Recent Advances in Metal-Catalyzed Alkyl–Boron (C(Sp3)–C(Sp2)) Suzuki-Miyaura Cross-Couplings

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Metal-Catalyzed Alkyl–Boron (C(Sp3)–C(Sp2)) Suzuki-Miyaura Cross-Couplings catalysts Review Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings 1, 2, 3 4 4 Janwa El-Maiss y, Tharwat Mohy El Dine y, Chung-Shin Lu , Iyad Karamé , Ali Kanj , Kyriaki Polychronopoulou 5,6,* and Janah Shaya 7,8,* 1 Université d’Orléans, Institut de Chimie Organique et Analytique, Pole Chimie, Rue de Chartres, 45000 Orléans, France; [email protected] 2 Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, École nationale supérieure de chimie de Montpellier (ENSCM), 240 Avenue du Professeur Emile Jeanbrau, 34090 Montpellier, France; [email protected] 3 Department of General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan; [email protected] 4 Laboratory of Catalysis Organometallic and Materials (LCOM), Depart. of Chemistry, Faculty of Science I, Lebanese University-Hariri Campus, Hadath, Lebanon; [email protected] (I.K.); [email protected] (A.K.) 5 Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE 6 Center for Catalysis and Separation, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE 7 College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, UAE 8 College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, UAE * Correspondence: [email protected] (K.P.); [email protected] (J.S.) J.E.-M. and T.M.E.D. contributed equally to this work and shall be considered Co-First authors. y Received: 25 January 2020; Accepted: 19 February 2020; Published: 5 March 2020 Abstract: Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001. Keywords: Suzuki–Miyaura cross-couplings; C(sp3) –C(sp2); alkylboron reagents; metal catalysis 1. Introduction Boron is a peculiar metalloid with fascinating chemical complexity. The unusual properties of boron stem from its three valence electrons, which can be easily torn away, favoring metallicity and making it electron-deficient, yet sufficiently localized and tightly bound to the nucleus, consequently allowing the insulating states to emerge [1]. Boron compounds have been intensively investigated for energy storage applications, particularly due to the relatively low atomic mass of boron (10.811 0.007 amu). ± The energy-related uses of boron compounds range from high-energy fuels for advanced aircrafts to boron–nitrogen–hydrogen compounds as hydrogen storage materials for fuel cells [2]. The rich Catalysts 2020, 10, 296; doi:10.3390/catal10030296 www.mdpi.com/journal/catalysts Catalysts 2020, 10, x FOR PEER REVIEW 2 of 24 Catalysts 2020, 10, 296 2 of 25 0.007 amu). The energy-related uses of boron compounds range from high-energy fuels for advanced aircrafts to boron–nitrogen–hydrogen compounds as hydrogen storage materials for fuel cells [2]. Thepioneering rich pioneering research onresearch boron resultedon boron in resulted the consecutive in the consecutive awarding of awarding two Nobel of Prizes two Nobel in chemistry Prizes in chemistry1976 and 1979 in 1976 [3,4 ].and 1979 [3,4]. Organoboron compoundscompounds (e.g., (e.g., boronic boronic acids, acids, boronic boronic esters andesters boronamides) and boronamides) generally generally comprise compriseat least one at carbon–boronleast one carbon–boron (C–B) bond (C–B) (Scheme bond1A) (Scheme [ 5–8]. Organoboron 1A) [5–8]. Organoboron compounds werecompounds initially were used initiallyin organic used synthesis in organic 60 years synthesis ago [9,10 60]. Everyears since, ago chemistries[9,10]. Ever involving since, chemistries such compounds involving continued such compoundsto advance untilcontinued these to reagents advance have until become these reagents one of the have most become diverse, one widely of the most