Diatoms of the Northeastern Gulf of Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Diatoms of the Northeastern Gulf of Mexico Gulf and Caribbean Research Volume 32 Issue 1 2021 Diatoms of the Northeastern Gulf of Mexico: Light and Electron Microscope Observations of Sulcatonitzschia, a new Genus of Nitzschioid Diatoms (Bacillariales: Bacillariaceae) with a Transverse Sulcus James A. Nienow Valdosta State University, [email protected] Akshinthala K. S. K. Prasad Florida State University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Biodiversity Commons, and the Biology Commons Recommended Citation Nienow, J. A. and A. K. Prasad. 2021. Diatoms of the Northeastern Gulf of Mexico: Light and Electron Microscope Observations of Sulcatonitzschia, a new Genus of Nitzschioid Diatoms (Bacillariales: Bacillariaceae) with a Transverse Sulcus. Gulf and Caribbean Research 32 (1): 34-45. Retrieved from https://aquila.usm.edu/gcr/vol32/iss1/6 DOI: https://doi.org/10.18785/gcr.3201.06 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W. Tunnell, Jr. ......................................................................................................... 9—18 Volume 32 ASSESSMENT OF SEAGRASS FLORAL COMMUNITY STRUCTURE FROM TWO CARIBBEAN MARINE PROTECTED 2021 AREAS ISSN: 2572-1410 Paul A. X. Bologna and Anthony J. Suleski ............................................................................................................................................. 19—27 SPATIAL AND SIZE DISTRIBUTION OF RED DRUM CAUGHT AND RELEASED IN TAMPA BAY, FLORIDA, AND FAC- TORS ASSOCIATED WITH POST—RELEASE HOOKING MORTALITY Kerry E. Flaherty, Brent L. Winner, Julie L. Vecchio, and Theodore S. Switzer....................................................................................29—41 CHARACTERIZATION OF ICHTHYOPLANKTON IN THE NORTHEASTERN GULF OF MEXICO FROM SEAMAP PLANK- TON SURVEYS, 1982—1999 Joanne Lyczkowski—Shultz, David S. Hanisko, Kenneth J. Sulak, Ma gorzata Konieczna, and Pamela J. Bond ..................................43—98 ł GULF AND CARIBBEAN RESEARC Short Communications DEPURATION OF MACONDA (MC—252) OIL FOUND IN HETEROTROPHIC SCLERACTINIAN CORALS (TUBASTREA COCCINEA AND TUBASTREA MICRANTHUS) ON OFFSHORE OIL/GAS PLATFORMS IN THE GULF Steve R. Kolian, Scott Porter, Paul W. Sammarco, and Edwin W. Cake, Jr........................................................................................99—103 EFFECTS OF CLOSURE OF THE MISSISSIPPI RIVER GULF OUTLET ON SALTWATER INTRUSION AND BOTTOM WATER HYPOXIA IN LAKE PONTCHARTRAIN Michael A. Poirrier .............................................................................................................................................................................105—109 DISTRIBUTION AND LENGTH FREQUENCY OF INVASIVE LIONFISH (PTEROIS SP.) IN THE NORTHERN GULF OF MEXICO OF MEXICO Alexander Q. Fogg, Eric R. Hoffmayer, William B. Driggers III, Matthew D. Campbell, Gilmore J. Pellegrin, and William Stein ............................................................................................................................................................................................................111—115 NOTES ON THE BIOLOGY OF INVASIVE LIONFISH (PTEROIS SP.) FROM THE NORTHCENTRAL GULF OF MEXICO William Stein III, Nancy J. Brown—Peterson, James S. Franks, and Martin T. O’Connell ...............................................................117—120 H RECORD BODY SIZE FOR THE RED LIONFISH, PTEROIS VOLITANS (SCORPAENIFORMES), IN THE SOUTHERN GULF OF MEXICO Alfonso Aguilar—Perera, Leidy Perera—Chan, and Luis Quijano—Puerto ...........................................................................................121—123 EFFECTS OF BLACK MANGROVE (AVICENNIA GERMINANS) EXPANSION ON SALTMARSH (SPARTINA ALTERNI- FLORA) BENTHIC COMMUNITIES OF THE SOUTH TEXAS COAST Jessica Lunt, Kimberly McGlaun, and Elizabeth M. Robinson..........................................................................................................125—129 TIME—ACTIVITY BUDGETS OF STOPLIGHT PARROTFISH (SCARIDAE: SPARISOMA VIRIDE) IN BELIZE: CLEANING INVITATION AND DIURNAL PATTERNS Wesley A. Dent and Gary R. Gaston .................................................................................................................................................131—135 FIRST RECORD OF A NURSE SHARK, GINGLYMOSTOMA CIRRATUM, WITHIN THE MISSISSIPPI SOUND Jill M. Hendon, Eric R. Hoffmayer, and William B. Driggers III......................................................................................................137—139 