Syntheosciurus

Biswamoyopterus Pteromys

Petaurista

PteromyscusTrogopterusBelomys

Microsciurus Rheithrosciurus EupetaurusAeromys

GlaucomysAeretes

Hylopetes2 Sciurus

Petinomys Trees as representations of Tamiasciurus (private) evolutionarySciurotamias information Hylopetes worth preservingCallosciurus2 Petaurillus Iomys Arne Mooers (SFU)

Ratufa Mike Steel (UCant) Olivier Gascuel (LIRMM) Tanja Stadler (ETH Zurich) Klaas Hartmann (CSIRO) Nannosciurus Rubrisciurus Heyang Li (UCant) Dave Redding (Manchester)

Exilisciurus Aki Mimoto (SFU)

Dremomys Glyphotes Jeff Joy (SFU)

Menetes Prof. Wayne Maddison (UBC)

Tamiops Renske Gudde (Utrecht) Rhinosciurus

Funambulus

funding from Canadian,New Zealand, German, and French states.... 1 2 The tree connecting represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

20 mya

3 Given trees (multicellular life) exist, 1. What do we think trees look like? 2. Why does it matter what they look like? 3. How might we use a tree perspective for conservation?

4 Big (but hopefully relevant) parenthesis: What shapes might phylogenetic trees have?

1967:

Yule model (1924) presented as prior on tree shape (topology and edge lengths) for tree inference by AWF Edwards (here in Cambridge)*

1996:

Generalized to the homogeneous birth-death model as prior on tree inference by Z Yang and B Rannala**

* too hard **now in,e.g. BEAST tree inference software 5 We do know a lot about Yule trees

= birth rate of lineages

if you know lambda

if you have the full tree (Kendall, 1949; Moran 1951; Nee 2001)

if you have only n and t (Stanley, 1975; Magallon & Sanderson 2001)

6 But not everything...

Let be the speciation rate

then the expected ‘age’ of any lineage is

and might be the average length of a branch

7 But it is not... Elegant formal proof by Olivier Gascuel that average length of an edge on a Yule tree is

Draws on the memoryless nature of the exponential process (bus-stop problem)

....O. Gascuel.... accepted 8 Interestingly, we did already 'know' this...

number of branches * average length

9 We actually already 'knew' this

number of branches * average length

Nee (2001)

10 We actually already 'knew' this

number of branches * average length

Nee (2001)

Substitute

11 We actually already 'knew' this

number of branches * average length

Nee (2001)

Substitute

Rearrange

12 We actually already 'knew' this

number of branches * average length

Nee (2001)

Substitute

Rearrange

average length is 50% the average age!

13 What about Homogeneous birth-death models?

two parameters = birth rate of lineages = death rate of lineages

+ more complex expressions...

Sean Nee et al., 1994 from yesterday's talks Tanja Stadler, 2008, 2010 Heyang Li (poster) 14 two models have same topologies, but different expected distributions of edge lengths

Oliver Pybus & P. Harvey, 2000

birth-death

15 two models have same topologies, but different expected distributions of edge lengths

Oliver Pybus & P. Harvey, 2000

birth-death Yule

16 two models have same topologies, but different expected distributions of edge lengths

Oliver Pybus & P. Harvey, 2000

birth-death Yule

actual trees Helene Morlon et al., 2010 Mark McPeek, 2008

17 Inferred trees have 'too long' pendant edges relative to homogeneous birth-death models:

1. model misspecification (Revell et al., 2005, Lars Jermiin); 2. non-random sampling of leaves (Cusimano & Renner 2010); 3. reflecting some sort of truth.

If (3), then inferred trees are non-random sample of subclades in the Tree of Life, and homogeneous birth-death model is incomplete.

18 Interestingly, inferred trees are also much less balanced than birth-death topologies (many references), and particularly towards the root.

