consistency • Creation of study specifications from data standards or other study specifications • transforming a database from one database structure to another, using map metadata which defines a map between metadatabases As data standards are developed there is great value in documenting these in metadata sets, that are accessible to computer programs, rather than in word or .pdf. The metadata set structures must be standardized and capable of containing descriptions of all the database attributes required to build that database. In summary, when importing data from outside sources, the data specification is implemented in metadata set so that computer programs can automatically compare the data submitted by the lab or CRO to the specification and list discrepancies where the database does not conform to the specification. When specifying study analysis databases, macros assist in the building of the database by automatically adding all the specified variable and data set attributes, such as labels and formats, adding decode variables, sorting the data, building format catalogs, etc. When submitting data to the FDA a thorough specification can be printed from the metadata or exported to XML format, with bookmarks and hyperlinks. STANDARDIZED METADATA The first step is to define a standard metadatabase design and use that standard design in all instances of defining database standards and study database specifications. A metadata design includes two main components – a standard list of attributes of databases and a standard metadata set design used to store those attributes. THE TWO COMPONENTS OF A STANDARD METADATA DESIGN – STANDARD ATTRIBUTES IN A STANDARD METADATABASE STANDARD ATTRIBUTES The first component of a standard metadatabase design is a standard list of attributes that describe the characteristics of databases that are required to be known when creating, validating and reviewing the database. These attributes define database characteristics at different levels of detail, such as attributes of a data set, of each variable, of valid values of variables such as codelists, of descriptions of the variables purpose, of descriptions of the variable’s derivation logic and of a special set of attributes that I call “row-level” metadata. The data set level attributes include a short and a long name of each data set, the data set label, the order the data set should be displayed in a define file, the location of the data set and CDISC attributes required to create a define.xml file such as structure, repeating, is_reference_data, purpose and class. The variable level attributes include a short and long name of each variable, the data set that the variable is included in, the label, type, length, format to assign to the variable, the name of a list of valid values or codelist to associate with the variable, the relationship between code and decode variables, the order to present the variables in a define file and to order the variables in the data set program data vector, the name of a description to attach to the variable, whether the variable is a header variable that should be copied to other data sets, the ability to flag a variable as a supplementary qualifier when creating CDISC data sets and other attributes required to create the define.xml file. It is also useful to include various flags that categorize variables. For example, flagging a variable as a derived variable, or related to primary efficacy endpoints, or safety endpoints support the ability to publish the metadata content for different audiences, by filtering different subsets of variables to publish. A programmer may need all the variables but others may want to focus only on safety or only on efficacy. The valid value attributes include a name of the value list that can be assigned to a variable, the valid value of the code variable and the valid value of a decode variable, the ability to define either a list of discrete values or a list of ranges of values and the order in which to display the values in a define file and in TFLs. It is important to represent the relationship between a valid code value and its decode value as well as the relationship between a value list and 2 PhUSE 2010 the variable it is assigned to. For example, metadata should represent a values list for sex that includes both the information that 1=Male and 2=Female and also the fact that this list is associated with a variable named “sex” as a code variable and “sex_dcd” as a decode variable. The description attributes include the derivation logic to assign to a derived variable, a comment to attach to a variable to explain its source and use and the name of the description. The final category of database attributes to include in a metadata design is row-level metadata. The objective of this level of attributes is to define tall-thin data structures in a robust manner to more fully support automation of data transformations. Some variables in tall-thin data sets, like VSRN, do not have the same attributes in all rows or observations. Different attributes pertain depending on the row and the row types are defined by a parameter variable like VSTESTCD. I call these variables, whose attributes differ in different rows depending on the parameter variable value, parameter related variables (or paramrel variables). The full set of variable level attributes must be assigned to parameter related variables for each value of the parameter variable. Without this, data transformation automation is not possible and a full description of the database is also not possible. I identified the need for row level metadata in the first CDISC pilot project and we are attempting to demonstrate this in the second pilot, but it will require an enhancement to the define.xml schema. These paramrel variables can also be referred to as virtual variables because they require all the definition that a variable requires but they do not exist as separate physical variables in the database.