studied diverse, and appliedwidely studiedfamilies and in catalysis applied andfamilies organic in catalysis synthesis and [10 organic,11]. Currently, synthesis they [10,11]. are engagedCurrently, in they numerous are engaged classic inand numerous important classic reactions and such important as hydroborations reactions such and Suzuki–Miyauraas hydroborations cross-couplings and Suzuki–Miyaura (SMCs), amongcross- couplingsothers [8]. (SMCs), The SMC among reaction others generally [8]. The involves SMC thereac conjoiningtion generally of an involves organoboron the conjoining reagent and of an organoboronorganic halide reagent or pseudohalide and an organic in the presence halide or of pseudohalide palladium (or otherin the relevant presence metal of palladium/ligand) as a(or catalyst other relevantand a base metal/ligand) for the activation as a catalyst of the boronand a base compound for the (Schemeactivation1B) of [ 5the–7 ,boron12]. Organoboron compound (Scheme compounds 1B) [5–7,12].have also Organoboron found several compounds applications have in pharmaceuticals also found several where applications boron-based in drugspharmaceuticals exemplify awhere novel boron-basedclass of molecules drugs for exemplify several biomedical a novel class applications of molecules as molecular for several imaging biomedical agents (opticalapplications/nuclear as molecularimaging) andimaging neutron agents capture (optical/nuclear therapy agents imaging) (BNCT), and neutron as well capture as therapeutic therapy agentsagents (anticancer,(BNCT), as wellantiviral, as therapeutic antibacterial, agents etc.) (anticancer, [13]. Likewise, antiviral, the utility antibacterial, and ubiquity etc.) of [13]. boron-based Likewise, compounds the utility haveand ubiquitybolstered of the boron-based development compound of agriculturals have bolstered and material the sciencesdevelopment [14,15 of]. agricultural Organoborane and polymers material scienceshave been [14,15]. investigated Organobo as electrolytesrane polymers for batteries,have been electro-active investigated materials,as electrolytes and supportedfor batteries, Lewis electro- acid activecatalysts materials, [16,17]. and supported Lewis acid catalysts [16,17]. A) Selected examples of organoboron compunds R R R OR R NR2 F MeN B B O B B R F R B O O OH OR NR2 F O Boronic Boronic Boronamides Organotrifluoroborates RB-MIDA acids esters B) SMC reaction metal/ligand catalytic system 1 2 1 2 R BXn + R Y R R Base R1, R2 = Aryl, Alkenyl, Alkyl Xn = (OH)2, (OR)2, F3K, etc. Y = Cl, Br, I, OTf, etc. Metal catalysts = [Pd], [Ni] or [Fe], [Co], [Ru], [Ag], etc. (less common) SchemeScheme 1. ((AA)) Examples Examples of of organoboron organoboron compounds, compounds, ( (B)) Suzuki–Miyaura Suzuki–Miyaura cro cross-couplingss-coupling reaction. Metal catalysis has has had had a a major impact impact on on numerous numerous research research fields fields from from energy, energy, biomass, biomass, environmental and water purification purification to synthesi synthesiss of otherwise challenging and even inaccessible materials and and medicinal medicinal adducts adducts [18–30]. [18–30]. In In line, line, the the intensive intensive research research in inmetal metal catalysis catalysis has has led led to significantto significant progress progress in inborylation borylation of of primary primary C(sp C(sp3)–H3)–H bonds bonds of of unfunctionalized unfunctionalized hydrocarbons, hydrocarbons, allowing accessaccess to to a varietya variety of C(sp of3 )–BC(sp reagents3)–B reagents and consequent and conseque breakthroughsnt breakthroughs in C(sp3)–C(sp,sp in C(sp2,sp3)–3) C(sp,spcross-couplings.2,sp3) cross-couplings. Comprehensive Comprehensive work has been work done has on been the development done on the development of