1 Echinodermata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intra-And Interspecific Variation of Attachment Strength in Sea Urchins
MARINE ECOLOGY PROGRESS SERIES Vol. 332: 129–142, 2007 Published March 5 Mar Ecol Prog Ser Intra- and interspecific variation of attachment strength in sea urchins Romana Santos1, 2,*, Patrick Flammang1,** 1Académie Universitaire Wallonie-Bruxelles, Université de Mons-Hainaut, Laboratoire de Biologie Marine, 6 Avenue du Champ de Mars, 7000 Mons, Belgium 2Present address: Instituto de Tecnologia Química e Biológica, Laboratório de Espectrometria de Massa, Avenida da República (EAN), Apartado 127, 2781-901 Oeiras, Portugal ABSTRACT: To withstand hydrodynamic forces, sea urchins rely on their oral tube feet, which are specialised for attachment. It has been proposed that the degree of development of these tube feet is intimately related to the maximum wave force a species can withstand. To address this, the variation of scaled attachment force and tenacity among and within echinoid species, and with environmental conditions, was investigated. Three populations of Paracentrotus lividus from different habitats and geographical regions were compared. There were few significant intraspecific variations in tenacity, but those that were detected were found to be positively correlated with the seawater temperature. For one P. lividus population, the influence of environmental parameters on the temporal variation of the attachment strength measured under laboratory and field conditions was analyzed. Strong signif- icant correlations were found with wave height at the time of collection, but only when sea urchins were tested directly in their natural habitat, where they appear to respond to increased wave height by using more tube feet, thereby increasing their attachment force. Among species, P. lividus attached with a significantly higher tenacity (adhesion force per unit adhesive surface area) (0.37 MPa) than Sphaerechinus granularis (0.19 MPa) and Arbacia lixula (0.12 MPa). -
"Lophophorates" Brachiopoda Echinodermata Asterozoa
Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove -
Temperature and Pressure Tolerance of Embryos and Larvae of The
MARINE ECOLOGY PROGRESS SERIES Vol. 314: 109–117, 2006 Published May 22 Mar Ecol Prog Ser Temperature and pressure tolerance of embryos and larvae of the Atlantic seastars Asterias rubens and Marthasterias glacialis (Echinodermata: Asteroidea): potential for deep-sea invasion Francisco Benitez Villalobos1, Paul A. Tyler1,*, Craig M. Young2 1School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK 2Oregon Institute of Marine Biology, PO Box 5389, Charleston, Oregon 97420, USA ABSTRACT: Eggs of the shallow-water asteroids Asterias rubens and Marthasterias glacialis were fertilized in vitro and incubated through the early embryonic cleavages until the larval stage. Early embryos, blastulae, gastrulae, and swimming bipinnaria were subjected to a temperature/pressure matrix of 5, 10, 15 and 20°C and 1, 50, 100, 150 and 200 atm. Early embryos of both species were able to tolerate pressures up to 150 atm at 15°C and 100 atm at 10°C. Survivorship of A. rubens swimming bipinnaria remained high (>70%) after incubation at all the temperature/pressure combinations. Swimming larvae ranged from 100% survival at 10°C/50 atm to 72% at 15°C/200 atm. For M. glacialis the highest survival of swimming larvae was 100% at 5, 15 and 20°C/1 atm and 15 and 20°C/50 atm, but decreased to 56.85% at 5°C/200 atm. In general, survivorship decreased as pres- sure increased; nevertheless larvae generally tolerated pressures of 200 atm. Data for the tempera- ture and pressure effects on the later stages of development suggest that all the larval stages are more temperature/pressure tolerant than the early embryos and survivorship increases with larval age. -
PUNIC ECHINODERM REMAINS Excavated from Tas-Silg, Malta
PUNIC ECHINODERM REMAINS Excavated from Tas-Silg, Malta C. Savona-Ventura Report submitted to the Department of Archaeology, University of Malta, 1999 The Tas-Silg Punic site is situated at an elevation of about 125 feet above sea level. This situation, together with the significant distance from the shore (circa 700 metres), makes it highly unlikely that marine animal remains excavated from the site represent shore wash. There are more likely to have been brought to the site by man. There is evidence to believe that since prehistoric and possibly classical times, the southeastern coast of Malta has gradually tilted towards the sea. The evidence for sinking during the classical period may be inferred by the presence of cart-ruts which cease suddenly at the edge of the water at Birzebbugia (St. George’s Bay) and cart- ruts which together with artificial caldrons occur beneath the water at Marsaxlokk. 1 This means that the Tas-Silg site was probably even higher above sea-level during the classical period than at present. Echinoderm remains were excavated in plentiful amounts from the site. The amount of fragments obtained from the site further suggests that these represent intentional transportation to the site by the action of man. Accidental transportation is unlikely to have accounted for large quantities of this marine animal. Two small fragments were obtained from the Tas-Silg Punic site on 22nd July 1998. The fragments represent 3 fused and one separate inter-ambulacral plates. The spine pattern of each inter-ambulacral plate is diagrammatically represented below. The spine pattern was characterised by large spines surrounded by a satellite series of smaller spines. -
Marine Invertebrate Diversity in Aristotle's Zoology