Recommended publications
  • Informal Data Transformation Considered Harmful
    Informal Data Transformation Considered Harmful Eric Daimler, Ryan Wisnesky Conexus AI out the enterprise, so that data and programs that depend on that data need not constantly be re-validated for ev- ery particular use. Computer scientists have been develop- ing techniques for preserving data integrity during trans- formation since the 1970s (Doan, Halevy, and Ives 2012); however, we agree with the authors of (Breiner, Subrah- manian, and Jones 2018) and others that these techniques are insufficient for the practice of AI and modern IT sys- tems integration and we describe a modern mathematical approach based on category theory (Barr and Wells 1990; Awodey 2010), and the categorical query language CQL2, that is sufficient for today’s needs and also subsumes and unifies previous approaches. 1.1 Outline To help motivate our approach, we next briefly summarize an application of CQL to a data science project undertaken jointly with the Chemical Engineering department of Stan- ford University (Brown, Spivak, and Wisnesky 2019). Then, in Section 2 we review data integrity and in Section 3 we re- view category theory. Finally, we describe the mathematics of our approach in Section 4, and conclude in Section 5. We present no new results, instead citing a line of work summa- rized in (Schultz, Spivak, and Wisnesky 2017). Image used under a creative commons license; original 1.2 Motivating Case Study available at http://xkcd.com/1838/. In scientific practice, computer simulation is now a third pri- mary tool, alongside theory and experiment. Within
    [Show full text]
  • Automating the Capture of Data Transformations from Statistical Scripts in Data Documentation Jie Song George Alter H
    C2Metadata: Automating the Capture of Data Transformations from Statistical Scripts in Data Documentation Jie Song George Alter H. V. Jagadish University of Michigan University of Michigan University of Michigan Ann Arbor, Michigan Ann Arbor, Michigan Ann Arbor, Michigan [email protected] [email protected] [email protected] ABSTRACT CCS CONCEPTS Datasets are often derived by manipulating raw data with • Information systems → Data provenance; Extraction, statistical software packages. The derivation of a dataset transformation and loading. must be recorded in terms of both the raw input and the ma- nipulations applied to it. Statistics packages typically provide KEYWORDS limited help in documenting provenance for the resulting de- data transformation, data documentation, data provenance rived data. At best, the operations performed by the statistical ACM Reference Format: package are described in a script. Disparate representations Jie Song, George Alter, and H. V. Jagadish. 2019. C2Metadata: Au- make these scripts hard to understand for users. To address tomating the Capture of Data Transformations from Statistical these challenges, we created Continuous Capture of Meta- Scripts in Data Documentation. In 2019 International Conference data (C2Metadata), a system to capture data transformations on Management of Data (SIGMOD ’19), June 30-July 5, 2019, Am- in scripts for statistical packages and represent it as metadata sterdam, Netherlands. ACM, New York, NY, USA, 4 pages. https: in a standard format that is easy to understand. We do so by //doi.org/10.1145/3299869.3320241 devising a Structured Data Transformation Algebra (SDTA), which uses a small set of algebraic operators to express a 1 INTRODUCTION large fraction of data manipulation performed in practice.
    [Show full text]
  • What Is a Data Warehouse?