an efficient ofsp an2 spefficient2 SMC; − sphowever,2−sp2 SMC; there however, have been there far have fewer been reports far onfewersp3 reportssp2 or spon3 spsp3−3spvariants2 or sp3− [sp313– variants38]. Among [31–38]. thedi Amongfferent − − thehybridized different boron hybridized reagents boron employed reagents in SMCs employed (e.g., aryl,in SMCs heteroaryl, (e.g., aryl, and vinylboronicheteroaryl, and acids vinylboronic and esters), acidsthe use and of organoboronesters), the use compounds of organo withboron alkyl compounds groups (sp3 withcarbon) alkyl was groups severely (sp limited3 carbon) inthese was couplingseverely limitedreactions in due these to competitive coupling sidereactions reactions due [39 to,40 comp]. Organometallicetitive side compoundsreactions [39,40]. that are Organometallic metalated at sp3 compoundscarbon atoms that and are especially metalated containing at sp3 carbonβ-hydrogen atoms and atoms especially give rise containing to alkyl–palladium β-hydrogen complexes atoms give that Catalysts 2020, 10, 296 3 of 25 are susceptible to β-hydride
Recommended publications
  • Pd/C-Catalyzed Suzuki Cross- and Self- Couplings &
    PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM by JENG-SHIOU CHEN A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Chemical and Biochemical Engineering Written under the direction of Professor Johannes G. Khinast And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey Jan. 2008 ABSTRACT OF THE DISSERTATION PD/C-CATALYZED SUZUKI CROSS- AND SELF- COUPLINGS & THE DEVELOPMENT OF A LAB-SCALE HYDROGENATION SYSTEM By JENG-SHIOU CHEN Dissertation Directors: Professor Johannes G. Khinast Suzuki couplings have become an efficient and clean strategy for the preparation of biologically active functionalized biphenyls, which are important building blocks for pharmaceutical and agricultural compounds. Among all catalysts of choice for Suzuki couplings, palladium on carbon (Pd/C) is most frequently used for industrial applications due to its high catalytic activity, low cost and easy removal from the reaction mixture. Using a model coupling reaction of biphenylacetic acid, we intended to provide a thorough understanding of Pd/C-catalyzed Suzuki couplings for a straightforward industrial implementation. A detailed investigation of the reaction parameters was carried out in Chapter 2. The experimental observations indicate that excess amount of the borate is helpful to accelerate the reaction and 2 moles eq. of a strong base is the best choice for the reaction. Furthermore, our results suggest that transmetalation is the rate-limiting step of the Pd/C-catalyzed Suzuki couplings and also show that [OH-] is a critical factor affecting the reaction rate.
    [Show full text]
  • 2D Porous Polymers with Sp2-Carbon Connections
    2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang, Artur Ciesielski, Feng Qiu, Xiaodong Zhuang To cite this version: Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, et al.. 2D Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons. Advanced Functional Materials, Wiley, 2020, 30 (27), pp.2000857. 10.1002/adfm.202000857. hal-03117175 HAL Id: hal-03117175 https://hal.archives-ouvertes.fr/hal-03117175 Submitted on 20 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Two-Dimensional Porous Polymers with sp2-Carbon Connections and Sole sp2-Carbon Skeletons Jialing Kang, Senhe Huang, Kaiyue Jiang, Chenbao Lu, Zhenying Chen, Jinhui Zhu, Chongqing Yang,* Artur Ciesielski, Feng Qiu,* and Xiaodong Zhuang* J. Kang, S. Huang, K. Jiang, C. Lu, Z. Chen, Dr. J. Zhu, Dr. C. Yang, Prof. X. Zhuang The Meso-Entropy Matter Lab, SChool of Chemistry and ChemiCal Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China E-mail: [email protected], [email protected] J. Kang, Prof.