>>

There is not yet any process model that produces unbalanced trees with 'reasonable' edge-length distributions

(though folks are trying,using,e.g. Neutral Theory of BD)

19 20 “The aim [of conservation] should be the preservation of the information content contained in the DNA of all the species on the Earth.” E.O. Wilson, 1992 21 The tree connecting species represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

20 mya

22 The tree connecting species represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

20 mya

23 The tree connecting species represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

...and the tree may also represent Wilson’s ‘information content’

20 mya

24 The tree connecting species represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

....Wilson’s recipe then is to save as much of tree as possible

20 mya

25 The tree connecting species represents shared and unique information concerning solved evolutionary problems.

now

edge lengths may represent change (here, elapsed time)…

10 mya

Sum of the edge lengths on a (sub)tree = phylogenetic diversity(PD)

20 mya

Faith, 1992 26 Fly in the ointment...relevant to that parenthesis...

27 "Can lose 95% of all species, and retain ~80% of the tree"

Nee & May, 1997 cited >150 times

28 "—in a sound-bite, 80% of the evolutionary history of a clade could remain after the extinction of 95% of the species. Essentially this is because the deep branches of the clade are likely to survive even a substantial “pruning of the twigs.”

S. Nee Ann Rev Ecol Syst 2006

"The most direct demonstration...was a study showing that some 80% of the structure of the underlying phylogeny can survive even a 95% loss of species [cite N&M]. "

D.E. Erwin Proc Natl Acad Sci USA 2008

"Phylogenies are surprisingly robust to random species loss—in simulations, loss of 95% of species reduced PD by as little as 19% under some models [cite N&M]"

A. Purvis Ann Rev Ecol Syst 2008

"Much evolutionary history (EH) can be preserved in the face of substantial species extinction if extinction risk is random with respect to the phylogenetic position of species [cite N&M]. " J. Vamosi & J.U. Wilson Ecology Letters 2009

"If extinction is a random process, even high rates of extinction may generate little loss in evolutionary diversity [cite N&M]" B.A. Santos et al. PLoS One 2010 29 Nee & May modelled the most extreme birth-death model, in which =

(They actually used coalescent, which conditions on n) 30 And gamma on a coalescent tree is arbitrarily large... 140 120 100 80 gamma 60 40 20 0

10 50 100 500 1000 5000

n_tips ...& Steel, accepted 31 What are the relative edge lengths on a Yule tree?

Pendant edges (average length P)

Interior branches (interior length I)

32 Some more (better) intuition:

1. Conditioning on n species or time t truncates the length of the pendant edges;

2. But this also affects interior edges: they cannot be too long, because otherwise they would be pendant edges!

33 Indeed, E( P ) ~ E( I )

pendant branches (average length P)

interior branches (average length I)

The exact difference depends on whether one conditions on n, t, or both, and when one shows up to sample the tree. But the two converge quickly.

34 Condition on n (for larger n)

If we show up at a random time (see also Gernhard, 2008, 2010)

Condition on t

Converge to be equal; converge to 1/(2 ) if n is expected value

35 Indeed, E( P ) ~ E( I )

1.0 Conditioning on n (sims in GEIGER) 0.9 P quickly shrinks to be = I Sum(P) 0.8

Sum(I+P) 0.7 ratio_of_Pendant_to_Total 0.6 0.5

42 164 646 2568 102410 log2(treesize) tips 36 Indeed, E( P ) ~ E( I ) more generally

Indeed, even in a birth-death

Sum(P)" model with moderate extinction ( ), Sum(I+P)" interior and pendant edges are not so different

extinction extinction extinction high moderate !/µ" low ....Heyang Li...,accepted 37 If we let k random species survive from n total,

Coalescent model (Nee & May, 1997)

Yule model

(....+ Steel, accepted)

38 Realistic shapes make it worthwhile attending to PD

Loss of PD under Coalescent model (n=105 ) 1.0 0.8 0.6 0.4 PD PD remaining 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 survival probability (s)

39 Realistic shapes make it worthwhile attending to PD

Loss of PD under Yule model 1.0 0.8 0.6 0.4 PD PD remaining 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 survival probability (s)

40 Realistic shapes make it worthwhile attending to PD

(...Li & Steel, accepted)

41 Realistic shapes make it worthwhile attending to PD

Loss of PD under birth-death model 1.0 0.8 0.6 0.4 PD PD remaining 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 survival probability (s)

42 Realistic shapes make it worthwhile attending to PD

Loss of PD under birth-death model 1.0 0.8 0.6 0.4 PD PD remaining 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 survival probability (s)

43 Realistic shapes make it worthwhile attending to PD

"For a clade size of 5 x 10^6, under the constant size model, choosing 5% of the species to be saved retains, on average, 81% of the total evolutionary history, in the sense defined above." S. Nee & R. May Science 1997

"However, under a Yule model the situation is quite different....That is, in a large tree if we lose 95% of species (randomly) then we expect to lose more than 84% of the tree."