    What is a Data Warehouse? By Susan L. Miertschin “A data warehouse is a subject oriented, integrated, time variant, nonvolatile, collection of data in support of management's decision making process.” https: //www. bus iness.auc. dk/oe kostyr /file /What_ is_a_ Data_ Ware house.pdf 2 What is a Data Warehouse? “A copy of transaction data specifically structured for query and analysis” 3 “Data Warehousing is the coordination, architected, and periodic copying of data from various sources, both inside and outside the enterprise, into an environment optimized for analytical and informational processing” ‐ Alan Simon Data Warehousing for Dummies 4 Business Intelligence (BI) • “…implies thinking abstractly about the organization, reasoning about the business, organizing large quantities of information about the business environment.” p. 6 in Giovinazzo textbook • Purpose of BI is to define and execute a strategy 5 Strategic Thinking • Business strategist – Always looking forward to see how the company can meet the objectives reflected in the mission statement • Successful companies – Do more than just react to the day‐to‐day environment – Understand the past – Are able to predict and adapt to the future 6 Business Intelligence Loop Business Intelligence Figure 1‐1 p. 2 Giovinazzo • Encompasses entire loop shown Business Strategist • Data Storage + ETC = OLAP Data Mining Reports Data Warehouse Data Storage • Data WhWarehouse + Tools (yellow) = Extraction,Transformation, Cleaning DiiDecision Support CRM Accounting Finance HR System 7 The Data Warehouse Decision Support Systems Central Repository Metadata Dependent Data DtData Mar t EtExtrac tion DtData Log Administration Cleansing/Tranformation External Extraction Source Extraction Store Independent Data Mart Operational Environment Figure 1-2 p.
    [Show full text]
  • POLITECNICO DI TORINO Repository ISTITUZIONALE
    POLITECNICO DI TORINO Repository ISTITUZIONALE Rethinking Software Network Data Planes in the Era of Microservices Original Rethinking Software Network Data Planes in the Era of Microservices / Miano, Sebastiano. - (2020 Jul 13), pp. 1-175. Availability: This version is available at: 11583/2841176 since: 2020-07-22T19:49:25Z Publisher: Politecnico di Torino Published DOI: Terms of use: Altro tipo di accesso This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 08 October 2021 Doctoral Dissertation Doctoral Program in Computer and Control Enginering (32nd cycle) Rethinking Software Network Data Planes in the Era of Microservices Sebastiano Miano ****** Supervisor Prof. Fulvio Risso Doctoral examination committee Prof. Antonio Barbalace, Referee, University of Edinburgh (UK) Prof. Costin Raiciu, Referee, Universitatea Politehnica Bucuresti (RO) Prof. Giuseppe Bianchi, University of Rome “Tor Vergata” (IT) Prof. Marco Chiesa, KTH Royal Institute of Technology (SE) Prof. Riccardo Sisto, Polytechnic University of Turin (IT) Politecnico di Torino 2020 This thesis is licensed under a Creative Commons License, Attribution - Noncommercial- NoDerivative Works 4.0 International: see www.creativecommons.org. The text may be reproduced for non-commercial purposes, provided that credit is given to the original author. I hereby declare that, the contents and organisation of this dissertation constitute my own original work and does not compromise in any way the rights of third parties, including those relating to the security of personal data. ........................................ Sebastiano Miano Turin, 2020 Summary With the advent of Software Defined Networks (SDN) and Network Functions Virtualization (NFV), software started playing a crucial role in the computer net- work architectures, with the end-hosts representing natural enforcement points for core network functionalities that go beyond simple switching and routing.
    [Show full text]
  • Data Warehousing on AWS
    Data Warehousing on AWS March 2016 Amazon Web Services – Data Warehousing on AWS March 2016 © 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Page 2 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Contents Abstract 4 Introduction 4 Modern Analytics and Data Warehousing Architecture 6 Analytics Architecture 6 Data Warehouse Technology Options 12 Row-Oriented Databases 12 Column-Oriented Databases 13 Massively Parallel Processing Architectures 15 Amazon Redshift Deep Dive 15 Performance 15 Durability and Availability 16 Scalability and Elasticity 16 Interfaces 17 Security 17 Cost Model 18 Ideal Usage Patterns 18 Anti-Patterns 19 Migrating to Amazon Redshift 20 One-Step Migration 20 Two-Step Migration 20 Tools for Database Migration 21 Designing Data Warehousing Workflows 21 Conclusion 24 Further Reading 25 Page 3 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Abstract Data engineers, data analysts, and developers in enterprises across the globe are looking to migrate data warehousing to the cloud to increase performance and lower costs.
