Butterflies from the Linnaean Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Verbenaceae)Barbola Et Al
498 Floral biology of Stachytarpheta maximiliani Scham. (Verbenaceae)Barbola et al. and its floral visitors Ivana de Freitas Barbola1; Sebastião Laroca2; Maria Christina de Almeida2 & Elynton Alves do Nascimento3 1Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa. Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa-PR, Brazil [email protected] 2Universidade Federal do Paraná. Caixa Postal 19020, 81531-990 Curitiba-PR, Brazil. [email protected]; [email protected] 3Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil. [email protected] ABSTRACT. Floral biology of Stachytarpheta maximiliani Scham. (Verbenaceae) and its floral visitors. This study describes the reproductive system of Stachytarpheta maximiliani (Verbenaceae), including its floral biology, nectar and pollen availability and insect foraging patterns, identifying whose species act as pollinators. It was carried out in a Brazilian Atlantic rain forest site. Observations on the pollination biology of the Verbenaceae S. maximiliani indicate that their flowering period extends from September through May. Anthesis occurs from 5:30 a.m. to 5:00 p.m. and nectar and pollen are available during all the anthesis. Many species of beetles, hemipterans, flies, wasps, bees and butterflies visit their flowers, but bees and butterflies are the most frequent visitors. The flowers are generally small, gathered in dense showy inflorescences. A complex of floral characteristcs, such as violet-blue color of flowers, long floral tubes, without scents, nectar not exposed, high concentration of sugar in nectar (about 32%), allowed identification of floral syndromes (melittophily and psicophily) and function for each visitor. -
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P. -
Developmental, Cellular and Biochemical Basis of Transparency in Clearwing Butterflies Aaron F
© 2021. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2021) 224, jeb237917. doi:10.1242/jeb.237917 RESEARCH ARTICLE Developmental, cellular and biochemical basis of transparency in clearwing butterflies Aaron F. Pomerantz1,2,*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8 and Nipam H. Patel1,2,6,* ABSTRACT INTRODUCTION The wings of butterflies and moths (Lepidoptera) are typically covered The wings of butterflies and moths (Lepidoptera) have inspired with thousands of flat, overlapping scales that endow the wings with studies across a variety of scientific fields, including evolutionary colorful patterns. Yet, numerous species of Lepidoptera have evolved biology, ecology and biophysics (Beldade and Brakefield, 2002; highly transparent wings, which often possess scales of altered Prum et al., 2006; Gilbert and Singer, 1975). Lepidopteran wings morphology and reduced size, and the presence of membrane are generally covered with rows of flat, partially overlapping surface nanostructures that dramatically reduce reflection. Optical scales that endow the wings with colorful patterns. Adult scales are properties and anti-reflective nanostructures have been characterized chitin-covered projections that serve as the unit of color for the wing. for several ‘clearwing’ Lepidoptera, but the developmental processes Each scale can generate color through pigmentation via molecules underlying wing transparency are unknown. Here, we applied that selectively absorb certain wavelengths of light, structural confocal and electron microscopy to create a developmental time coloration, which results from light interacting with the physical series in the glasswing butterfly, Greta oto, comparing transparent nanoarchitecture of the scale; or a combination of both pigmentary and non-transparent wing regions. -
June 2019 Number 191
June 2019 Number 191 In this issue... June Excursion..................................1 9 June - World Swallowtail Day.............................................................2 Orchard Swallowtail.............2 Ulysses Swallowtail.................3 Cairns Birdwing........................3 Amorphophallus - Camouflagued or just pretty? .......................................................................4 In flower this month......................5 What's Happening.........................6 The rare Megahertzia amplexicaulis in cultivation at Bayview Heights. Photo by Anthony Lagois via Facebook. Cairns Branch.............................6 Townsville Branch....................6 Tablelands Branch...................6 June Excursion June's excursion will take us to the private garden of Anthony Lagois and Brian Moran. Situated on the Cairns hillslopes in Bayview Heights, the garden contains a unique and expanding collection of native rainforest plants. Many things grown here are rarely seen in cultivation. This month's excursion will commence a little earlier than usual - 10 a.m. See the last page for directions and parking instructions. Page 1 SGAP Cairns Branch - Newsletter 191 9 June - World Swallowtail Day The British "Swallowtail and Birdwing Butterfly Trust" have declared 9 June 2019 to be the World Swallowtail Day. This British conservation initiative provides an opportunity to discuss some of our native swallowtail butterflies, and the native plants they eat. Britain's swallowtail butterfly, Papilio machaon is the island nation's -
