Mechanical Gate Control for Atom-By-Atom Cluster Assembly with Scanning Probe Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Gate Control for Atom-By-Atom Cluster Assembly with Scanning Probe Microscopy ARTICLE Received 3 Feb 2014 | Accepted 6 Jun 2014 | Published 11 Jul 2014 DOI: 10.1038/ncomms5360 Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy Yoshiaki Sugimoto1, Ayhan Yurtsever2, Naoki Hirayama1, Masayuki Abe3,w & Seizo Morita2 Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability. 1 Department of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565- 0871, Japan. 2 Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. 3 Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. w Present address: Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan. Correspondence and requests for materials should be addressed to Y.S. (email: [email protected]). NATURE COMMUNICATIONS | 5:4360 | DOI: 10.1038/ncomms5360 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5360 anoclusters supported on substrates are of great impor- the structure and the stability of these bimetallic clusters can tance in physics and chemistry as well as in technical contribute to our understanding of the interaction of the doped Napplications, such as single-electron transistors1,2, atom with the metal clusters. nanocatalysts3–5 and quantum computing devices6. The In this study, we propose an alternative approach to the properties of nanoclusters are highly sensitive to size and assembly of various nanoclusters atom-by-atom using the tip of a chemical composition. Despite their inert bulk properties, for scanning probe microscope (SPM) at RT. This method is based example, nanosized Au clusters exhibit high catalytic activities for on the transfer of single diffusing atoms among nanospaces (NSs) a wide variety of chemical reactions3, showing clear quantum size governed by gates, which can be opened in response to the effects on catalytic behaviour5. The development of methods to chemical interaction force with the SPM tip. This method fabricate atomically well-defined clusters is therefore necessary provides a way to create pre-designed atom clusters with different for a fundamental understanding of their properties and for chemical compositions and to evaluate their chemical stabilities. designing better materials and devices. Various approaches have been developed to create nanoclusters with different functionalities on surfaces. Among these methods, Results the self-assembling is the most widely used method for fabricating Transfer of diffusing adsorbates by atom gating. Half-unit cells nanoclusters, where atoms/molecules are evaporated onto a (HUCs) of the Si(111)-(7  7) surface serve as NS arrays to surface followed by thermal annealing, leading to the spontaneous confine individual adsorbates diffusing on the surface. Single formation of clusters7. To unveil the unique properties of these atoms deposited on the surface, such as group IV elements (Si, Sn clusters in practical applications, it is essential to control their size and Pb) and noble metals (Ag and Au), thermally diffuse within and uniformity. Although the uniformity of cluster arrays has the NSs at RT as demonstrated in Fig. 1. A potential energy been achieved using the so-called template-induced cluster barrier existing between NSs prohibits inter-NS thermal diffusion. formation method8,9, these methods do not provide direct The diffusion rate within the NS is so large that a SPM cannot access to the precise determination of the number of atoms resolve the specific adsorption sites offered by the surface at RT20 involved in a cluster structure once they are deposited on (further information can be found in Supplementary Note 1). The surfaces. different adsorbate atoms on the surface appear differently in the Complementary to these methods, the scanning probe method SPM images owing to differences in their diffusion properties offers precise positioning capabilities with atomic precision10. (Fig. 1b–i). These capabilities have led to the creation of various The clusters with predetermined compositions, such as Au12, artificial nanostructures atom-by-atom, mainly at cryogenic Ag12 and Au5Pb, can be formed by collecting single atoms from temperatures11–14. This method was later extended to room the surrounding NSs into a predefined NS with successive gate 15 temperature (RT) by means of atomic force microscopy (AFM) , controls. Hereafter, AuN represents the Au cluster with N Au which provides an opportunity to directly measure the forces that atoms and the term ‘cluster’ refers to an ensemble of foreign induce the atomic motion in the manipulation process16–18. atoms bonded to the Si(111)-(7  7) surface. An adsorbate Despite these achievements, assembly of the well-defined clusters diffusing within a NS can be transferred to an adjacent NS by exhibiting high thermal stability at RT and the precise the tip proximity near the border, but slightly shifted away from determination of the cluster size and hence of the number of the NS where the