    [Show full text]
  • Desperately Seeking for the Catalytic Species in Suzuki-Miyaura Reaction Amine Bourouina
    Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Amine Bourouina To cite this version: Amine Bourouina. Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction. Chemical and Process Engineering. Université de Lyon, 2019. English. NNT : 2019LYSE1258. tel-02482607 HAL Id: tel-02482607 https://tel.archives-ouvertes.fr/tel-02482607 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1258 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale ED206 Ecole Doctorale de Chimie de Lyon Spécialité de doctorat : Discipline : Procédés Soutenue publiquement le 28/11/2019, par : Amine BOUROUINA Desperately Seeking For The Catalytic Species In Suzuki-Miyaura Reaction Devant le jury composé de : FERRIGNO Rosaria, Professeure des Universités, Université Lyon Présidente HII King Kuok (Mimi), Professeure, L'Imperial College de Londres Rapporteuse RIANT Olivier, Professeur ordinaire, Université Catholique de Louvain Rapporteur
    [Show full text]
  • Stille and Suzuki-Miyaura Reactions
    molecules Article Recoverable Palladium-Catalyzed Carbon-Carbon Bond Forming Reactions under Thermomorphic Mode: Stille and Suzuki-Miyaura Reactions Eskedar Tessema 1,†, Vijayanath Elakkat 1,† , Chiao-Fan Chiu 2,3,*, Zong-Lin Tsai 1, Ka Long Chan 1 , Chia-Rui Shen 4,5, Han-Chang Su 6 and Norman Lu 1,7,* 1 Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] (E.T.); [email protected] (V.E.); [email protected] (Z.-L.T.); [email protected] (K.L.C.) 2 Department of Pediatrics, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 3 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan 4 Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 5 Department of Ophthalmology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 6 Creditable Service Technology Consultants, New Taipei City 235, Taiwan; [email protected] 7 Development Center for Smart Textile, National Taipei University of Technology, Taipei 106, Taiwan * Correspondence: [email protected] (C.-F.C.); [email protected] (N.L.). † These authors contributed equally to this work. Citation: Tessema, E.; Elakkat, V.; 0 0 Chiu, C.-F.; Tsai, Z.-L.; Chan, K.L.; Abstract: The reaction of [PdCl2(CH3CN)2] and bis-4,4 -(RfCH2OCH2)-2,2 -bpy (1a–d), where Rf = n- Shen, C.-R.; Su, H.-C.; Lu, N. C11F23 (a), n-C10F21 (b), n-C9F19 (c) and n-C8F17 (d), respectively, in the presence of dichloromethane 0 0 Recoverable Palladium-Catalyzed (CH2Cl2) resulted in the synthesis of Pd complex, [PdCl2[4,4 -bis-(RfCH2OCH2)-2,2 -bpy] (2a–d).
    [Show full text]
  • The Nobel Prize in Chemistry 2010 the Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Chemistry for 2010 To
    PRESSMEDDELANDE Press release 6 October 2010 The Nobel Prize in Chemistry 2010 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2010 to Richard F. Heck Ei-ichi Negishi and Akira Suzuki University of Delaware, Newark, DE, USA, Purdue University, West Lafayette, Hokkaido University, Sapporo, IN, USA Japan “for palladium-catalyzed cross couplings in organic synthesis”. Great art in a test tube Organic chemistry has developed into an art form hods worked when creating simple molecules, but when where scientists produce marvelous chemical crea- synthesizing more complex molecules chemists ended up tions in their test tubes. Mankind benefits from this in with too many unwanted by-products in their test tubes. the form of medicines, ever-more precise electronics Palladium-catalyzed cross coupling solved that problem and advanced technological materials. The Nobel and provided chemists with a more precise and efficient Prize in Chemistry 2010 awards one of the most tool to work with. In the Heck reaction, Negishi reaction sophisticated tools available to chemists today. and Suzuki reaction, carbon atoms meet on a palladium atom, whereupon their proximity to one another kick- This year’s Nobel Prize in Chemistry is awarded to starts the chemical reaction. Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for the development of palladium-catalyzed cross coupling. This Palladium-catalyzed cross coupling is used in research chemical tool has vastly improved the possibilities for worldwide, as well as in the commercial production of chemists to create sophisticated chemicals, for example for example pharmaceuticals and molecules used in the carbon-based molecules as complex as those created by electronics industry.