Diplomarbeit
DIPLOMARBEIT Titel der Diplomarbeit „UV- und Polarisationssignale bei Tagfaltern“ Verfasserin Sandra Schneider angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 439 Studienrichtung lt. Studienblatt: Diplomstudium Zoologie (Stzw) UniStG Betreuer: O. Univ.- Prof. Dr. Hannes F. Paulus 1 Für Papa 2 Inhaltsverzeichnis Danksagung ............................................................................................................................ 5 Abstract .................................................................................................................................... 6 Einleitung................................................................................................................................. 7 Material und Methode ...................................................................................................... 14 Untersuchungen am Rasterelektronenmikroskop .................................................. 14 Untersuchung des Schillereffekts aus versch. Betrachtungswinkeln ................. 15 Untersuchung der Polarisationsmuster ..................................................................... 17 Untersuchung der UV-Muster ...................................................................................... 21 Untersuchung zum Thema Wärmeschutz ................................................................. 21 Ergebnisse ............................................................................................................................ -
Combining Taxonomic and Functional Approaches to Unravel the Spatial Distribution of an Amazonian Butterfly Community
Environmental Entomology Advance Access published December 7, 2015 Environmental Entomology, 2015, 1–9 doi: 10.1093/ee/nvv183 Community and Ecosystem Ecology Research article Combining Taxonomic and Functional Approaches to Unravel the Spatial Distribution of an Amazonian Butterfly Community Marlon B. Grac¸a,1,2,3 Jose´W. Morais,1 Elizabeth Franklin,1,2 Pedro A. C. L. Pequeno,1,2 Jorge L. P. Souza,1,2 and Anderson Saldanha Bueno,1,4 1Biodiversity Coordination, National Institute for Amazonian Research, INPA, Manaus, Brazil ([email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]), 2Center for Integrated Studies of Amazonian Biodiversity, CENBAM, Manaus, Brazil, 3Corresponding author, e-mail: marlon_lgp@hotmail. com, and 4Campus Ju´lio de Castilhos, Farroupilha Federal Institute of Education, Science and Technology, Brazil ([email protected]) Received 24 August 2015; Accepted 10 November 2015 Abstract This study investigated the spatial distribution of an Amazonian fruit-feeding butterfly assemblage by linking spe- cies taxonomic and functional approaches. We hypothesized that: 1) vegetation richness (i.e., resources) and abun- dance of insectivorous birds (i.e., predators) should drive changes in butterfly taxonomic composition, 2) larval diet breadth should decrease with increase of plant species richness, 3) small-sized adults should be favored by higher abundance of birds, and 4) communities with eyespot markings should be able to exploit areas with higher predation pressure. Fruit-feeding butterflies were sampled with bait traps and insect nets across 25 km2 of an Amazonian ombrophilous forest in Brazil. We measured larval diet breadth, adult body size, and wing marking of all butterflies. -
Samia Cynthia in New Jersey Book Review, Market- Place, Metamorphosis, Announcements, Membership Updates
________________________________________________________________________________________ Volume 61, Number 4 Winter 2019 www.lepsoc.org ________________________________________________________________________________________ Inside: Butterflies of Papua Southern Pearly Eyes in exotic Louisiana venue Philippine butterflies and moths: a new website The Lepidopterists’ Society collecting statement updated Lep Soc, Southern Lep Soc, and Assoc of Trop Lep combined meeting Butterfly vicariance in southeast Asia Samia cynthia in New Jersey Book Review, Market- place, Metamorphosis, Announcements, Membership Updates ... and more! ________________________________________________________________________________________ _________________________________________________________ Contents www.lepsoc.org ________________________________________________________ Digital Collecting -- Butterflies of Papua, Indonesia ____________________________________ Bill Berthet. .......................................................................................... 159 Volume 61, Number 4 Butterfly vicariance in Southeast Asia Winter 2019 John Grehan. ........................................................................................ 168 Metamorphosis. ....................................................................................... 171 The Lepidopterists’ Society is a non-profit ed- Membership Updates. ucational and scientific organization. The ob- Chris Grinter. ....................................................................................... 171 -
Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case. -
Revised Species Definitions and Nomenclature of the Rose Colored Cithaerias Butterflies (Lepidoptera, Nymphalidae, Satyrinae)
