Complétions D'intervalles Minimales
Total Page:16
File Type:pdf, Size:1020Kb
Complétions d’intervalles minimales Karol Suchan To cite this version: Karol Suchan. Complétions d’intervalles minimales. Computer Science [cs]. Université d’Orléans, 2006. English. tel-00480669 HAL Id: tel-00480669 https://tel.archives-ouvertes.fr/tel-00480669 Submitted on 4 May 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE D'ORLEANS THESE PRESENTEE A L’UNIVERSITE D’ORLEANS POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITE D’ORLEANS Discipline : Informatique PAR M. Karol SUCHAN Sujet : Complétions d'intervalles minimales Soutenue le : 12 décembre 2006 MEMBRES DU JURY : - Mme Anne BERRY (LIMOS, Clermont Ferrand) Examinateur - M. Krzysztof DIKS (Université de Varsovie) Rapporteur - M. Pierre FRAIGNIAUD (LRI, Université Paris XI) Rapporteur - M. Michel HABIB (LIAFA, Université Paris 7) Examinateur - M. Henri THUILLIER (LIFO, Université d’Orléans) Directeur de thèse - M. Ioan TODINCA (LIFO, Université d’Orléans) Encadrant Contents 1 Introduction 1 2 Basis 9 2.1 Basicnotions .................................... 9 2.1.1 Minimalseparators. .. .. .. .. .. .. .. .. 10 2.1.2 Orderedpartitions . .. .. .. .. .. .. .. .. 10 2.2 Intersectiongraphs .............................. 11 2.2.1 Intersectionmodel . .. .. .. .. .. .. .. .. 11 2.2.2 Connected decomposition . 13 2.2.3 Layouts ....................................... 14 2.2.4 Other characterizations and properties . ........... 15 2.3 Completion ...................................... 16 3 MPIC Through Decomposition 19 3.1 ProperIntervallayout. 20 3.2 MoplexandLexBFS ................................. 21 3.3 Nicelayoutsandniceprefixes . 22 3.3.1 Choosingafirstvertex. 22 3.3.2 Afamilyofnicelayouts . 23 3.3.3 Nice layouts : a sufficient condition . 26 3.4 Thealgorithm.................................... 27 3.5 Conclusions ..................................... 30 4 MIC Through Exploration 33 4.1 Intervallayout .................................. 33 4.2 Nicelayoutsandniceprefixes . 34 4.2.1 LexBFS-terminalvertex . 35 4.2.2 Choosingafirstvertex. 35 4.2.3 Afamilyofnicelayouts . 36 4.2.4 Nice layouts : a sufficient condition . 38 4.3 Thealgorithm.................................... 40 4.4 Conclusions ..................................... 41 iii 5 Pre-order - clique path encoding 43 5.1 Controlovercliquepaths . 44 5.2 Structureofthepre-order . 49 5.2.1 The co-comparability graph . 49 5.3 Learningthepre-order . 52 5.3.1 Topologicalorder.............................. 52 5.3.2 Bipartition ................................... 54 5.3.3 Components of (O(S), !) ............................. 55 5.3.4 Complexity .................................... 55 6 MIC Through Decomposition 57 6.1 Incrementalapproach ............................. 58 6.2 Principlesofthealgorithm. ......... 59 6.2.1 NG! (x)isaclique.................................. 60 6.2.2 NG! (x)isnotaclique ............................... 61 6.3 Minimalcompletion ............................... 63 6.3.1 Minimal separators in Sx ............................. 63 6.4 AlgorithmNicePair............................... 67 6.5 Puttingeverythingtogether . ......... 70 6.5.1 Algorithm MinimalIntervalCompletion . .......... 72 6.6 Conclusions ..................................... 73 7 Pathwidth of Circular-Arc Graphs 75 7.1 Folding ......................................... 75 7.2 Circular-arcgraphs.............................. 77 7.3 Foldingcircular-arcgraphs. .......... 78 7.4 Thealgorithm.................................... 83 7.5 Conclusions ..................................... 86 8 MIC Extraction 87 8.1 Foldingintervalgraphs. 87 8.2 Unfolding ....................................... 91 8.3 Extracting minimal interval completions: the algorithm ................ 96 8.4 ProofofLemma8.3.2 ............................... 98 8.5 Conclusions ..................................... 101 iv List of Figures 2.1 A proper interval graph and an interval model. ............ 12 2.2 A slight modification of intervals to avoid strict inclusion. ............... 12 3.1 PIG(G, σ)-thefilledgesindashedline-style. 20 3.2 The LexBFS algorithm.................................... 22 3.3 BFS color code and the strong neighborhood of ρ. ................... 23 3.4 The strong neighborhood of ρ shouldcomefirst. .................... 24 3.5 The weak neighborhood comes before the non-neighborhood. ............. 25 3.6 A vertex in NS(ρ)havingfewwhiteneighborsshouldcomefirst. 26 3.7 Algorithm Minimal Proper Interval Completion and data structure. 28 3.8 AlgorithmIntervalModel. 