    [Show full text]
  • Master Data Simplified
    MASTER THE BEST IN MASTER DATA GOVERNANCE DATA SIMPLIFICATION & MANAGEMENT SIMPLIFIED CHARLIE MASSOGLIA & ANBARASAN MURUGAN ‘A MUST READ FOR DATA ENTHUISIASTS’ - AUSTIN DAVIS About the Authors Charlie Massoglia VP & CIO, Chain-Sys Corporation Former CIO for Dawn Food Products For 13+ years. 25+ years experience with a variety of ERP systems. Extensive experience in system migrations & conversions. Participated in 9 acquisitions ranging from a single US location to 14 sites in 11 countries. Author of numerous technical books, articles, presentations, and seminars globally. Anbarasan Murugan Product Lead, Master Data Management Master Data Simplification & Governance expert. Industry experience of more than 11 years. Chief Technical Architect for more than 10 products TM within the Chain Sys Platform . Has designed complex analytical & transactional Master data processes for Fortune 500 companies. Master Data Simplified An Introduction to Master Data Simplification, Governance, and Management By Charles L. Massoglia VP & CIO Chain●Sys Corporation [email protected] and Anbarasan Murugan Product Manager Chain●Sys Corporation [email protected] No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without written permission of the publisher. For information regarding permission, write to Chain-Sys Corporation, Attention: Permissions Department, 325 S. Clinton Street, Suite 205, Grand Ledge, MI 48837 Trademarks: Chain●Sys Platform is a trademark of Chain-Sys Corporation in the United States and other countries and may not be used without permission.
    [Show full text]
  • Lineage Tracing for General Data Warehouse Transformations
    Lineage Tracing for General Data Warehouse Transformations∗ Yingwei Cui and Jennifer Widom Computer Science Department, Stanford University fcyw, [email protected] Abstract. Data warehousing systems integrate information and managing such transformations as part of the extract- from operational data sources into a central repository to enable transform-load (ETL) process, e.g., [Inf, Mic, PPD, Sag]. analysis and mining of the integrated information. During the The transformations may vary from simple algebraic op- integration process, source data typically undergoes a series of erations or aggregations to complex procedural code. transformations, which may vary from simple algebraic opera- In this paper we consider the problem of lineage trac- tions or aggregations to complex “data cleansing” procedures. ing for data warehouses created by general transforma- In a warehousing environment, the data lineage problem is that tions. Since we no longer have the luxury of a fixed set of of tracing warehouse data items back to the original source items operators or the algebraic properties offered by relational from which they were derived. We formally define the lineage views, the problem is considerably more difficult and tracing problem in the presence of general data warehouse trans- open-ended than previous work on lineage tracing. Fur- formations, and we present algorithms for lineage tracing in this thermore, since transformation graphs in real ETL pro- environment. Our tracing procedures take advantage of known cesses can often be quite complex—containing as many structure or properties of transformations when present, but also as 60 or more transformations—the storage requirements work in the absence of such information.
    [Show full text]
  • Doppiodb 2.0: Hardware Techniques for Improved Integration of Machine Learning Into Databases
    Research Collection Conference Paper doppioDB 2.0: Hardware Techniques for Improved Integration of Machine Learning into Databases Author(s): Kara, Kaan; Wang, Zeke; Zhang, Ce; Alonso, Gustavo Publication Date: 2019-08 Permanent Link: https://doi.org/10.3929/ethz-b-000394510 Originally published in: Proceedings of the VLDB Endowment 12(12), http://doi.org/10.14778/3352063.3352074 Rights / License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library doppioDB 2.0: Hardware Techniques for Improved Integration of Machine Learning into Databases Kaan Kara Zeke Wang Ce Zhang Gustavo Alonso Systems Group, Department of Computer Science ETH Zurich, Switzerland fi[email protected] ABSTRACT t1 compressed/ Database engines are starting to incorporate machine learning (ML) doppioDB 2.0 encrypted functionality as part of their repertoire. Machine learning algo- Table t1 Iterative Decryption rithms, however, have very different characteristics than those of Execution Decompression relational operators. In this demonstration, we explore the chal- SCD lenges that arise when integrating generalized linear models into a t1 bitweaving t1_model database engine and how to incorporate hardware accelerators into Iterative Quantized Execution SGD the execution, a tool now widely used for ML workloads. t1_model The demo explores two complementary alternatives: (1) how to - Training: INSERT INTO t1_model train models directly on compressed/encrypted column-stores us- SELECT weights FROM TRAIN('t1', step_size, …); ing a specialized coordinate descent engine, and (2) how to use a - Validation: SELECT loss FROM VALIDATE('t1_model', 't1'); bitwise weaving index for stochastic gradient descent on low pre- SELECT prediction FROM INFER('t1_model', 't1_new'); cision input data.