REVIEWERS ........................................................................................................................................................................................................141 INSTRUCTION TO AUTHORS ...............................................................................................................................................................142-143 Published by © 2013 The University of Southern Mississippi, Gulf Coast Published by Research Laboratory. MARCH 2013 Printed in the United States of America ISSN: 1528—0470 703 East Beach Drive All rights reserved. No part of this publication covered by the Ocean Springs, Mississippi 39564 copyright hereon may be reproduced or copied in any form or 228.872.4200 • FAX: 228.872.4204 by any means without written permission from the publisher. Ocean Springs, Mississippi www.usm.edu/gcrl Gulf and Caribbean Research Vol 32, 34-45, 2021 Manuscript received, December 6, 2020; accepted, March 30, 2021 DOI: 10.18785/gcr.3201.06 DIATOMS OF THE NORTHEASTERN GULF OF MEXICO: LIGHT AND ELEC- TRON MICROSCOPE OBSERVATIONS OF SULCATONITZSCHIA, A NEW GENUS OF NITZSCHIOID DIATOMS (BACILLARIALES: BACILLARIACEAE) WITH A TRANSVERSE SULCUS James A. Nienow1,* and Akshinthala K. S. K. Prasad2 1Biology Department, Valdosta State University, 1500 North Patterson, Valdosta GA 31698 USA; 2Department of Biological Science, Florida State University, 207 BioUnit One, 89 Chieftan Way, Tallahassee, FL 32306 USA; *Corresponding author, email: [email protected] ABSTRACT: During a systematic investigation of phytoplankton assemblages in the northeastern Gulf of Mexico (GOM) in the aftermath of the Deepwater Horizon blowout we encountered a population of diatoms morphologically similar to Nitzschia ossiformis (Taylor) Simonsen located about 75 km offshore and concentrated at a depth of 60—120 meters. The density of individuals in the popu- lation was sufficient to make detailed observations using light and electron microscopy. Our specimens were frequently united into short ribbon—like colonies. This, plus features of the fine structure of valve (biseriate striae, raphe canal without pores and flush with the valve surface) suggest the GOM population is more closely related to Fragilariopsis than to Nitzschia sensu stricto. The presence of a unique feature, described here for the first time, a transverse sulcus in the exterior surface of one of the poles, coupled with the characteristic shape of the valve, suggest our taxon cannot be accommodated in Fragilariopsis, or any other genus hitherto known within the family Bacillariaceae. We, therefore, propose a new genus, Sulcatonitzschia for this diatom and any other nitzschioid diatom with a transverse sulcus, with a new species, Sulcatonitzschia novossiformis as the generitype. Published descriptions suggest that some populations identified as Nitzschia ossiformis may be conspecific with S. novossiformis, but the type of N. ossiformis as delineated by Taylor is not. Examination of the fine structure of the valves is necessary to resolve these relationships. KEY WORDS: Nitzschia ossiformis, Synedra ossiformis, transverse sulcus, phytoplankton INTRODUCTION The coastal zone of the northeastern Gulf of Mexico (GOM) atively high levels primary of productivity (Qian et al. 2003, is in many ways an ideal system for studying diatom biodiver- Salmerón—García et al. 2011, Murawski et al. 2016). While sity. The region includes the outlets of 5 major river systems relatively well studied from an oceanographic point of view, – the Escambia, Choctawhatchee, Apalachicola, Ochlockonee, systematic studies of seasonal variations in the composition of and Suwannee — as well as the outlets of numerous smaller the phytoplankton at the species scale are scarce (Murawski et rivers and streams. In the west, these empty into a series of al. 2016). The most detailed studies are those of Curl (1959) brackish lagoons and large bays bounded by barrier islands. In and Saunders and Fryxell (1972). the east, the local physiography prevents the formation of bar- In April of 2010, the Deepwater Horizon drilling rig explod- rier islands. Instead, the coastal region is dominated by swamps ed, causing a massive oil spill in the northern GOM; by the and marshes (Pennock
Recommended publications
  • Diatomic Compounds in the Soils of Bee-Farm and Nearby Territories in Samarskaya Oblast