A.O. Mooers, O. Gascuel, T. Stadler, H. Li, & M. Steel, accepted

44 And, and, and... to the extent that true trees have gamma < 0 (long pendant edges), Yule will be conservative.

And, 'evolutionary information' is likely overwritten through time, meaning internal edges may need be shortened further...how to measure THAT?

So, we forge on, undaunted by my mentor...

45 Two (of many) approaches to conserving this information

1. Mapping total information (imperiled PD)

2. Mapping the information onto species (HED)

46 Lemurs of Madagascar

en.wiki

primate info net

47 All 67 recognized species (genetic data for 57) pendant edgelengths~internal edgelengths (so, more Yule-like than birth-death)

Eulemur.sanfordi Propithecus.verreauxi Eulemur.albifrons Eulemur.fulvus

Eulemur.rufus

Propithecus.deckeni Propithecus.coronatus

Propithecus.tattersalli Indri.indri

Propithecus.coquereli

Eulemur.rufifrons 1 1 1 Eulemur.cinereiceps Eulemur.collaris 1 Propithecus.edwardsi 1 Eulemur.rubriventer 0.68 Eulemur.mongoz 1 0.96 Eulemur.coronatus 0.95 Eulemur.macaco Propithecus.perrieri 1 Hapalemur.aureus 1 0.97 Propithecus.candidus 1 Hapalemur.griseus 1 Hapalemur.occidentalis 1 1 0.99 Hapalemur.meridionalis Avahi.meridionalis0.96 1 1 1 1 Prolemur.simus Avahi.ramanantsoavani Lemur.catta 1 1 1 Varecia.rubra 1 1 Avahi.peyrierasi Varecia.variegata Avahi.betsileo Daubentonia.madagascariensis 1 Allocebus.trichotis Avahi.laniger Microcebus.berthae 0.95 Avahi.unicolor 1 1 0.98Microcebus.myoxinus 0.92 0.581 Microcebus.ravelobensis Avahi.occidentalis 1 0.59Microcebus.tavaratra 0.97 1 0.99 1 Avahi.cleesei 0.88 1 Microcebus.sambiranensis Microcebus.rufus 1 Microcebus.griseorufus Phaner.pallescens 1 Microcebus.murinus Phaner.parienti 1 1 Mirza.coquereli 1 0.91 1 Mirza.zaza 1 0.99 Cheirogaleus.crossleyi

1 Cheirogaleus.major Phaner.electromontisPhaner.furcifer Cheirogaleus.ravus 1 Cheirogaleus.minusculus Cheirogaleus.medius Cheirogaleus.adipicaudatus 12 mt loci

0.81 Lepilemur.jamesi 6 nuclear loci 48

Lepilemur.randrianasoliLepilemur.leucopus

Lepilemur.edwardsi

Lepilemur.dorsalis

Lepilemur.septentrionalis Cheirogaleus.sibreei

Lepilemur.ankaranensis Lepilemur.sahamalazensis

0.2 Map information (tree) onto the landscape Phylogenetic Endemism, Roseauer et al., 2009

A B B A B C C A B C

B C

A (BC) 49 Map information (tree) onto the landscape Phylogenetic Endemism, Roseauer et al., 2009

A B B A B C C A B C

B C

A (BC) 50 D. madagascariensis P. verreauxi P. tattersalli

51 Phylogenetic endemism of Madagascar lemurs

Madagascar Species richness of Phylogenetic endemism (where lemurs live) lemurs of lemurs 52 We can also project information into the future:

p(ext)= 0.9 0.6 0.1 A B C s = 1-p(ext)= 0.1 0.4 0.9

1- (0.6 X 0.1) = 0.94

53 We can scale the edge weights (e) by survival probability (s) to get E(PD)

p(ext)= 0.9 0.6 0.1

s= 0.1 0.4 0.9

0.94

Witting & Loetschke 1995 Steel et al. 2007 Faller et al. 2008

Magnuson-Ford et al. 2010 54 We can also produce 'imperiled PD'

p(ext)= 0.9 0.6 0.1

1-s= 0.9 0.6 0.1

0.06

What is this?