    [Show full text]
  • Noc19 Cy15 Assignment3
    Metal Mediated Synthesis I - - Unit 3 - Week 2 https://onlinecourses.nptel.ac.in/noc19_cy15/uni... X [email protected] ▼ Courses » Metal Mediated Synthesis I Announcements Course Ask a Question Progress FAQ Unit 3 - Week 2 Register for Certification exam Assignment_2_Week-2_Met Med Synth-I The due date for submitting this assignment has passed. Course As per our records you have not submitted this Due on 2019-02-13, 23:59 IST. outline assignment. How to access 1) Name of the following coupling reaction is 1 point the portal? Week 1 Week 2 Lecture 6 :Catalytic Cyclopropanation Kumada coupling reaction Reaction & Introduction to Stille Coupling reaction Cross Coupling Reaction Suzuki coupling reaction Lecture 7 None of the above :Kumada No, the answer is incorrect. Coupling Reaction Score: 0 Accepted Answers: Lecture 8 :Suzuki Suzuki coupling reaction Coupling Reaction 2) In Stille coupling reaction the order of transmetalation for aryl is more than 1 point alkyl;- state whether the statement is true or false. Lecture 9 :Stille Coupling True Reaction False Lecture 10 :Assymetric No, the answer is incorrect. Suzuki Score: 0 Coupling Reaction Accepted Answers: True Download Videos 3) The reactivity pattern of aryl halides in the coupling reactions is usually follow 1 point Weekly - Feedback Cl>Br>I Quiz : © 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - A projectAssignment_2_Week-2_Met of Br > I > Cl In association with Med Synth-I I > Cl > Br Assignment 2 Solutions I > Br > Cl Funded by New Lesson No, the answer is incorrect. 1 of 4 Thursday 02 May 2019 04:41 PM Metal Mediated Synthesis I - - Unit 3 - Week 2 https://onlinecourses.nptel.ac.in/noc19_cy15/uni..
    [Show full text]
  • Regioselective Suzuki Couplings of Non -Symmetric Dibromobenzenes: Alkenes As Regiochemical Control Elements
    Organic & Biomolecular Chemistry Regioselective Suzuki Couplings of Non -Symmetric Dibromobenzenes: Alkenes as Regiochemical Control Elements Journal: Organic & Biomolecular Chemistry Manuscript ID: OB-COM-04-2015-000717 Article Type: Communication Date Submitted by the Author: 10-Apr-2015 Complete List of Authors: Zhao, Peng; Oregon State University, Chemistry Young, Marshall; Oregon State University, Chemistry Beaudry, Chris; Oregon State University, Chemistry Page 1 of 4 Organic & Biomolecular Chemistry Journal Name RSC Publishing COMMUNICATION Regioselective Suzuki Couplings of Non-Symmetric Dibromobenzenes: Alkenes as Regiochemical Control Cite this: DOI: 10.1039/x0xx00000x Elements * Received 00th January 2012, Peng Zhao, Marshall D. Young and Christopher M. Beaudry Accepted 00th January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ The regiochemical outcome of Suzuki couplings of non- symmetric dibromobenzenes is investigated. Selectivities are dependent on the proximity of the bromine atom to alkene substituents, not on steric or electronic effects. Extension to a one-pot three-component Suzuki reaction leads to efficient terphenyl syntheses. The Suzuki cross-coupling has emerged as a mainstay of organic synthesis, and it is especially useful for the construction of Csp 2–Csp 2 bonds. The traditional application of the Suzuki reaction is the coupling of a halide with a boron reagent (Scheme 1, eq. 1). 1 Substantial efforts have expanded the Suzuki reaction, and they include many examples of chemoselective couplings that exploit the reactivity differences of the halogens (eq. 2) 2. In addition to benzene systems, such chemoselective Suzuki reactions are also known in polycyclic aromatic molecules such as quinolines3, napthalenes 4, and indoles.5 Additionally there are many examples of tandem couplings of polyhalides (eq.