    BIO Web of Conferences 27, 00036 (2020) https://doi.org/10.1051/bioconf/20202700036 FIES 2020 Diatomic compounds in the soils of bee-farm and nearby territories in Samarskaya oblast N.Ye. Zemskova1,*, A.I. Fazlutdinova2, V.N. Sattarov2 and L.M. Safiullinа2 1Samara State Agrarian University, Ust-Kinelskiy, Samarskaya oblast, 446442, Russia 2Bashkir State Pedagogical University n.a. M. Akmulla, Ufa, 450008, Russia Abstract. This article sheds light on the role diatomic algae in soils play in the assessment of bee farm and nearby territories in four soil and landscape zones in Samarskaya Oblast. The community of diatomic algae is characterized by low species diversity, of which 23 taxons were found. The most often found species are represented by Hantzschia amphioxys (Ehrenberg) Grunow in Cleve & Grunow and Luticola mutica (Kützing) D.G.Mann in Round et al. The maximum of phyla (18) were found in the buffer (transient) zone; in the wooded steppe zone, 11 species were recorded; in the steppe – 2 species, and in the dry steppe zone no species of diatomic algae were found. The qualitative and quantitative characteristics of diatomic algae communities in various biotopes depend on the natural and climate features of a territory and the degree of the anthropogenic impact on the soil and vegetation, which is proved by the fact that high species wealth signifies that the ecosystem is stable and resilient to the changing conditions in the environment, while poor algal flora is less resilient due to the lower degree of diversity. 1 Introduction Diatomic algae play a special role in habitats with extreme conditions [6, 7].
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Resilience to Temperature and Ph Changes in a Future Climate Change Scenario
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 12, 4627–4654, 2015 www.biogeosciences-discuss.net/12/4627/2015/ doi:10.5194/bgd-12-4627-2015 BGD © Author(s) 2015. CC Attribution 3.0 License. 12, 4627–4654, 2015 This discussion paper is/has been under review for the journal Biogeosciences (BG). Resilience to Please refer to the corresponding final paper in BG if available. temperature and pH changes in a future Resilience to temperature and pH climate change changes in a future climate change scenario M. Pan£i¢ et al. scenario in six strains of the polar diatom Fragilariopsis cylindrus Title Page Abstract Introduction M. Pan£i¢1,2, P. J. Hansen3, A. Tammilehto1, and N. Lundholm1 Conclusions References 1Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark Tables Figures 2National Institute of Aquatic Resources, DTU Aqua, Section for Marine Ecology and Oceanography, Technical University of Denmark, Charlottenlund, Denmark 3Marine Biological Section, University of Copenhagen, Helsingør, Denmark J I Received: 12 February 2015 – Accepted: 6 March 2015 – Published: 20 March 2015 J I Correspondence to: M. Pan£i¢ ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 4627 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. 12, 4627–4654, 2015 Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and ◦ 5 different temperatures (1, 5 and 8 C) to simulate changes from present to plausible Resilience to future levels.
    [Show full text]
  • Benthic and Planktonic Microalgal Community Structure and Primary Productivity in Lower Chesapeake Bay Matthew Reginald Semcheski Old Dominion University
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2014 Benthic and Planktonic Microalgal Community Structure and Primary Productivity in Lower Chesapeake Bay Matthew Reginald Semcheski Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, and the Marine Biology Commons Recommended Citation Semcheski, Matthew R.. "Benthic and Planktonic Microalgal Community Structure and Primary Productivity in Lower Chesapeake Bay" (2014). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/j7nz-k382 https://digitalcommons.odu.edu/biology_etds/79 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. BENTHIC AND PLANKTONIC MICROALGAL COMMUNITY STRUCTURE AND PRIMARY PRODUCTIVITY IN LOWER CHESAPEAKE BAY by Matthew Reginald Semcheski B.S. May 2003, East Stroudsburg University M.S. August 2008, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY MAY 2014 Approved by: Harold G. Marshall Kneeland K. Nesius (Member) John R. McConaugha (Member) ABSTRACT BENTHIC AND PLANKTONIC MICROALGAL COMMUNITY STRUCTURE AND PRIMARY PRODUCTIVITY IN LOWER CHESAPEAKE BAY Matthew Reginald Semcheski Old Dominion University, 2014 Director: Dr. Harold G. Marshall Microalgal populations are trophically important to a variety of micro- and macroheterotrophs in marine and estuarine systems.