diffusing atom is located. The gate associated atoms involved in a cluster structure remains a challenging task19. with the potential energy barrier that hinders the mobility of an More importantly, assembling of atomically well-defined clusters adsorbate between NSs can be opened by the following from multi-elements at RT has not been demonstrated yet despite consecutive steps. First, the tip is positioned over the predefined their wide range of technical applications. The investigation of site marked with a cross as in Fig. 1a, and then the tip-to-surface U F Ag Sn UF Au Pb U F Ag Sn Au Pb 1 nm Figure 1 | Demonstrations of the transfer of a single atom by gate control. (a) A HUC in the Si(111)-(7  7) surface works as a NS of an equilateral triangle with side lengths of 2.7 nm. F and U denote faulted and unfaulted HUC, respectively. The adsorbate atom travels among the various potential minima in a NS; these minima are known to be multi-coordinate sites rather than the tops of Si adatoms and rest atom sites26. The tip gradually approaches the position as indicated by a cross in the Si(111)-(7  7) unit cell for the gate-opening process. This process initiates the atom transfer between two NSs. (b–g) The corresponding STM images at Vs ¼À1,000 mV exemplify the atom transfer ability using gate control for (b,c) Au, (d,e) Ag and (f,g) Pb. The tunnelling current set points are (b,c) 30, (d,e) 50 and (f,g) 40 pA. The white dashed triangles mark the initial (b,d and f) and final (c,e and g) locations of adsorbates transferred by gate control. (h,i) AFM images showing Sn atom transfer by atom gating with AFM tip at Vs ¼ 0 V. The acquisition parameters À 1 were f0 ¼ 153,972.5 Hz, k ¼ 25.2 N m , A ¼ 198 Å and Df ¼À2.1 Hz. 2 NATURE COMMUNICATIONS | 5:4360 | DOI: 10.1038/ncomms5360 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5360 ARTICLE 10–3 –60 101 –4 –80 10 Approach 0.2 0 ) –100 0.0 10 0 10–5 –0.2 Retract (Hz) (G (nA) f –0.4 t G I –120 (nN) –1 –0.6 10 SR –6 F –0.8 10 Retract Retract –140 –1.0 –1.2 10–2 Approach 0 1234 –7 10 –160 z (Å) 01234 01234 z (Å) z (Å) Figure 2 | STM and AFM observables during atom gating. (a) Typical It(z) curves acquired with static STM at Vs ¼À500 mV, revealing the evolution of the current (left axis) and conductance (right axis) during the Au atom gating process with the STM tip as a function of the tip–sample relative 2 À 1 displacement. Here G0 ¼ 2e /h ¼ (12,906 O) . The spectroscopic measurements were performed over the site near the boundary of NSs, but slightly shifted away from the NS occupied by a Au atom. The inset schematics in a show the Au atom dynamics during the approach and retraction cycle of the tip (Au atom jump, Au atom trap and release). (b) The variation of the Df signal as a function of the tip–sample distance during approach and retraction acquired with AFM. The inset in b shows the short-range force extracted from the Df(z) curve, revealing the characteristic forces attributed to the trapping of a Au atom (black arrow) and junction formation by the chemical bond between the tip and the Au atom (red arrow). To extract the short-range force, the long-range background part, which is estimated from the approach Df(z) curve on the bare Si surface, was subtracted from the retraction Df(z) curve.
Recommended publications
  • 1. INTRODUCTION Geometric Structure
    1. INTRODUCTION Clusters, in general, are aggregates of atoms that are too large compared to atoms and molecules and too small compared to small pieces of crystals (bulk materials). Generally, clusters does not have the same structure or atomic arrangements as a bulk solid and can change its structure with the addition of just one or few atoms. As the number of atoms in the cluster increase, the bulk structure is established and the addition of atoms has no more effect on the structure. Of course there will be some rearrangement of the atoms on the surface of this bulk structure, but since the surface to volume ratio is very low in bulk material it can be neglected with a good approximation. However, in case of clusters, most of the atoms lie on the surface (extremely high surface to volume ratio) and such rearrangement produce a drastic effect. Owning to their high surface to volume ratio, the surface science from both chemical and physical point of view has become crucial in order to collect data and information about such systems. The ways to study such small cluster is nearly the same as the way they have been fabricated. With Bottom-up approach (chemical point of view) these clusters are formed from atoms and/or molecules by assembling it together to form the cluster, and there were many calculation based on this view point. Also these clusters can be fabricated, starting from the bulk material by reducing its dimension somehow, which is the Top-down approach. Geometric structure Usually the crystal structure of a large nanocluster is the same as the bulk structure of the material, with somewhat different lattice parameters (in general clusters are slightly contracted as compared to bulk).