55 _ Total PD Expected PD = Imperiled PD

_ =

The information we expect to lose, and how it is distributed on the tree

56 Indri.indri imperiled lemur PD imperiled lemur information

Eulemur.rufus Propithecus.tattersalli Propithecus.verreauxi Eulemur.sanfordi Propithecus.edwardsi Eulemur.albifrons

Eulemur.fulvus Hapalemur.aureus Propithecus.coquereliPropithecus.coronatusPropithecus.deckeni Propithecus.perrieri Prolemur.simus

Propithecus.candidus

Eulemur.cinereiceps Varecia.rubra

Eulemur.rubriventer Eulemur.collaris Eulemur.mongoz Eulemur.rufifrons Eulemur.coronatus Eulemur.macaco Varecia.variegata Hapalemur.griseus Avahi.meridionalis Hapalemur.occidentalisHapalemur.meridionalis Avahi.ramanantsoavani Lemur.catta Avahi.peyrierasi Avahi.betsileo Daubentonia.madagascariensis Allocebus.trichotis Avahi.laniger Microcebus.berthae Avahi.unicolor Microcebus.myoxinus Microcebus.ravelobensis Microcebus.rufus Avahi.occidentalis Microcebus.griseorufusMicrocebus.tavaratra Avahi.cleesei Microcebus.murinusMicrocebus.sambiranensis Phaner.pallescens Mirza.coquereli Phaner.parienti Cheirogaleus.major Cheirogaleus.medius Mirza.zaza Phaner.furcifer

Phaner.electromontis Cheirogaleus.ravus Cheirogaleus.minusculus Lepilemur.jamesi

Cheirogaleus.adipicaudatus

Cheirogaleus.crossleyi

Lepilemur.edwardsi

Lepilemur.dorsalis Lepilemur.randrianasoliLepilemur.leucopus

Lepilemur.sahamalazensis Lepilemur.ankaranensis

Lepilemur.septentrionalis

57

Cheirogaleus.sibreei

0.04 Map imperiled information onto the landscape

A B B A B C C A B C

B C (BC) A 58 Map imperiled information onto the landscape

A B B A B C C A B C

B C (BC) A 59 Imperiled Phylogenetic Endemism

Madagascar Phylogenetic endemism Imperiled PE (where lemurs live) of lemurs of lemurs 60 Two issues with this exercise

1. It produces a layer on a map, but has no aspect of complementarity: actually choosing the top 10 sites does not guarantee that the maximum PD is preserved.

2. Group (PD) approaches to attending to variety are not often used

61 What we do do is focus on individual species

Edouard Poppig, 1841

Single-species measures work for Zoos

Single-species measures work for Law

62 And we do prioritize based on Systematics…(in theory)

USA Federal Register (1983) pertaining to the ESA

“Taxa that are most genetically distinct should be given priority within any given category of degree of threat. Monotypic genera will be given priority over species, subspecies or populations. This last criterion is in recognition that the loss of the most genetically distinct taxa is of greater significance than the loss of the least genetically distinct taxa.”

63 * * *

To the extent that species, and not sub-clades, are the focus of conservation, we must map total evolution (the tree) onto individual species.

Such mapping somehow captures how species complement each other on the tree.