    [Show full text]
  • Towards a Digital Diatom: Image Processing and Deep Learning Analysis of Bacillaria Paradoxa Dynamic Morphology
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885897; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Towards a Digital Diatom: image processing and deep learning analysis of Bacillaria paradoxa dynamic morphology Bradly Alicea1,2, Richard Gordon3,4, Thomas Harbich5, Ujjwal Singh6, Asmit Singh6, Vinay Varma7 Abstract Recent years have witnessed a convergence of data and methods that allow us to approximate the shape, size, and functional attributes of biological organisms. This is not only limited to traditional model species: given the ability to culture and visualize a specific organism, we can capture both its structural and functional attributes. We present a quantitative model for the colonial diatom Bacillaria paradoxa, an organism that presents a number of unique attributes in terms of form and function. To acquire a digital model of B. paradoxa, we extract a series of quantitative parameters from microscopy videos from both primary and secondary sources. These data are then analyzed using a variety of techniques, including two rival deep learning approaches. We provide an overview of neural networks for non-specialists as well as present a series of analysis on Bacillaria phenotype data. The application of deep learning networks allow for two analytical purposes. Application of the DeepLabv3 pre-trained model extracts phenotypic parameters describing the shape of cells constituting Bacillaria colonies. Application of a semantic model trained on nematode embryogenesis data (OpenDevoCell) provides a means to analyze masked images of potential intracellular features.
    [Show full text]
  • UC San Diego UC San Diego Previously Published Works
    UC San Diego UC San Diego Previously Published Works Title Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance Permalink https://escholarship.org/uc/item/5p2517zr Journal Polar Biology, 33(11) ISSN 1432-2056 Authors Cefarelli, Adrián O. Ferrario, Martha E. Almandoz, Gastón O. et al. Publication Date 2010-11-01 DOI 10.1007/s00300-010-0794-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Polar Biol (2010) 33:1463–1484 DOI 10.1007/s00300-010-0794-z ORIGINAL PAPER Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance Adria´n O. Cefarelli • Martha E. Ferrario • Gasto´n O. Almandoz • Adria´n G. Atencio • Rut Akselman • Marı´a Vernet Received: 9 October 2009 / Revised: 2 March 2010 / Accepted: 12 March 2010 / Published online: 16 October 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Fragilariopsis species composition and abun- Drake Passage and twelve in the Weddell Sea. F. curta, dance from the Argentine Sea and Antarctic waters were F. kerguelensis, F. pseudonana and F. rhombica were analyzed using light and electron microscopy. Twelve present everywhere. species (F. curta, F. cylindrus, F. kerguelensis, F. nana, F. obliquecostata, F. peragallii, F. pseudonana, F. rhombica, Keywords Phytoplankton Á Diatom Á Fragilariopsis Á F. ritscheri, F. separanda, F. sublinearis and F. vanheurckii) Antarctica Á Argentine Sea are described and compared with samples from the Frengu- elli Collection, Museo de La Plata, Argentina. F. peragallii was examined for the first time using electron microscopy, Introduction and F.