Zootaxa 3873 (5): 541–559 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3873.5.5 http://zoobank.org/urn:lsid:zoobank.org:pub:05BD334C-493D-4688-92E8-602943ECF57D Revised species definitions and nomenclature of the rose colored Cithaerias butterflies (Lepidoptera, Nymphalidae, Satyrinae) CARLA M. PENZ1, LAURA G. ALEXANDER2 & PHILIP J. DEVRIES3 Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr. New Orleans, LA 70148, USA. E-mail: [email protected]; [email protected]; [email protected] Abstract This study provides updated species definitions for five rose-colored Cithaerias butterflies, starting with a historical over- view of their taxonomy. Given their mostly transparent wings, genitalia morphology yielded the most reliable characters for species definition and identification. Genitalic divergence is more pronounced when multiple species occur in sympa- try than between parapatric taxa. Cithaerias aurorina is granted full species status, C. cliftoni is reinstated as a full species, and one new combination is proposed, i.e. C. aurora tambopata. Two new synonyms are proposed, Callitaera phantoma and Callitaera aura = Cithaerias aurora. Key words: pireta, menander, aurorina, cliftoni, aurora, aura, phantoma, pyritosa Introduction Some of the most visually striking Neotropical butterflies belong to the genus Cithaerias Hübner (Satyrinae, Haeterini), which inhabit sea level to mid-elevation rainforests from Mexico through Central and South America. A characteristic of all Cithaerias species is their mostly transparent wings with the distal portions of the hind wing overlaid with partially lustrous rose, purple or blue scales. -
Science Manuscript Template
Developmental, cellular, and biochemical basis of transparency in clearwing butterflies Aaron F. Pomerantz1,2,*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8, Nipam H. Patel1,2,6,* 1Department Integrative Biology, University of California Berkeley, Berkeley, CA 94720. 2Marine Biological Laboratory, Woods Hole, MA 02543. 3Image Sensor Lab, Samsung Semiconductor, Inc., 2 N Lake Ave. Ste. 240, Pasadena, CA 91101. 4Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125. 5Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720. 6Department Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720. 7Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125. 8ISYEB, 45 rue Buffon, CP50, Paris, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, France. 9CEFE, 1919 route de Mende, Montpellier, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, France. * Corresponding author. Email: [email protected], [email protected] Summary Statement: Transparency is a fascinating, yet poorly studied, optical property in living organisms. Here, we elucidate the developmental processes underlying scale and nanostructure formation in glasswing butterflies, and their roles in generating anti-reflective properties. © 2021. Published by The Company of Biologists Ltd. Journal of Experimental Biology • Accepted manuscript This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed Abstract The wings of butterflies and moths (Lepidoptera) are typically covered with thousands of flat, overlapping scales that endow the wings with colorful patterns. -
Effects of Land Use on Butterfly (Lepidoptera: Nymphalidae) Abundance and Diversity in the Tropical Coastal Regions of Guyana and Australia
ResearchOnline@JCU This file is part of the following work: Sambhu, Hemchandranauth (2018) Effects of land use on butterfly (Lepidoptera: Nymphalidae) abundance and diversity in the tropical coastal regions of Guyana and Australia. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5bd8e93df512e Copyright © 2018 Hemchandranauth Sambhu The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] EFFECTS OF LAND USE ON BUTTERFLY (LEPIDOPTERA: NYMPHALIDAE) ABUNDANCE AND DIVERSITY IN THE TROPICAL COASTAL REGIONS OF GUYANA AND AUSTRALIA _____________________________________________ By: Hemchandranauth Sambhu B.Sc. (Biology), University of Guyana, Guyana M.Sc. (Res: Plant and Environmental Sciences), University of Warwick, United Kingdom A thesis Prepared for the College of Science and Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy James Cook University February, 2018 DEDICATION ________________________________________________________ I dedicate this thesis to my wife, Alliea, and to our little girl who is yet to make her first appearance in this world. i ACKNOWLEDGEMENTS ________________________________________________________ I would like to thank the Australian Government through their Department of Foreign Affairs and Trade for graciously offering me a scholarship (Australia Aid Award – AusAid) to study in Australia. From the time of my departure from my home country in 2014, Alex Salvador, Katherine Elliott and other members of the AusAid team have always ensured that the highest quality of care was extended to me as a foreign student in a distant land. -
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X Alfred Russel Wallace and the Darwinian Species Concept: His Paper on the Swallowtail Butterflies (Papilionidae) of 1865 Alfred Russel Wallace y el Concepto Darwiniano de Especie: Su Trabajo de 1865 sobre Mariposas Papilio (Papilionidae) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P.