Primality Testing: Then and Now
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simultaneous Elements of Prescribed Multiplicative Orders 2
Simultaneous Elements Of Prescribed Multiplicative Orders N. A. Carella Abstract: Let u 6= ±1, and v 6= ±1 be a pair of fixed relatively prime squarefree integers, and let d ≥ 1, and e ≥ 1 be a pair of fixed integers. It is shown that there are infinitely many primes p ≥ 2 such that u and v have simultaneous prescribed multiplicative orders ordp u = (p − 1)/d and ordp v = (p − 1)/e respectively, unconditionally. In particular, a squarefree odd integer u > 2 and v = 2 are simultaneous primitive roots and quadratic residues (or quadratic nonresidues) modulo p for infinitely many primes p, unconditionally. Contents 1 Introduction 1 2 Divisors Free Characteristic Function 4 3 Finite Summation Kernels 5 4 Gaussian Sums, And Weil Sums 7 5 Incomplete And Complete Exponential Sums 7 6 Explicit Exponential Sums 11 7 Equivalent Exponential Sums 12 8 Double Exponential Sums 13 9 The Main Term 14 10 The Error Terms 15 arXiv:2103.04822v1 [math.GM] 5 Mar 2021 11 Simultaneous Prescribed Multiplicative Orders 16 12 Probabilistic Results For Simultaneous Orders 18 1 Introduction The earliest study of admissible integers k-tuples u1, u2, . , uk ∈ Z of simultaneous prim- itive roots modulo a prime p seems to be the conditional result in [21]. Much more general March 9, 2021 AMS MSC2020 :Primary 11A07; Secondary 11N13 Keywords: Distribution of primes; Primes in arithmetic progressions; Simultaneous primitive roots; Simul- taneous prescribed orders; Schinzel-Wojcik problem. 1 Simultaneous Elements Of Prescribed Multiplicative Orders 2 results for admissible rationals k-tuples u1, u2, . , uk ∈ Q of simultaneous elements of independent (or pseudo independent) multiplicative orders modulo a prime p ≥ 2 are considered in [26], and [14]. -
1 Mersenne Primes and Perfect Numbers
1 Mersenne Primes and Perfect Numbers Basic idea: try to construct primes of the form an − 1; a, n ≥ 1. e.g., 21 − 1 = 3 but 24 − 1=3· 5 23 − 1=7 25 − 1=31 26 − 1=63=32 · 7 27 − 1 = 127 211 − 1 = 2047 = (23)(89) 213 − 1 = 8191 Lemma: xn − 1=(x − 1)(xn−1 + xn−2 + ···+ x +1) Corollary:(x − 1)|(xn − 1) So for an − 1tobeprime,weneeda =2. Moreover, if n = md, we can apply the lemma with x = ad.Then (ad − 1)|(an − 1) So we get the following Lemma If an − 1 is a prime, then a =2andn is prime. Definition:AMersenne prime is a prime of the form q =2p − 1,pprime. Question: are they infinitely many Mersenne primes? Best known: The 37th Mersenne prime q is associated to p = 3021377, and this was done in 1998. One expects that p = 6972593 will give the next Mersenne prime; this is close to being proved, but not all the details have been checked. Definition: A positive integer n is perfect iff it equals the sum of all its (positive) divisors <n. Definition: σ(n)= d|n d (divisor function) So u is perfect if n = σ(u) − n, i.e. if σ(u)=2n. Well known example: n =6=1+2+3 Properties of σ: 1. σ(1) = 1 1 2. n is a prime iff σ(n)=n +1 p σ pj p ··· pj pj+1−1 3. If is a prime, ( )=1+ + + = p−1 4. (Exercise) If (n1,n2)=1thenσ(n1)σ(n2)=σ(n1n2) “multiplicativity”. -
On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer). -
An Analysis of Primality Testing and Its Use in Cryptographic Applications
An Analysis of Primality Testing and Its Use in Cryptographic Applications Jake Massimo Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Information Security Royal Holloway, University of London 2020 Declaration These doctoral studies were conducted under the supervision of Prof. Kenneth G. Paterson. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Department of Mathe- matics as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Jake Massimo April, 2020 2 Abstract Due to their fundamental utility within cryptography, prime numbers must be easy to both recognise and generate. For this, we depend upon primality testing. Both used as a tool to validate prime parameters, or as part of the algorithm used to generate random prime numbers, primality tests are found near universally within a cryptographer's tool-kit. In this thesis, we study in depth primality tests and their use in cryptographic applications. We first provide a systematic analysis of the implementation landscape of primality testing within cryptographic libraries and mathematical software. We then demon- strate how these tests perform under adversarial conditions, where the numbers being tested are not generated randomly, but instead by a possibly malicious party. We show that many of the libraries studied provide primality tests that are not pre- pared for testing on adversarial input, and therefore can declare composite numbers as being prime with a high probability. -
Mersenne and Fermat Numbers 2, 3, 5, 7, 13, 17, 19, 31
MERSENNE AND FERMAT NUMBERS RAPHAEL M. ROBINSON 1. Mersenne numbers. The Mersenne numbers are of the form 2n — 1. As a result of the computation described below, it can now be stated that the first seventeen primes of this form correspond to the following values of ra: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281. The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127—1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in Archibald [l]; see also Kraitchik [4]. The next five Mersenne primes were found in 1952; they are at present the five largest known primes of any form. They were announced in Lehmer [7] and discussed by Uhler [13]. It is clear that 2" —1 can be factored algebraically if ra is composite; hence 2n —1 cannot be prime unless w is prime. Fermat's theorem yields a factor of 2n —1 only when ra + 1 is prime, and hence does not determine any additional cases in which 2"-1 is known to be com- posite. On the other hand, it follows from Euler's criterion that if ra = 0, 3 (mod 4) and 2ra + l is prime, then 2ra + l is a factor of 2n— 1. -
FACTORING COMPOSITES TESTING PRIMES Amin Witno
WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret. -
Primality Test
Primality test A primality test is an algorithm for determining whether (6k + i) for some integer k and for i = −1, 0, 1, 2, 3, or 4; an input number is prime. Amongst other fields of 2 divides (6k + 0), (6k + 2), (6k + 4); and 3 divides (6k mathematics, it is used for cryptography. Unlike integer + 3). So a more efficient method is to test if n is divisible factorization, primality tests do not generally give prime by 2 or 3, then to check through all the numbers of form p factors, only stating whether the input number is prime 6k ± 1 ≤ n . This is 3 times as fast as testing all m. or not. Factorization is thought to be a computationally Generalising further, it can be seen that all primes are of difficult problem, whereas primality testing is compara- the form c#k + i for i < c# where i represents the numbers tively easy (its running time is polynomial in the size of that are coprime to c# and where c and k are integers. the input). Some primality tests prove that a number is For example, let c = 6. Then c# = 2 · 3 · 5 = 30. All prime, while others like Miller–Rabin prove that a num- integers are of the form 30k + i for i = 0, 1, 2,...,29 and k ber is composite. Therefore the latter might be called an integer. However, 2 divides 0, 2, 4,...,28 and 3 divides compositeness tests instead of primality tests. 0, 3, 6,...,27 and 5 divides 0, 5, 10,...,25. -
Primes and Primality Testing
Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100. -
Appendix a Tables of Fermat Numbers and Their Prime Factors
Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard -
Elementary Number Theory