64 Different ways a leaf can complement a set of leaves:

--the leaf can complement the entire tree Pendant Edge, Altschul & Lipman 1990, Faith 1992

--the leaf an complement predefined subsets of leaves Phylogenetic Diversity, Faith 1992, 2004

--the leaf can complement all leaves in pair-wise fashion Quadratic Entropy, Pavoine et al. 2005

--the leaf can complement equiprobable subsets of leaves Shapley value, Haake, Kashiwada & Su 2008 (c.f. Shapley 1953)

--the leaf can complement future expected subsets of leaves HED value, Steel, Mimoto & Mooers 2007

65 What set might X complement? X can complement the entire rest of tree {V,Y,Z,W}

V X Y Z W

pendant edge

PEi = TLn ! TLn!i

TLn is treelength of tree of size n

TLn-i =TL of tree minus focal leaf i

Altchul & Lipman 1990 66 But X can complement many other possible subtrees here, X complements {Y} V X Y Z W

67 But X can complement many other possible subtrees here, X complements {V} V X Y Z W

68 X can complement {V,W}

V X Y Z W

69 here, X complements {V,Z,W} + 7 more (12 in total) : average of all equally- likely subsets is the V X Y Z W Shapley value

!1 1 " n !1% Si = *$ ' (TLs ! TLs!i ) n s(n # s !1& i)s 1 = *(s !1)!(n ! s)!(TLs ! TLs!i ) n! s(n i)s i is the focal species s is the subgroup

TLs is the length of the tree of s

Haake, Kashiwada & Su 2008 70 In parallel, there are ad hoc metrics that apportion a tree to its leaves

V X Y Z W

1

0.5 This does it in a 'fair' way

r 0.25 Bj EDi = ∑ j=1 S j−1 j = internal node on direct path from i to root (r)

Bj = branch length from j to j -1, B1 = species age

S j = size of subtree above j, S0 = 1 Redding, 2003 71 The fair version of ED converges on the Shapley value

50.0000 Primates (N=227)

37.5000

ED

(2003) 25.0000

12.5000

0 0 12.5000 25.0000 37.5000 50.0000 Shapley value (1953) A. Mimoto, unpub 72 But it isn't exactly the same (Shapley is unrooted, ED is rooted)

Klaas Hartmann, PhD thesis (2008) also proof that they do converge with large n.

73 Shapley/ED captures more PD than random choice

0.900 no metric is designed to maximum maximize PD (!) possible 0.825

% tree ED captured 0.750 (PD) species number age of nodes to root random 0.675

0.600 8 8/16 tips, N=5000Number of tips Yule chosen trees

74 So, the Shapley measure:

1. partitions entire tree to the leaves (sum across tips=TL)

2. is almost exactly a 'fair proportioning' of tree to leaves

3. leaves chosen using this measure capture more PD* than do random sets of leaves

4. ...is already in use in conservation.

* and more PD is a good thing to capture 75 Who are these Evolutionarily Distinctive species?

photo from web, courtesy D. Redding

76 10,000 World’s Birds 1,000 (N=9546)

100 Frequency

frequency 10

Struthio camelus 3.00000.001 1000 0 5World’s10 mammals15 20 2.2500 Species Specific(N=4510) PD (Million Years)

100 1.5000

frequency 0.750010

10 0 25 50 75 100 Ornithorhynchus anatinus ED (millions of years)

77 Other notable ED species...

Tuatara (#1 ED reptile) Sunbittern (#1 ED Neognathe?) (Sphenodon punctatus) (Eurypyga helias)

78 http://amphibiaweb.org/

tailed frog (Acaphus truei, A. montanus): tied for #4 (of 5726) amphibian species worldwide!

Zoological Society of London 2008 79 phylogeny & conservation | (H)ED(GE) 80 Different ways a leaf can complement a set of leaves:

--the leaf can complement the entire tree Pendant Edge, Altschul & Lipman 1990, Faith 1992

--the leaf an complement predefined subsets of leaves Phylogenetic Diversity, Faith 1992, 2004

--the leaf can complement all leaves in pair-wise fashion Quadratic Entropy, Pavoine et al. 2005

--the leaf can complement equiprobable subsets of leaves Shapley value, Haake, Kashiwada & Su 2008 (c.f. Shapley 1953)

--the leaf can complement future expected subsets of leaves HED value, Steel, Mimoto & Mooers 2007

81 X can also complement subtrees that are weighted by their likelihood of persisting into the future

V X Y Z W

X can complement this unexpected future tree..