    [Show full text]
  • Kinetic Energy and Mass Analysis of Covalent Group Iv Cluster Ions in Pulsed-Laser Stimulated Field Evaporation T
    KINETIC ENERGY AND MASS ANALYSIS OF COVALENT GROUP IV CLUSTER IONS IN PULSED-LASER STIMULATED FIELD EVAPORATION T. Tsong, J. Liu To cite this version: T. Tsong, J. Liu. KINETIC ENERGY AND MASS ANALYSIS OF COVALENT GROUP IV CLUS- TER IONS IN PULSED-LASER STIMULATED FIELD EVAPORATION. Journal de Physique Col- loques, 1988, 49 (C6), pp.C6-75-C6-80. 10.1051/jphyscol:1988613. jpa-00228110 HAL Id: jpa-00228110 https://hal.archives-ouvertes.fr/jpa-00228110 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C6, supplbment au nO1l, Tome 49, novembre 1988 KINETIC ENERGY AND MASS ANALYSIS OF COVALENT GROUP IV CLUSTER IONS IN PULSED-LASER STIMULATED FIELD EVAPORATION T.T. TSONG and J. LIU Physics Department, The Pensylvania State University, University Park, Pennsylvania, PA 16802, U.S.A. Abstract - Multiply charged cluster ions of silicon and carbon can be formed in pulsed- laser stimulated field evaporation. In general, the signal intensity decreases monotonically with the cluster size. However, a few cluster ion species stand out; these are species of greater stability. For Si, they are ~i," and ~i,", and for C they are c3+ and c5+.
    [Show full text]
  • 2.6 Deltahedral Zintl Ions of Tin: Synthesis, Structure, and Reactivity Slavi C
    OTE/SPH OTE/SPH JWBK199-02.1 JWBK199-Gielen May 30, 2008 13:36 Printer: Yet to come 138 Tin Chemistry: Fundamentals, Frontiers and Applications 2.6 Deltahedral Zintl Ions of Tin: Synthesis, Structure, and Reactivity Slavi C. Sevov Department of Chemistry and Biochemistry, University of Notre Dame,USA 2.6.1 Introduction One little-known area of chemistry is the chemistry of heavy main-group p elements, mostly metals and semimetals, in negative oxidation states. While the chemistry of Sn2+ and Sn4+, for example, is very well studied and we all learn about it very early in our education, not many people are aware of the fact that tin atoms can accept electrons and exhibit completely different reactivity when negatively charged. For example, catenation and clustering are uncommon for cationic tin, but is the norm for 6− anions, both in inter-metallics and molecular compounds. Thus, cyclopentadienyl-like Sn5 is found in the inter-metallic compounds Na8AeSn6 (Ae = Ba, Eu), Li9−x AeSn6+x (Ae = Ca, Eu), Li5Ca7Sn11, 1 4− and Li6Eu5Sn9, isolated tetrahedra of Sn4 and alkali-metal cations constitute the structures of A4Sn4 2 (A = alkali metal), while Na4CaSn6 and Li2Ln5Sn7 (Ln = Ce, Pr, Sm, Eu) contain infinite anionic 16− 3,4 chains and heptane-like Sn7 oligomers, respectively. Notice that, as might be expected, the negative oxidation states are achieved when the more electronegative p element, tin in this case, is combined with much more electropositive s or f element such as the alkali, alkaline-earth, or rare-earth metals. Notice also that, for the purpose of structure rationalization and systematic description, the formal oxidation state assignments assume complete electron transfer from the more electropositive atoms to the p element.