    [Show full text]
  • Holocene) Diatoms (Bacillariophyta
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Taxonomy of recent and fossil (Holocene) diatoms (Bacillariophyta) from northern Willapa Bay, Washington by Eileen Hemphill-Haley1 OPEN-FILE REPORT 93-289 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1. Menlo Park, CA 94025 TABLE OF CONTENTS ABSTRACT........................................................................................................................! INTRODUCTION..............................................................................................................^ Background for the Study .......................................................................................1 Related Studies......................................................................................................2 METHODS........................................................................................................................^ FLORAL LIST.....................................................................................................................4 ACKNOWLEDGMENTS......................................................................................................120 REFERENCES...................................................................................................................121 FIGURES Figure 1. Sample
    [Show full text]
  • Taxonomy and Diversity of a Little-Known Diatom Genus Simonsenia (Bacillariaceae) in the Marine Littoral: Novel Taxa from the Yellow Sea and the Gulf of Mexico
    Plant Ecology and Evolution 152 (2): 248–261, 2019 https://doi.org/10.5091/plecevo.2019.1614 REGULAR PAPER Taxonomy and diversity of a little-known diatom genus Simonsenia (Bacillariaceae) in the marine littoral: novel taxa from the Yellow Sea and the Gulf of Mexico Byoung-Seok Kim1,8,*, Andrzej Witkowski2,8, Jong-Gyu Park3, Chunlian Li4,2, Rosa Trobajo5, David G. Mann5,6, So-Yeon Kim1, Matt Ashworth7, Małgorzata Bąk2 & Romain Gastineau2 1Department of Oceanography, College of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Republic of Korea 2Palaeoceanology Unit, Faculty of Geosciences, Natural Sciences Education and Research Centre, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland 3Department of Marine Life and Applied Sciences, College of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Republic of Korea 4Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510631, China 5Institute of Agriculture and Food Research and Technology (IRTA), Sant Carles de la Ràpita, E-43540, Spain 6Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK 7UTEX Culture Collection of Algae, Department of Molecular Biosciences, University of Texas at Austin, 205 W. 24th St. MS C0930 Austin, Texas 78712, United States 8Both authors contributed equally to this work *Author for correspondence: [email protected] Background and aims – The diatom genus Simonsenia has been considered for some time a minor taxon, limited in its distribution to fresh and slightly brackish waters. Recently, knowledge of its diversity and geographic distribution has been enhanced with new species described from brackish-marine waters of the southern Iberian Peninsula and from inland freshwaters of South China, and here we report novel Simonsenia from fully marine waters.
    [Show full text]
  • Phylogeny of the Bacillariaceae with Emphasis on the Genus Pseudo-Nitzschia (Bacillariophyceae) Based on Partial LSU Rdna
    Eur. J. Phycol. (2002), 37: 115–134. # 2002 British Phycological Society 115 DOI: 10.1017\S096702620100347X Printed in the United Kingdom Phylogeny of the Bacillariaceae with emphasis on the genus Pseudo-nitzschia (Bacillariophyceae) based on partial LSU rDNA NINA LUNDHOLM, NIELS DAUGBJERG AND ØJVIND MOESTRUP Department of Phycology, Botanical Institute, University of Copenhagen, Øster Farimagsgade 2D, 1353 Copenhagen K, Denmark (Received 10 July 2001; accepted 18 October 2001) In order to elucidate the phylogeny and evolutionary history of the Bacillariaceae we conducted a phylogenetic analysis of 42 species (sequences were determined from more than two strains of many of the Pseudo-nitzschia species) based on the first 872 base pairs of nuclear-encoded large subunit (LSU) rDNA, which include some of the most variable domains. Four araphid genera were used as the outgroup in maximum likelihood, parsimony and distance analyses. The phylogenetic inferences revealed the Bacillariaceae as monophyletic (bootstrap support ! 90%). A clade comprising Pseudo-nitzschia, Fragilariopsis and Nitzschia americana (clade A) was supported by high bootstrap values (! 94%) and agreed with the morphological features revealed by electron microscopy. Data for 29 taxa indicate a subdivision of clade A, one clade comprising Pseudo-nitzschia species, a second clade consisting of Pseudo-nitzschia species and Nitzschia americana, and a third clade comprising Fragilariopsis species. Pseudo-nitzschia as presently defined is paraphyletic and emendation of the genus is probably needed. The analyses suggested that Nitzschia is not monophyletic, as expected from the great morphological diversity within the genus. A cluster characterized by possession of detailed ornamentation on the frustule is indicated. Eighteen taxa (16 within the Bacillariaceae) were tested for production of domoic acid, a neurotoxic amino acid.