Contributions to Zoology, 76 (2) 103-120 (2007) Marine invertebrate diversity in Aristotle’s zoology Eleni Voultsiadou1, Dimitris Vafi dis2 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR - 54124 Thessaloniki, Greece, [email protected]; 2 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Uni- versity of Thessaly, 38446 Nea Ionia, Magnesia, Greece, dvafi [email protected] Key words: Animals in antiquity, Greece, Aegean Sea Abstract Introduction The aim of this paper is to bring to light Aristotle’s knowledge Aristotle was the one who created the idea of a general of marine invertebrate diversity as this has been recorded in his scientifi c investigation of living things. Moreover he works 25 centuries ago, and set it against current knowledge. The created the science of biology and the philosophy of analysis of information derived from a thorough study of his biology, while his animal studies profoundly infl uenced zoological writings revealed 866 records related to animals cur- rently classifi ed as marine invertebrates. These records corre- the origins of modern biology (Lennox, 2001a). His sponded to 94 different animal names or descriptive phrases which biological writings, constituting over 25% of the surviv- were assigned to 85 current marine invertebrate taxa, mostly ing Aristotelian corpus, have happily been the subject (58%) at the species level. A detailed, annotated catalogue of all of an increasing amount of attention lately, since both marine anhaima (a = without, haima = blood) appearing in Ar- philosophers and biologists believe that they might help istotle’s zoological works was constructed and several older in the understanding of other important issues of his confusions were clarifi ed. -
Definition of a New Unbiased Gonad Index for Aquatic Invertebrates and Fish: Its Application to the Sea Urchin Paracentrotus Lividus
Vol. 17: 145–152, 2012 AQUATIC BIOLOGY Published online November 27 doi: 10.3354/ab00476 Aquat Biol Definition of a new unbiased gonad index for aquatic invertebrates and fish: its application to the sea urchin Paracentrotus lividus Rosana Ouréns1,*, Juan Freire1,2, Luis Fernández1 1Grupo de Recursos Marinos y Pesquerías, Facultad de Ciencias, Universidad de A Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain 2Present address: Barrabés Next, C. Serrano 16-1, 28001 Madrid, Spain ABSTRACT: The gonad index is a tool widely used for studying the reproductive cycle of a large range of species, although its validity has been questioned in various scientific studies. One of the main criticisms is the assumption of an isometric relationship between gonad size and body size, a premise that has not been verified in most of the cases in which it has been applied. In this study we define the standardized gonad index (SGI), an indicator of the reproductive cycle based on the differences between the observed and expected weights of the gonads for an individual of a given size. Unlike other gonad indices, the SGI takes into account the possible allometric gonadal growth and is suitable for comparative analyses with samples composed of individuals of different sizes as well as samples that have been collected in different areas or at different times of the year. In order to show its advantages over other gonad indices, we applied this new index to 2 sea urchin Paracentrotus lividus populations and compared the results with those of the gonad index most frequently used for these organisms. -
AFMS Approved Reference List of Classifications and Common Names for Fossils
American Federation of Mineralogical Societies AFMS Approved Reference List of Classifications and Common Names for Fossils Updated 2009 AFMS Publications Committee B. Jay Bowman, Chair Internet Version of the AFMS Fossil List. This document can only be downloaded at <www.amfed.org//rules AFMS FOSSIL LIST This list is intended as a guide to help the exhibitor select those taxonomic classification terms and common names that are acceptable for labeling requirements in AFMS and Regional Fossil Competition under the AFMS Uniform Rules. The exhibitor must still use other sources to identify his specimens to genus and species. Because classifications differ from one source to another, it is not intended that this should be considered the only correct one; therefore lists of alternate and additional classifications from some of the more popular references may be used. If the exhibitor chooses to use a different classification, he must cite his reference(s) for the use of the judges. This information should include the author(s), year, title of publication and page number where the information is found. This written information should be given to the Judging Director at the time the display is set up or may be included in the Reference List. This list includes the phyla which will be used to determine variety in a general fossil display. Any alternate lists may provide alternate systems and include additional phyla represented by fossils. Common names are required on labels for the benefit of the viewer who is not familiar with fossil nomenclature. Therefore the word clam would be the best choice for most fossils from the class Pelecypoda. -
Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3
Frontiers in Zoology BioMed Central Research Open Access Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea) Alexander Ziegler*1, Cornelius Faber2 and Thomas Bartolomaeus3 Address: 1Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany, 2Institut für Klinische Radiologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 1, 48149 Münster, Germany and 3Institut für Evolutionsbiologie und Zooökologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany Email: Alexander Ziegler* - [email protected]; Cornelius Faber - [email protected]; Thomas Bartolomaeus - [email protected] * Corresponding author Published: 9 June 2009 Received: 4 December 2008 Accepted: 9 June 2009 Frontiers in Zoology 2009, 6:10 doi:10.1186/1742-9994-6-10 This article is available from: http://www.frontiersinzoology.com/content/6/1/10 © 2009 Ziegler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. -
Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea
animals Article Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea 1, , 1, , 2 3 Anastasios Varkoulis * y, Konstantinos Voulgaris * y, Stefanos Zaoutsos , Antonios Stratakis and Dimitrios Vafidis 1 1 Department of Ichthyology and Aquatic Environment, Nea Ionia, University of Thessaly, 38445 Volos, Greece; dvafi[email protected] 2 Department of Energy Systems, University of Thessaly, 41334 Larisa, Greece; [email protected] 3 School of Mineral Resources Engineering, Crete Technical University of Crete, 73100 Chania, Greece; [email protected] * Correspondence: [email protected] (A.V.); [email protected] (K.V.) These authors contributed equally to this work. y Received: 19 June 2020; Accepted: 2 August 2020; Published: 4 August 2020 Simple Summary: Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis play a key role in many sublittoral biocommunities of the Mediterranean Sea. However, their skeletons seem to differ, both morphologically and in chemical composition. Thus, the skeletal elements display different properties, which are affected not only by the environment, but also by the vital effect of each species. We studied the microstructural morphology and crystalline phase of the test and spines, while also examining the effect of time on their elemental composition. Results showed morphologic differences among the three species both in spines and tests. They also seem to respond differently to possible time-related changes. The mineralogical composition of P.lividus appears to be quite different compare to the other two species. The results of the present study may contribute to a better understanding of the skeletal properties of these species, this being especially useful in predicting the effects of ocean acidification. -
Gonadal Growth and Reproduction in the Sea Urchin Sphaerechinus Granularis (Lamarck 1816) (Echinodermata: Echinoidea) in Southern Spain
SCIENTIA MARINA 72(3) September 2008, 603-611, Barcelona (Spain) ISSN: 0214-8358 Gonadal growth and reproduction in the sea urchin Sphaerechinus granularis (Lamarck 1816) (Echinodermata: Echinoidea) in southern Spain INÉS MARTÍNEZ-PITA 1, ANA I. SÁNCHEZ-ESPAÑA 2 and FRANCISCO J. GARCÍA 2 1 I.F.A.P.A. Centro “Agua del Pino”, Carretera Punta Umbría-El Rompido km 3.8, El Rompido, Huelva, Spain. 2 Departamento de Sistemas Físicos, Químicos y Naturales, Área de Zoología, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Sevilla, Spain. E-mail: [email protected] SUMMARY: The gonadal index and reproductive state of the sea urchin Sphaerechinus granularis were studied for a year in three populations from southeast Spain. The development of the gonad during the period of study was assessed using histological methods and four maturity stages were considered for female specimens and two for male specimens. The study of gonad development showed a clearly defined annual cycle of gametogenesis with a single spawning period in summer- autumn. It begins in June at Torremuelle and Palmeral and a month later at La Herradura. The three populations exhibited similar reproductive patterns, having mature gonads in almost all the months. Though the environmental conditions were similar, the population from La Herradura had the highest Gonadosomatic Index value (GSI) and that from Torremuelle the lowest one. Keywords: Echinodermata, Echinoidea, gonadosomatic index, Sphaerechinus granularis, reproductive cycle, sea urchin. RESUMEN: Crecimiento gonadal y reproducción del erizo de mar SPHAERECHINUS GRANULARIS (Lamarck, 1816) (Echinodermata, Echinoidea) en el sureste de España. – Se ha estudiado el índice gonadosomático y los estados reproductivos del erizo de mar Sphaerechinus granularis durante un año en tres poblaciones del sureste de España. -
A Phylogenomic Resolution of the Sea Urchin Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits. -
Population Density, Size Structure, and Reproductive Cycle Of
animals Article Population Density, Size Structure, and Reproductive Cycle of the Comestible Sea Urchin Sphaerechinus granularis (Echinodermata: Echinoidea) in the Pagasitikos Gulf (Aegean Sea) Dimitrios Vafidis 1,*, Chryssanthi Antoniadou 2 and Vassiliki Ioannidi 1 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; [email protected] 2 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] * Correspondence: dvafi[email protected]; Tel.: +30-241-093-133 Received: 3 August 2020; Accepted: 21 August 2020; Published: 26 August 2020 Simple Summary: Regular urchins are dominant grazers in the shallow sublittoral seabed. Several species are edible and commercially harvested, among which Sphaerechinus granularis is of increasing commercial importance due to the depletion of the common urchin Paracentrotus lividus. As there are very few studies on the biology of the species, the present work examines the population density, size structure, and reproduction of S. granularis in the Aegean Sea (eastern Mediterranean). Population density, in-situ estimated along transects, conforms to previous reports for the Aegean Sea. Size-structure, estimated from 20 randomly collected specimens at monthly base, showed one mode at 65–70 mm or 70–75 mm, according to the sampling location. Sea urchins had larger dimensions in the sheltered site. The monthly variation of the gonad-somatic index and the histological analyses of the gonads, estimated from the same 20 randomly collected specimens (per month and station), showed that the species reproduces once each year, in spring. The results of the present study provides baseline knowledge on the biology of S.