    [Show full text]
  • Extract, Transform, Load | ETL Development
    What is ETL – Extract, Transform, Load | ETL Development ETL development – Pre requisites. 1. Setup Source and Target database. 2. Creation of ODBC connections. 1. Creating source ODBC connection. 2. Creating target ODBC connection. 3. Starting Informatica PowerCenter service. 4. Creating folder. ETL development process. 1. Creation of source metadata. 2. Creation of target metadata. 3. Design mapping without business rules. 4. Creating session for each mapping. 1. Create reader connection (source). 2. Create writer connection (Target). 3. Create workflow. 4. Run workflow. 5. Monitoring ETL process. (view state). What is ETL? ETL stands for Extract-Transform-Load. ETL is the process of extracting the data from different source (Operational databases) systems, integrating the data and Transforming the data into a homogeneous format and loading into the target warehouse database. Simply the overall process of ETL (Extraction, Transformation and Loading) is called Data Acquisition. Extraction : Extraction is the process of reading the data from source databases into staging areas. Transformation : Transformation is the process of converting the source data into required warehouse format. Loading : Loading is the process of writing converted data from staging area into target warehouse systems. What are the GUI based ETL tools? 1. Informatica. 2. DataStage. 3. Data Junction. 4. Oracle Warehouse Builder. 5. Cognos Decision Stream. What are the programmatic based ETL tools? 1. PI/Sql. 2. SAS Base. 3. Tera ACCESS. 4. Tera Data Utilities. 1. BTEQ. 2. Fast Load. 3. Multi Load. 4. T(Trickle) Pump. An Informatica PowerCenter is a GUI based ETL (Extract, Transform, Load) tool from Informatica Corporation which was founded in Redwood city, Los Angels (1993).
    [Show full text]
  • Rethinking Software Network Data Planes in the Era of Microservices
    Doctoral Dissertation Doctoral Program in Computer and Control Enginering (32nd cycle) Rethinking Software Network Data Planes in the Era of Microservices Sebastiano Miano ****** Supervisor Prof. Fulvio Risso Doctoral examination committee Prof. Antonio Barbalace, Referee, University of Edinburgh (UK) Prof. Costin Raiciu, Referee, Universitatea Politehnica Bucuresti (RO) Prof. Giuseppe Bianchi, University of Rome “Tor Vergata” (IT) Prof. Marco Chiesa, KTH Royal Institute of Technology (SE) Prof. Riccardo Sisto, Polytechnic University of Turin (IT) Politecnico di Torino 2020 This thesis is licensed under a Creative Commons License, Attribution - Noncommercial- NoDerivative Works 4.0 International: see www.creativecommons.org. The text may be reproduced for non-commercial purposes, provided that credit is given to the original author. I hereby declare that, the contents and organisation of this dissertation constitute my own original work and does not compromise in any way the rights of third parties, including those relating to the security of personal data. ........................................ Sebastiano Miano Turin, 2020 Summary With the advent of Software Defined Networks (SDN) and Network Functions Virtualization (NFV), software started playing a crucial role in the computer net- work architectures, with the end-hosts representing natural enforcement points for core network functionalities that go beyond simple switching and routing. Recently, there has been a definite shift in the paradigms used to develop and deploy server applications in favor of microservices, which has also brought a visible change in the type and requirements of network functionalities deployed across the data center. Network applications should be able to continuously adapt to the runtime behav- ior of cloud-native applications, which might regularly change or be scheduled by an orchestrator, or easily interact with existing “native” applications by leveraging kernel functionalities - all of this without sacrificing performance or flexibility.