82 or X can complement this more expected future tree

V X Y Z W

83 or this (fairly likely) tree

V X Y Z W average across 12 trees is Heightened Evolutionary Distinctiveness (HED)

HEDi = E[!PD (S,i)] =

$ Prob[S = S]!PD (S,i) S" X #{i} where S is random subset in X - i that survives,

P[S = S] = '(1# % j ) & ' % j , j(X #{i}#S

!PD (S,i) := PD(S ) {i}) # PD(S)

Steel, Mimoto, Mooers, 2007 84 More simply (D. Faith, pers. comm.),

85 HED in practice: lemurs

Nigel Dennis

86 Eulemur.sanfordi Propithecus.verreauxi Eulemur.albifrons Eulemur.fulvus

Eulemur.rufus

Propithecus.deckeni Propithecus.coronatus

Propithecus.tattersalli Indri.indri

Propithecus.coquereli

Eulemur.rufifrons 1 1 1 Eulemur.cinereiceps Eulemur.collaris 1 Propithecus.edwardsi 1 Eulemur.rubriventer 0.68 Eulemur.mongoz 1 0.96 Eulemur.coronatus 0.95 Eulemur.macaco Propithecus.perrieri 1 Hapalemur.aureus 1 0.97 Propithecus.candidus 1 Hapalemur.griseus 1 Hapalemur.occidentalis 1 1 0.99 Hapalemur.meridionalis Avahi.meridionalis0.96 1 1 1 1 Prolemur.simus Avahi.ramanantsoavani Lemur.catta 1 1 1 Varecia.rubra 1 1 Avahi.peyrierasi Varecia.variegata Avahi.betsileo Daubentonia.madagascariensis 1 Allocebus.trichotis Avahi.laniger Microcebus.berthae 0.95 Avahi.unicolor 1 1 0.98Microcebus.myoxinus 0.92 0.581 Microcebus.ravelobensis Avahi.occidentalis 1 0.59Microcebus.tavaratra 0.97 1 0.99 1 Avahi.cleesei 0.88 1 Microcebus.sambiranensis Microcebus.rufus 1 Microcebus.griseorufus Phaner.pallescens 1 Microcebus.murinus Phaner.parienti 1 1 Mirza.coquereli 1 0.91 1 Mirza.zaza 1 0.99 Cheirogaleus.crossleyi

1 Cheirogaleus.major Phaner.electromontisPhaner.furcifer Cheirogaleus.ravus 1 Cheirogaleus.minusculus Cheirogaleus.medius Cheirogaleus.adipicaudatus

0.81 Lepilemur.jamesi

Lepilemur.randrianasoliLepilemur.leucopus

Lepilemur.edwardsi

Lepilemur.dorsalis

Lepilemur.septentrionalis Cheirogaleus.sibreei

Lepilemur.ankaranensis 87 Lepilemur.sahamalazensis

0.2 P. edwardsi changes rank from

40th to 13th most important Eulemur.sanfordi Propithecus.verreauxi Eulemur.albifrons Eulemur.fulvus if we consider expected future tree Eulemur.rufus Propithecus.deckeni Propithecus.coronatus

Propithecus.tattersalli Indri.indri

Propithecus.coquereli

Eulemur.rufifrons 1 1 1 Eulemur.cinereiceps Eulemur.collaris 1 Propithecus.edwardsi 1 Eulemur.rubriventer 0.68 Eulemur.mongoz 1 0.96 Eulemur.coronatus 0.95 Eulemur.macaco Propithecus.perrieri 1 Hapalemur.aureus 1 0.97 Propithecus.candidus 1 Hapalemur.griseus 1 Hapalemur.occidentalis 1 1 0.99 Hapalemur.meridionalis Avahi.meridionalis0.96 1 1 1 1 Prolemur.simus Avahi.ramanantsoavani Lemur.catta 1 1 1 Varecia.rubra 1 1 Avahi.peyrierasi Varecia.variegata Avahi.betsileo Daubentonia.madagascariensis 1 Allocebus.trichotis Avahi.laniger Microcebus.berthae 0.95 Avahi.unicolor 1 1 0.98Microcebus.myoxinus 0.92 88 0.581 Microcebus.ravelobensis Avahi.occidentalis 1 0.59Microcebus.tavaratra 0.97 1 0.99 1 Avahi.cleesei 0.88 1 Microcebus.sambiranensis Microcebus.rufus 1 Microcebus.griseorufus Phaner.pallescens 1 Microcebus.murinus Phaner.parienti 1 1 Mirza.coquereli 1 0.91 1 Mirza.zaza 1 0.99 Cheirogaleus.crossleyi