    [Show full text]
  • New Capabilities for Molecular Surface and In-Depth Analysis with Cluster Secondary Ion Mass Spectrometry
    New Capabilities for Molecular Surface and in-Depth Analysis with Cluster Secondary Ion Mass Spectrometry A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2018 Huriyyah Ahmed Alturaifi The University of Manchester Faculty of Science and Engineering School of Chemistry 1 Contents List of Figures 6 List of Tables 15 List of Equations 17 Abbreviations 18 Abstract 20 Declaration 21 Copyright Statements 21 Acknowledgements 22 1. Introduction 23 1.1. Secondary Ion Mass Spectrometry (SIMS) 23 1.2. Generation of Secondary Ions 25 1.2.1. The Sputtering Process 26 1.2.2. Ionisation 29 1.2.2.1. Nascent Ion Molecule Model 29 1.2.2.2. Deposition Ionisation Model 30 1.3. Models of Operations of SIMS 31 1.3.1. Dynamic SIMS 31 1.3.2. Static SIMS 32 1.3.3. Imaging SIMS 32 1.4. Cluster SIMS 33 1.5. Damage Cross-Section 36 1.6. Cross-linking 38 1.7. Molecular Depth Profiling 41 1.8. Molecular Dynamic Simulation 58 1.9. Aims of the Study 61 1.10. References 62 2. Instrumentation 70 2.1. ToF-SIMS Instrumentation 70 2.1.1. ToF Mass Analyser 70 2.1.2. ToF-SIMS Instrumentation Development 73 2 2.1.2.1. Sample Holder 76 2.1.2.1.1. Sample Holder insertion into the Instrumentation 77 2.1.2.1.2. Sample Handling Systems 78 2.1.2.2. Instrumentation Control 79 2.1.2.3. Electron Flood Gun 80 2.1.2.4.
    [Show full text]
  • Characterization of Local Chemistry and Disorder in Synthetic and Natural A-AL03 Materials by X-Ray Absorption Near Edge Structure Spectroscopy
    iTRS’oo'tiQ LABORATOR NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-97/041 (P) 27 Novembre 1997 Characterization of Local Chemistry and Disorder in Synthetic and Natural a-AL03 Materials by X-ray Absorption Near Edge Structure Spectroscopy A. Mottana1’3), T. Murata2), A. Marcelli3), G. Della Ventura4’ 3\ G. Cibin 3), Z. Wu3), R. Tessadri^) b Universita' di Roma Tre, Dip. di Scienze Geologiche, Largo San Leonardo Murialdo 1, 1-00146 Roma RM, Italy 2) Kyoto Universityof Education, Department of Physics, 1 Fujinomori-cho, Fukakusa, Fushimi-ku, Kyoto 612, Japan 3) Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via Fermi 40,1-00044 Frascati RM, Italy 4) Univ. di Roma Tre, Dipartimento di Scienze Geologiche, Largo San Leonardo Murialdo 1, 1-00146 Roma RM, Italy 5 ) Commissariat a l’Energie Atomique, DSM/DRECAM/SRSIM, Bat 462, CE Saclay, 91191 Gif-sur-Yvette Cedex, France 6 ) Universitat Innsbruck, Institut fiir Mineralogie und Petrographic, Innrain 62, A-6020 Innsbruck, Austria Abstract X-ray absorption fine spectra at the A1 K-edge were measured experimentally on and calculated theoretically via the multiple-scattering formalism for a chemically pure and physically perfect synthetic a-Al203 (a-alumina), a natural “ruby/sapphire” (corundum) and a series of artificial “corundums ” produced for technical purposes and used as geochemical standards. The A1 K- edge spectra differ despite of the identical coordination (short-range arrangement) assumed byO around Al, and vary slightly in relation to the slightly different chemistries of the materials (substitutional defects) as well as on account of the location taken by foreign atoms in the structural lattices (positional defects).