    [Show full text]
  • Doppiodb 2.0: Hardware Techniques for Improved Integration of Machine Learning Into Databases
    doppioDB 2.0: Hardware Techniques for Improved Integration of Machine Learning into Databases Kaan Kara Zeke Wang Ce Zhang Gustavo Alonso Systems Group, Department of Computer Science ETH Zurich, Switzerland fi[email protected] ABSTRACT t1 compressed/ Database engines are starting to incorporate machine learning (ML) doppioDB 2.0 encrypted functionality as part of their repertoire. Machine learning algo- Table t1 Iterative Decryption rithms, however, have very different characteristics than those of Execution Decompression relational operators. In this demonstration, we explore the chal- SCD lenges that arise when integrating generalized linear models into a t1 bitweaving t1_model database engine and how to incorporate hardware accelerators into Iterative Quantized Execution SGD the execution, a tool now widely used for ML workloads. t1_model The demo explores two complementary alternatives: (1) how to - Training: INSERT INTO t1_model train models directly on compressed/encrypted column-stores us- SELECT weights FROM TRAIN('t1', step_size, …); ing a specialized coordinate descent engine, and (2) how to use a - Validation: SELECT loss FROM VALIDATE('t1_model', 't1'); bitwise weaving index for stochastic gradient descent on low pre- SELECT prediction FROM INFER('t1_model', 't1_new'); cision input data. We present these techniques as implemented in - Inference: our prototype database doppioDB 2.0 and show how the new func- tionality can be used from SQL. Figure 1: Overview of an ML workflow in doppioDB 2.0. PVLDB Reference Format: Kaan Kara, Zeke Wang, Ce Zhang, Gustavo Alonso. doppioDB 2.0: Hard- and compress data for better memory bandwidth utilization and de- ware Techniques for Improved Integration of Machine Learning into Databases.
    [Show full text]
  • Automating the Capture of Data Transformation Metadata
    Automating the Capture of Data Transformation Metadata H.V. Jagadish Univ. of Michigan http://www.eecs.umich.edu/~jag George Alter, University of Michigan Why Metadata? • Data are useless without Metadata – “data about data” • Metadata should: – Include all information about data creation – Describe transformations to variables – Be easy to create • Our goal: Automated capture of metadata A few words about ICPSR • World’s largest archive of social science data • Consortium established 1962 • 760+ member institutions around the world • Founding member and home office for the DDI Alliance Powered by DDI Metadata ICPSR is building search tools based upon Data Documentation Initiative (DDI) XML Codebooks (pdf and online) are rendered from the DDI. Searchable database of 4.5M variables Click here for online codebook What question Online codebook shows was asked? variable in context of dataset How was the Link to online question coded? graph tool Link to online crosstab tool Searchable database of 4.5M variables Click here for variable comparison Variable comparison display Click here for online codebook Metadata for the American National Election Study What question Who answered was asked? this question? How was the question coded? Who answered this question? Metadata for the American National Election Study Who answered this question? How do we know who answered the question? It’s in the pdf. Who answered this question? When data arrive at the archive… • No question text • No interview flow (question order, skip pattern) • No variable provenance • Data transformations are not documented. How is research data created? • Most surveys are conducted with computer assisted interview software (CAI) – CATI – Computer-assisted Telephone Interview – CAPI – Computer-assisted Personal Interview – CAWI – Computer Aided Web Interview • There is no paper questionnaire • The CAI program is the questionnaire – i.e.
    [Show full text]