29 4.1 IG(G, σ)-dashedfilledges. ................................ 34 4.2 Putting Nxt right after ρ. ................................. 37 4.3 Algorithm MIC Ordering. ................................. 41 5.1 Blocks associated to a minimal separator. ............ 44 6.1 Pruning x from a clique path of G............................. 59 6.2 Two clique paths of G - different intervals [KL : KR]................... 60 6.3 Two ordered partitions of G - different intervals [OL : OR]................ 64 6.4 Main case: the algorithm constructing a nice pair (L, R). ............... 69 7.1 The FillFolding algorithm. ............................... 76 7.2 Circular-arcgraph. .............................. 77 7.3 Restriction of the clique cycle. ........... 78 7.4 FillFolding......................................... 79 7.5 Reduction of A (top) to A! : one way (middle) or the other (bottom). 80 7.6 From 4-monotone to 2-monotone foldings. ........... 81 7.7 Planar triangulation corresponding to a 2-folding. ................. 84 8.1 Unfolding....................................... 92 8.2 Openingonepivot. ................................ 96 8.3 Openingtwopivots. ............................... 97 8.4 Extracting a minimal interval completion. ............. 98 8.5 2-folding. ...................................... 99 v vi Chapter 1 Introduction Research on NP-hard problems is in the core of contemporary algorithmics. Since it is impractical to search for general exact solutions to the problems in this class, many special approaches have been developed. Most efforts can be regrouped about the following main axis: heuristics, guaranteed quality approximations, exact solutions for restrained graph classes, and the most recently, general exact exponential time algorithms. Heuristics are often fast and prove very useful in applications but admit no theoretical proofs of quality. They are evaluated in empirical manner with benchmarks running on real-life data coming from applications or on random data-sets generated from adequate probability distributions. Approximation algorithms are polynomial time algorithms that give solutions that fit within bounds proved to be close to optimum. How tight these bounds can be depends on the problem. The most common are the approximations within a constant multiplicative factor, meaning that their accuracy is independent from the instance. But sometimes multiplicative constant factor polynomial time approximations are proved not to exist (again, unless P=NP). Graph coloring is an important example of such a problem. The third approach to NP-hard problems consists in finding polynomial time exact algorithms for restrained graph classes. Here the question is how strong constraints on the structure of the graph in question we need to have in order to be able to solve the problem in polynomial time. It is the usual path to start with strong conditions sufficient to prove polynomial time complexity, that are progressively relaxed as the understanding of the problem improves. Thus the class of graphs for which the problem can be efficiently solved becomes larger and larger. Eventually, the study may accomplish by finding conditions that are also necessary, hence a full characterization of instances solvable in polynomial time is given. Finally, a new branch of exponential time algorithms has been recently developed. Their interest is twofold. First, they aim at finding exponential time algorithms with small basis of the exponent, which can make them of practical use for instances of moderate size if the basis is close enough to 1. Then, the complexity analysis may serve to evaluate on how adequate are the tools used to describe the combinatorial structure of the problem, which stimulates further research. It is worth mentioning here that these approaches to NP-hard problems are in no way exclusive. They rather tend to complement and reinforce each other: observations on exact solutions for particular cases are incorporated into heuristics, heuristics are refined into approximation algorithms, approximations prove to be exact for particular instances, etc. One of the methods used for tackling NP-hard problems on restrained graph classes is through graph decompositions. The basic idea is to decompose the vertex set or the edge set of a graph into clusters which satisfy certain conditions. The properties of this decomposition are such that 1 if one can solve the problem on the clusters, then these partial solutions can be joined to yield a global solution. Typically, the clusters are decomposed recursively, which gives the structure of