    [Show full text]
  • Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow
    catalysts Review Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow Christophe Len 1,*, Sophie Bruniaux 1, Frederic Delbecq 2 and Virinder S. Parmar 3 1 Centre de Recherche Royallieu, Université de Technologie de Compiègne (UTC), Sorbonne Universités, CS 60319, F-60203 Compiègne CEDEX, France; [email protected] 2 Ecole Supérieure de Chimie Organique et Minérale (ESCOM), 1 rue du Réseau Jean-Marie Buckmaster, F-60200 Compiègne, France; [email protected] 3 Institute of Advanced Sciences, 86-410 Faunce Corner Mall Road, Dartmouth, MA 02747, USA; [email protected] * Correspondence: [email protected]; Tel.: +33-344-234-323 Academic Editor: Ioannis D. Kostas Received: 15 March 2017; Accepted: 25 April 2017; Published: 9 May 2017 Abstract: Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts. Keywords: palladium; continuous flow; Suzuki–Miyaura; cross-coupling 1. Introduction Among the main reactions in organic chemistry, C–C bond formation via a cross-coupling reaction catalyzed by transition metals is undoubtedly the most important and has been exploited very widely in the recent years.
    [Show full text]
  • Palladium Nanoparticles Tethered in Amine-Functionalized Hypercrosslinked Organic Tubes As an Efficient Catalyst for Suzuki Coupling in Water
    catalysts Article Palladium Nanoparticles Tethered in Amine-Functionalized Hypercrosslinked Organic Tubes as an Efficient Catalyst for Suzuki Coupling in Water Arindam Modak 1,2, Jing Sun 1, Wenjun Qiu 1 and Xiao Liu 1,* 1 Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; [email protected] (A.M.); [email protected] (J.S.); [email protected] (W.Q.) 2 Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India * Correspondence: [email protected]; Tel./Fax: +86-22-2789-0859 Academic Editor: Ioannis D. Kostas Received: 7 September 2016; Accepted: 14 October 2016; Published: 20 October 2016 Abstract: It is highly desirable to design functionalized supports in heterogeneous catalysis regarding the stabilization of active sites. Pd immobilization in porous polymers and henceforth its application is a rapidly growing field. In virtue of its’ scalable synthesis and high stability in reaction conditions, amorphous polymers are considered an excellent scaffold for metal mediated catalysis, but the majority of them are found as either agglomerated particles or composed of rough spheres. Owing to several important applications of hollow organic tubes in diverse research areas, we aimed to utilize them as support for the immobilization of Pd nanoparticles. Pd immobilization in nanoporous polymer tubes shows high activity in Suzuki cross coupling reactions between aryl halides and sodium phenyl trihydroxyborate in water, which deserves environmental merit. Keywords: porous organic tubes; heterogeneous catalysis; Suzuki coupling in water 1. Introduction Porous organic polymers (POPs) are emerging as next-generation support materials for heterogeneous catalysis [1–6].
    [Show full text]
  • Morphological Aspects
    Molecules 2015, 20, 18661-18684; doi:10.3390/molecules201018661 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects Piero Mastrorilli 1,*, Maria M. Dell’Anna 1, Antonino Rizzuti 1, Matilda Mali 1, Mauro Zapparoli 2 and Cristina Leonelli 3 1 Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy; E-Mails: [email protected] (M.M.D.A.); [email protected] (A.R.); [email protected] (M.M.) 2 Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), Università di Modena e Reggio Emilia, via Campi 213\A, Modena 41125, Italy; E-Mail: [email protected] 3 Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, via Pietro Vivarelli 10, Modena 41125, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-80-596-3605; Fax: +39-80-596-3611. Academic Editors: Nicola Cioffi, Antonio Monopoli and Massimo Innocenti Received: 24 September 2015 / Accepted: 8 October 2015 / Published: 14 October 2015 Abstract: An insight into the nano- and micro-structural morphology of a polymer supported Pd catalyst employed in different catalytic reactions under green conditions is reported. The pre-catalyst was obtained by copolymerization of the metal-containing monomer − Pd(AAEMA)2 [AAEMA = deprotonated form of 2-(acetoacetoxy) ethyl methacrylate] with ethyl methacrylate as co-monomer, and ethylene glycol dimethacrylate as cross-linker. This material was used in water for the Suzuki-Miyaura cross-coupling of aryl bromides, and for the reduction of nitroarenes and quinolines using NaBH4 or H2, as reductants.