    [Show full text]
  • Exploring Species Boundaries in the Diatom Genus Rhoicosphenia Using Morphology, Phylogeny, Ecology, and Biogeography Evan William Thomas
    University of Colorado, Boulder CU Scholar Ecology & Evolutionary Biology Graduate Theses & Ecology & Evolutionary Biology Dissertations Spring 1-1-2016 Exploring Species Boundaries in the Diatom Genus Rhoicosphenia Using Morphology, Phylogeny, Ecology, and Biogeography Evan William Thomas Follow this and additional works at: http://scholar.colorado.edu/ebio_gradetds Part of the Ecology and Evolutionary Biology Commons, Environmental Microbiology and Microbial Ecology Commons, Molecular Biology Commons, and the Systems Biology Commons This Dissertation is brought to you for free and open access by Ecology & Evolutionary Biology at CU Scholar. It has been accepted for inclusion in Ecology & Evolutionary Biology Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. i EXPLORING SPECIES BOUNDARIES IN THE DIATOM GENUS RHOICOSPHENIA USING MORPHOLOGY, PHYLOGENY, ECOLOGY, AND BIOGEOGRAPHY by EVAN WILLIAM THOMAS B.A., University of Michigan, 2005 M.S., Bowling Green State University, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology 2016 ii This thesis entitled: Exploring species boundaries in the diatom genus Rhoicosphenia using morphology, phylogeny, ecology, and biogeography written by Evan William Thomas has been approved for the Department of Ecology and Evolutionary Biology –––––––––––––––––––––––––––––––––––
    [Show full text]
  • FRAGILARIOPSIS CYLINDRUS and ITS POTENTIAL AS an INDICATOR SPECIES for COLD WATER RATHER THAN for SEA ICE Cecilie Von Quillfeldt
    THE DIATOM FRAGILARIOPSIS CYLINDRUS AND ITS POTENTIAL AS AN INDICATOR SPECIES FOR COLD WATER RATHER THAN FOR SEA ICE Cecilie von Quillfeldt To cite this version: Cecilie von Quillfeldt. THE DIATOM FRAGILARIOPSIS CYLINDRUS AND ITS POTENTIAL AS AN INDICATOR SPECIES FOR COLD WATER RATHER THAN FOR SEA ICE. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2004, pp.137-143. hal- 03218115 HAL Id: hal-03218115 https://hal.sorbonne-universite.fr/hal-03218115 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FRAGILARIOPSIS CYLINDRUS AS INDICATOR FOR COLD WATER C. H. von QUILLFELDT VIE MILIEU, 2004, 54 (2-3) : 137-143 THE DIATOM FRAGILARIOPSIS CYLINDRUS AND ITS POTENTIAL AS AN INDICATOR SPECIES FOR COLD WATER RATHER THAN FOR SEA ICE CECILIE H. von QUILLFELDT Norwegian Polar Institute, The Polar Environmental Centre, 9296 Tromsø, Norway [email protected] FRAGILARIOPSIS CYLINDRUS ABSTRACT. – The importance of the diatom Fragilariopsis cylindrus (Grunow) DIATOM Krieger in Helmcke & Krieger in the Arctic and Antarctic is well known. It is used INDICATOR as an indicator of sea ice when the paleoenvironment is being described. It is often PHYTOPLANKTON SEA ICE among the dominant taxa in different sea ice communities, sometimes making an COLD WATER important contribution to a subsequent phytoplankton growth when released by ice ARCTIC melt.
    [Show full text]
  • How to Define a Diatom Genus? Notes on the Creation and Recognition of Taxa, and a Call for Revisionary Studies of Diatoms
    Title How to define a diatom genus? Notes on the creation and recognition of taxa, and a call for revisionary studies of diatoms Authors Williams, DM; Kociolek, John Patrick Date Submitted 2016-10-13 Acta Bot. Croat. 74 (2), page–page, 2015 CODEN: ABCRA 25 ISSN 0365-0588 eISSN 1847-8476 DOI: 10.1515/botcro-2015-0018 Review paper How to defi ne a diatom genus? Notes on the creation and recognition of taxa, and a call for revisionary studies of diatoms JOHN PATRICK KOCIOLEK1*, DAVID M. WILLIAMS2 1 Museum of Natural History and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA 2 Department of Life Sciences, the Natural History Museum, Cromwell Road, London, SW7 5BD, U. K. Abstract – We highlight the increase in the number of diatom genera being described, and suggest that their description be based on the concept of monophyly. That is, a new genus will contain the ancestor and all its descendants. Past criteria or guidance on how to cir- cumscribe genera are reviewed and discussed, with conceptual and actual exemplars pre- sented. While there is an increase in the rate of genus descriptions in diatoms, and there are many journal and series dedicated to facilitating this important activity, we call for re- visionary works on diatom groups, to assess and establish monophyletic groups at all lev- els of hierarchy in the diatom system. Keywords: Bacillariophyta, cladistics, genera, monophyly, phylogeny, revisionary stud- ies, systematics Introduction During the last 15 years of studies in diatom taxonomy, over 80 new genera have been described (FOURTANIER and KOCIOLEK 2011).
    [Show full text]