1 Cheirogaleus.major Phaner.electromontisPhaner.furcifer Cheirogaleus.ravus 1 Cheirogaleus.minusculus Cheirogaleus.medius Cheirogaleus.adipicaudatus

0.81 Lepilemur.jamesi

Lepilemur.randrianasoliLepilemur.leucopus

Lepilemur.edwardsi

Lepilemur.dorsalis

Lepilemur.septentrionalis Cheirogaleus.sibreei

Lepilemur.ankaranensis Lepilemur.sahamalazensis

0.2 Milne-Edward's Sifaka has ‘genetic responsibility’ for more endangered close relatives

David Harring

89 P. edwardsi P. perrieri P. candidus is P. edwardsi 'cheaper' to manage?

90 Eulemur.sanfordi HED in practice: Lemurs Propithecus.verreauxi Eulemur.albifrons Eulemur.fulvus

Eulemur.rufus

Propithecus.deckeni Propithecus.coronatus Propithecus.tattersalli Indri.indri Varecia rubra's closest relative (V. variegata) Propithecus.coquereli

Eulemur.rufifrons 1 1 1 Eulemur.cinereiceps Eulemur.collaris 1 Propithecus.edwardsi 1 Eulemur.rubriventer is critically endangered, and so V. rubra 0.68 Eulemur.mongoz 1 0.96 Eulemur.coronatus 0.95 Eulemur.macaco Propithecus.perrieri 1 Hapalemur.aureus moves from 8th most distinctive 1 0.97 Propithecus.candidus 1 Hapalemur.griseus 1 Hapalemur.occidentalis 1 under the Shapley index to 1 0.99 Hapalemur.meridionalis Avahi.meridionalis0.96 1 1 1 1 Prolemur.simus Avahi.ramanantsoavani Lemur.catta 2nd-most distinctive under HED. 1 1 1 Varecia.rubra 1 1 Avahi.peyrierasi Varecia.variegata Avahi.betsileo Daubentonia.madagascariensisIt too carries 'genetic responsibility' 1 Allocebus.trichotis Avahi.laniger Microcebus.berthae 0.95 Avahi.unicolor 1 1 0.98Microcebus.myoxinus Microcebus.ravelobensis 0.92 0.581 primate info net en.wiki Avahi.occidentalis 1 0.59Microcebus.tavaratra 0.97 1 0.99 1 Avahi.cleesei 0.88 1 Microcebus.sambiranensis Microcebus.rufus 1 Microcebus.griseorufus Phaner.pallescens 1 Microcebus.murinus Phaner.parienti 1 1 Mirza.coquereli 1 0.91 1 Mirza.zaza 1 0.99 Cheirogaleus.crossleyi

1 Cheirogaleus.major Phaner.electromontisPhaner.furcifer Cheirogaleus.ravus 1 Cheirogaleus.minusculus Cheirogaleus.medius Cheirogaleus.adipicaudatus

0.81 Lepilemur.jamesi

Lepilemur.randrianasoliLepilemur.leucopus

Lepilemur.edwardsi

Lepilemur.dorsalis

Lepilemur.septentrionalis Cheirogaleus.sibreei

Lepilemur.ankaranensis Lepilemur.sahamalazensis 91

0.2 Some outstanding issues with evolutionary approaches 1. How good do the trees have to be? (c.f. barcodes?)

2. What constitutes a lineage worthy of attention?

2. Conservation is local, tree information is global (lemurs are a nice exception). How to balance these?

3. Are s (survival) probabilities anything more than fictions?

3. How do we combine evolutionary information with other metrics of importance?

92 And to end - what about populations within a species?

At least in the Canadian context, triage at the species level is (still) politically very fraught. However, managers do rank populations within listed species.

The Shapley value was designed for unrooted systems, and can be extended to split systems, and likely other sorts of networks...area of ongoing research...

John Meikle Vincent Moulton & Andreas Spillner 93