    [Show full text]
  • Conjugated Porous Polymers for Heterogeneous Visible Light Photocatalysis
    Conjugated Porous Polymers for Heterogeneous Visible Light Photocatalysis Dissertation Zur Erlangung des Grades „Doktor der Naturwissenschaften“ im Promotionsfach Chemie dem Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz. Zi Jun Wang Geboren in Yuncheng, China Mainz, December 2015 1 2 Dekan: 1. Gutachter: 2. Gutachter: Tag der mündlichen Prüfung: 3 Affidavit I hereby confirm that I have completed the present dissertation independently and without inadmissible external support. I have not used any sources or tools other than those indicated and have identified literal and analogous quotations. Furthermore, I confirm that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form. Place, date: Signature: i Zusammenfassung Konjugierte poröse Polymere (CPP) verbinden in idealer Weise die Eigenschaften eines photoaktiven Polymergrundgerüstes mit reichem Gehalt an π-Elektronen mit einer porösen spezifischen Oberfläche. Daher sind diese Materialien auf großes Interesse in der Wissenschaft gestoßen. Tatsächlich werden CPPs für eine Reihe von traditionalen Anwendungen wie Gasadsorption, Filtration, Katalyse und Lichtkonversion angewendet. In dieser Dissertation wurde eine neue Anwendungsmöglichkeit der CPPs auf ihrer hervorragenden Lichtadsorptionseigenschaft und hoher Porosität hervorgehend, nämlich die metallfreie heterogene Photokatalyse unter Bestrahlung mit sichtbarem Licht, dargestellt. Wichtige Aspekte wie Porosität, Morphologie, Bandstrukturen,
    [Show full text]
  • A Powerful Tool for Chemists
    THE NOBEL PRIZE IN CHEMISTRY 2010 INFORMATION FOR THE PUBLIC A Powerful Tool for Chemists There is an increasing need for complex chemicals. Humanity wants new medicines that can cure cancer or halt the devastating effects of deadly viruses in the human body. The electronics industry is searching for substances that can emit light, and the agricultural industry wants substances that can protect crops. The Nobel Prize in Chemistry 2010 rewards a tool that has improved the ability of chemists to satisfy all of these wishes very effciently: palladium-catalyzed cross coupling. At the end of the 1980s, scuba divers in the Caribbean Sea collected the marine sponge Discodermia dis- soluta. At a depth of 33 meters (108 feet) they found a little creature that lacks eyes, a mouth, stomach and bones. At frst sight it appears primitive, but its inability to escape enemies has turned Discodermia dissoluta and other marine sponges into masters of chemistry. They have a remarkable ability to produce large and complex chemical molecules that are poisonous and that prevent other organisms from exploiting them. Researchers have discovered that many of these poisons have therapeutic properties; they can function as antibiotics or as anti-viral or anti-infammatory medicines. In the case of Discodermia dissoluta, the frst laboratory tests revealed that the substance discodermolide could in the future be used as a chemotherapy drug. Among other things, it stopped cancer cells from growing in test tubes. Removes a significant obstacle to progress After more in-depth studies, scientists have been able to demonstrate how discodermolide defeats cancer cells in the same manner as Taxol, one of the most commonly used cancer drugs in the world.
    [Show full text]