    [Show full text]
  • Preparation and Spectra of Some Hexanuclear Niobium Halide Cluster Compounds Peter Barry Fleming Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Preparation and spectra of some hexanuclear niobium halide cluster compounds Peter Barry Fleming Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Fleming, Peter Barry, "Preparation and spectra of some hexanuclear niobium halide cluster compounds " (1968). Retrospective Theses and Dissertations. 3662. https://lib.dr.iastate.edu/rtd/3662 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 08-.14 787 FLEMING, Peter Barry, 1941- PREPARATION AND SPECTRA OF SOME HEXANUCLEAR NIOBIUM HALIDE CLUSTER COMPOUNDS. Iowa State University, PhuD., 1968 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PREPARATION AND SPECTRA OF SOME HEXANUCLEAR NIOBIUM HALIDE CLUSTER COMPOUNDS by Peter Barry Fleming A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry Approved: Signature was redacted for privacy. Signature was redacted for privacy. Head of
    [Show full text]
  • Heteroatomic Deltahedral Clusters of Main-Group Elements: Synthesis and Structure of 3- 2- 2- the Zintl Ions [In4bi5] , [Inbi3] , and [Gabi3]
    Inorg. Chem. 2000, 39, 5383-5389 5383 Heteroatomic Deltahedral Clusters of Main-Group Elements: Synthesis and Structure of 3- 2- 2- the Zintl Ions [In4Bi5] , [InBi3] , and [GaBi3] Li Xu and Slavi C. Sevov* Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 ReceiVed August 11, 2000 Reported are the first heteroatomic deltahedral Zintl ions made of elements differing by more than one group, 3- indium or gallium and bismuth. Nine-atom clusters [In4Bi5] are characterized in two different compounds, (Na-crypt)3[In4Bi5](4, P21/n, a ) 23.572(6) Å, b ) 15.042(4) Å, c ) 24.071(4) Å, â ) 106.00(3)°, Z ) 4) and (K-crypt)6[In4Bi5][In4Bi5]‚1.5en‚0.5tol (5, P21/c, a ) 28.532(2) Å, b ) 23.707(2) Å, c ) 28.021(2) Å, â ) 2- 2- 93.274(4)°, Z ) 4). Tetrahedra of [InBi3] or [GaBi3] are found in (K-crypt)2[InBi3]‚en (1, P21, a ) 12.347(4) Å, b ) 20.884(4) Å, c ) 12.619(7) Å, â ) 119.02(4)°, Z ) 2) and in the isostructural (Rb-crypt)2[InBi3]‚en (2, a ) 12.403(8) Å, b ) 20.99(1) Å, c ) 12.617(9) Å, â ) 118.83(4)°) and (K-crypt)2[GaBi3]‚en (3, a ) 12.324(5) Å, b ) 20.890(8) Å, c ) 12.629(5) Å, â ) 118.91(3)°). All compounds are crystallized from ethylenediamine/ crypt solutions of precursors with nominal composition “A5E2Bi4” where A ) Na, K, or Rb and E ) Ga or In.
    [Show full text]
  • Interaction of Intense Vuv Radiation with Large Xenon Clusters
    Interaction of intense vuv radiation with large xenon clusters Zachary B. Walters,1 Robin Santra,2 and Chris H. Greene1 1Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA 2Argonne National Laboratory, Argonne, Illinois 60439, USA (Dated: June 5, 2018) The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom–laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser–cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser–cluster interaction which uses non-perturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare charge state distribution, charge state ejection energies, and total energy absorbed with the Hamburg experiment of Wabnitz et al. [Nature 420, 482 (2002)] and ejected electron spectra with Laarmann et al. [Phys. Rev. Lett. 95, 063402 (2005)]. PACS numbers: 32.80.-t,36.40.Gk,52.50.Jm,52.20.Fs I. INTRODUCTION in turn serve as sources for high-energy particles or pho- tons. At sufficiently low temperatures and sufficiently high Several groups performed extensive numerical simula- density, atoms and molecules in the gas phase begin to tions with the purpose of identifying the relevant heat- form bound systems, or clusters [1, 2].
    [Show full text]
  • Catalysts Via First Principles
    Catalysts via First Principles C.K. Narula, M. Moses-DeBusk, X. Yang, L.F. Allard, X. Chen, M.G. Stocks Physical Chemistry of Materials, Materials Science and Technology Division DOE VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW, FY 2010 June 10, 2010 Project PM011 This presentation does not contain any proprietary or confidential information Managed by UT-Battelle for the Department of Energy Overview Timeline Barriers Performance: Materials needed to Start: Oct. 2004 achieve the performance objectives Finish: Sep. 2011 in specific engine and ancillary components may not exist today as durable Budget reliable Funding received in 2008 well-characterized and 225,000 understood materials. Funding received in 2009 Partners 225,000 Ongoing work with John Deere Funding received in 2010 Work-for-others arrangement on NO treatment 166,137 x 2 Managed by UT-Battelle for the Department of Energy Objectives To assist DOE complete the development of materials solutions that will enable improvement of fuel economy of light-duty gasoline vehicles by 25%, light-duty diesel vehicles by 40% compared to 2009 gasoline vehicles while meeting EPA 2010 emissions standards. The project is precursor to "Materials by Design" approach including "Catalyst by Design" and is focusing on designing catalyst systematically rather than by trial and error. To demonstrate that we can examine catalyst system by first principle theoretical models, experimental studies, and nanostructural characterization iteratively to forecast improvements to obtain optimum catalyst systems Identify optimum catalyst sites and develop durable, reliable, well- characterized catalyst materials with such sites 3 Managed by UT-Battelle for the Department of Energy Barriers Performance: Materials needed to achieve the performance objectives in specific engine and ancillary components may not exist today as durable, reliable, well-characterized and understood materials.