Elementary Number Theory Peter Hackman HHH Productions November 5, 2007 ii c P Hackman, 2007. Contents Preface ix A Divisibility, Unique Factorization 1 A.I The gcd and B´ezout . 1 A.II Two Divisibility Theorems . 6 A.III Unique Factorization . 8 A.IV Residue Classes, Congruences . 11 A.V Order, Little Fermat, Euler . 20 A.VI A Brief Account of RSA . 32 B Congruences. The CRT. 35 B.I The Chinese Remainder Theorem . 35 B.II Euler’s Phi Function Revisited . 42 * B.III General CRT . 46 B.IV Application to Algebraic Congruences . 51 B.V Linear Congruences . 52 B.VI Congruences Modulo a Prime . 54 B.VII Modulo a Prime Power . 58 C Primitive Roots 67 iii iv CONTENTS C.I False Cases Excluded . 67 C.II Primitive Roots Modulo a Prime . 70 C.III Binomial Congruences . 73 C.IV Prime Powers . 78 C.V The Carmichael Exponent . 85 * C.VI Pseudorandom Sequences . 89 C.VII Discrete Logarithms . 91 * C.VIII Computing Discrete Logarithms . 92 D Quadratic Reciprocity 103 D.I The Legendre Symbol . 103 D.II The Jacobi Symbol . 114 D.III A Cryptographic Application . 119 D.IV Gauß’ Lemma . 119 D.V The “Rectangle Proof” . 123 D.VI Gerstenhaber’s Proof . 125 * D.VII Zolotareff’s Proof . 127 E Some Diophantine Problems 139 E.I Primes as Sums of Squares . 139 E.II Composite Numbers . 146 E.III Another Diophantine Problem . 152 E.IV Modular Square Roots . 156 E.V Applications . 161 F Multiplicative Functions 163 F.I Definitions and Examples . 163 CONTENTS v F.II The Dirichlet Product . -
Computing Multiplicative Order and Primitive Root in Finite Cyclic Group
Computing Multiplicative Order and Primitive Root in Finite Cyclic Group Shri Prakash Dwivedi ∗ Abstract Multiplicative order of an element a of group G is the least positive integer n such that an = e, where e is the identity element of G. If the order of an element is equal to |G|, it is called generator or primitive root. This paper describes the algorithms for computing multiplicative order and Z∗ primitive root in p, we also present a logarithmic improvement over classical algorithms. 1 Introduction Algorithms for computing multiplicative order or simply order and primitive root or generator are important in the area of random number generation and discrete logarithm problem among oth- Z∗ ers. In this paper we consider the problem of computing the order of an element over p, which is Z∗ multiplicative group modulo p . As stated above order of an element a ∈ p is the least positive integer n such that an = 1. In number theoretic language, we say that the order of a modulo m is n, if n is the smallest positive integer such that an ≡ 1( mod m). We also consider the related Z∗ Z∗ problem of computing the primitive root in p. If order of an element a ∈ n usually denoted as Z∗ ordn(a) is equal to | n| i.e. order of multiplicative group modulo n, then a is called called primi- Z∗ tive root or primitive element or generator [3] of n. It is called generator because every element Z∗ in n is some power of a. Efficient deterministic algorithms for both of the above problems are not known yet. -
A Quantum Primality Test with Order Finding
A quantum primality test with order finding Alvaro Donis-Vela1 and Juan Carlos Garcia-Escartin1,2, ∗ 1Universidad de Valladolid, G-FOR: Research Group on Photonics, Quantum Information and Radiation and Scattering of Electromagnetic Waves. o 2Universidad de Valladolid, Dpto. Teor´ıa de la Se˜nal e Ing. Telem´atica, Paseo Bel´en n 15, 47011 Valladolid, Spain (Dated: November 8, 2017) Determining whether a given integer is prime or composite is a basic task in number theory. We present a primality test based on quantum order finding and the converse of Fermat’s theorem. For an integer N, the test tries to find an element of the multiplicative group of integers modulo N with order N − 1. If one is found, the number is known to be prime. During the test, we can also show most of the times N is composite with certainty (and a witness) or, after log log N unsuccessful attempts to find an element of order N − 1, declare it composite with high probability. The algorithm requires O((log n)2n3) operations for a number N with n bits, which can be reduced to O(log log n(log n)3n2) operations in the asymptotic limit if we use fast multiplication. Prime numbers are the fundamental entity in number For a prime N, ϕ(N) = N 1 and we recover Fermat’s theory and play a key role in many of its applications theorem. − such as cryptography. Primality tests are algorithms that If we can find an integer a for which aN−1 1 mod N, determine whether a given integer N is prime or not.