    [Show full text]
  • Transformation of Doped Graphite Into Cluster- Encapsulated Fullerene Cages
    ARTICLE DOI: 10.1038/s41467-017-01295-9 OPEN Transformation of doped graphite into cluster- encapsulated fullerene cages Marc Mulet-Gas1, Laura Abella2, Maira R. Cerón 3, Edison Castro 3, Alan G. Marshall1,4, Antonio Rodríguez-Fortea 2, Luis Echegoyen3, Josep M. Poblet 2 & Paul W. Dunk 1 An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high- 1234567890 symmetry clusterfullerenes, which attract interest for use in applications that span biome- dicine to molecular electronics. The conversion of doped graphite into a C80 cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, Ih-C60, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster–cage interactions on formation of compounds in the solvent- extractable C70–C100 region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations. 1 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA. 2 Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain. 3 Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA. Marc Mulet-Gas and Laura Abella contributed equally to this work.
    [Show full text]
  • Metal-Chalcogenide Clusters Composed of Edge-Sharing Tetrahedra
    J. Am. Chem. SOC.1994,116, 9987-10002 9987 Enumeration and Structural Classification of Clusters Derived from Parent Solids: Metal-Chalcogenide Clusters Composed of Edge-Sharing Tetrahedra Jeffrey R. Long’ and R. H. Holm’ Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 021 38 Received April 15, 1994’ Abstract: A general method for the computer-assisted generation of polyhedra-based cluster structures is introduced. The cluster family of interest is delimited, and its definitive structural elements are employed in the design of an infinitely extended parent solid. For computational facility, this polyhedra-based solid is transformed into a parallel graph representation consisting of a simple lattice of points and lines. In connection with the structure-graph relationship, a descriptive notation detailing the local connectivity of constituent polyhedra is developed for use with both clusters and solids. Pieces of the lattice, corresponding to fragments of the parent solid, are generated by a straightforward recursive procedure. These fragments are converted into ligated clusters, and their structures are compiled in a database. Database structures are then subjected to four types of cluster rearrangement processes (folding, fusion, closure, and condensation) defined herein. Any relevant new structures which result are added to the database. The database is arranged by chemical formulae, and clusters of particular interest are sorted from it by whatever criteria are deemed appropriate. With the aid of electronic energy calculations, relative stabilities of structural isomers may then be evaluated, leading to some measure of predictive capability. The primary advantage of this approach lies in its ability to produce immediately accessible structures with tailored stereochemistries.
    [Show full text]
  • Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A
    Subscriber access provided by Johns Hopkins Libraries Article Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A. W. Castleman, and K. H. Bowen J. Phys. Chem., 1996, 100 (31), 12911-12944• DOI: 10.1021/jp961030k • Publication Date (Web): 01 August 1996 Downloaded from http://pubs.acs.org on May 8, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Links to the 42 articles that cite this article, as of the time of this article download • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 J. Phys. Chem. 1996, 100, 12911-12944 12911 Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter A. W. Castleman, Jr.* Department of Chemistry, PennsylVania State UniVersity, 152 DaVey Laboratory, UniVersity Park, PennsylVania 16802 K. H. Bowen, Jr. Department of Chemistry, The Johns Hopkins UniVersity, 3400 N. Charles Street, Baltimore, Maryland 21218 ReceiVed: April 4, 1996; In Final Form: June 20, 1996X The field of cluster research can trace its origins back to the mid-nineteenth century when early studies of colloids, aerosols, and nucleation phenomena were reported. The field underwent a resurgence of interest several decades ago when well-defined clusters were observed in supersonic expansions that could be investigated using mass spectrometers. The advent of the laser provided a new dimension, enabling detailed spectroscopic observations through the probing of systems of varying size and degree of solvation.
    [Show full text]