Dynamics of Deep Neural Networks and Neural Tangent Hierarchy

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Deep Neural Networks and Neural Tangent Hierarchy Dynamics of Deep Neural Networks and Neural Tangent Hierarchy Jiaoyang Huang * 1 Horng-Tzer Yau * 2 Abstract problems, there is no guarantee that a gradient based algo- The evolution of a deep neural network trained by rithm will be able to find the optimal parameters efficiently the gradient descent in the overparametrization during the training of neural networks. One question then regime can be described by its neural tangent ker- arises: given such complexities, is it possible to obtain a nel (NTK) (Jacot et al., 2018; Du et al., 2018b;a; succinct description of the training dynamics? Arora et al., 2019b). It was observed (Arora et al., In this paper, we focus on the empirical risk minimization 2019a) that there is a performance gap between problem with the quadratic loss function the kernel regression using the limiting NTK and n the deep neural networks. We study the dynamic 1 X 2 min L(θ) = (f(xα; θ) − yα) of neural networks of finite width and derive an θ 2n infinite hierarchy of differential equations, the α=1 neural tangent hierarchy (NTH). We prove that n n where fxαgα=1 are the training inputs, fyαgα=1 are the the NTH hierarchy truncated at the level p > 2 labels, and the dependence is modeled by a deep fully- approximates the dynamic of the NTK up to ar- connected feedforward neural network with H hidden layers. bitrary precision under certain conditions on the The network has d input nodes, and the input vector is given neural network width and the data set dimension. d by x 2 R . For 1 6 ` 6 H, the `-th hidden layer has The assumptions needed for these approximations m neurons. Let x(`) be the output of the `-th layer with become weaker as p increases. Finally, NTH can x(0) = x. Then the feedforward neural network is given by be viewed as higher order extensions of NTK. In the set of recursive equations: particular, the NTH truncated at p = 2 recovers the NTK dynamics. 1 x(`) = p σ(W (`)x(`−1)); ` = 1; 2; ··· ; H; (1) m (`) m×d (`) m×m 1. Introduction where W 2 R if ` = 1 and W 2 R if 2 6 ` 6 H are the weight matrices, and σ is the activation unit, Deep neural networks have become popular due to their un- which is applied coordinate-wise to its input. The output of precedented success in a variety of machine learning tasks. the neural network is Image recognition (LeCun et al., 1998; Krizhevsky et al., > (H) 2012; Szegedy et al., 2015), speech recognition (Hinton f(x; θ) = a x 2 R; (2) et al., 2012; Sainath et al., 2013), playing Go (Silver et al., 2016; 2017) and natural language understanding (Collobert where a 2 Rm is the weight matrix for the output layer. et al., 2011; Wu et al., 2016; Devlin et al., 2018) are just We denote the vector containing all trainable parameters a few of the recent achievements. However, one aspect of by θ = (vec(W (1)); vec(W (2)) :::; vec(W (H)); a). We deep neural networks that is not well understood is train- remark thatp this parametrization is nonstandard because of ing. Training a deep neural network is usually done via a those 1= m factors. However, it has already been adopted gradient decent based algorithm. Analyzing such training in several recent works (Jacot et al., 2018; Du et al., 2018b;a; dynamics is challenging. Firstly, as highly nonlinear struc- Lee et al., 2019). We note that the predictions and training tures, deep neural networks usually involve a large number dynamics of (1) are identicalp to those of standard networks, of parameters. Secondly, as highly non-convex optimization up to a scaling factor 1= m in the learning rate for each parameter. *Equal contribution 1School of Mathematics, IAS, Princeton, NJ, USA 2Mathematics Department, Harvard, Cambridge, MA, We initialize the neural network with random Gaussian USA. Correspondence to: Jiaoyang Huang <[email protected]>. weights following the Xavier initialization scheme (Glo- rot & Bengio, 2010). More precisely, we set the initial Proceedings of the 37 th International Conference on Machine (`) 2 2 Learning, Online, PMLR 119, 2020. Copyright 2020 by the au- parameter vector θ0 as Wij ∼ N (0; σw), ai ∼ N (0; σa). thor(s). In this way, for the randomly initialized neural network, Dynamics of Deep Neural Networks and Neural Tangent Hierarchy we have that the L2 norms of the output of each layer are and for 1 6 ` 6 H, (`) 2 of order one, i.e. kx k2 = O(1) for 0 6 ` 6 H, and (`) G (xα; xβ) = h@ (`) f(xα; θt);@ (`) f(xβ; θt)i f(x; θ0) = O(1) with high probability. In this paper, we t W W * train all layers of the neural network with continuous time (W (`+1))> a = σ0 (x ) tp ··· σ0 (x )p t ; gradient descent (gradient flow): for any time t > 0 ` α m H α m (`) (`+1) > + @tWt = −@W (`) L(θt); ` = 1; 2; ··· ; H; 0 (Wt ) 0 at (`−1) (`−1) (3) σ (xβ) p ··· σ (xβ)p hx ; x i; ` m H m α β @tat = −@aL(θt); (1) (2) (H) and where θt = (vec(W ); vec(W ) :::; vec(W ); at). t t t (H+1) (H) (H) Gt = h@af(xα; θt);@af(xβ; θt)i = hxα ; x i: For simplicity of notations, we write σ(W (`)x(`−1)) as β σ (x), or simply σ if the context is clear. We write its (2) ` ` The NTK Kt (·; ·) varies along training. However, in the 0 (`) (`−1) 0 (1) derivative diag(σ (W x )) as σ`(x) = σ` (x), and infinite width limit, the training dynamic is very simple: The (r) (`) (`−1) (r) (r) (2) (2) r-th derivative diag(σ (W x )) as σ` (x), or σ` NTK does not change along training, Kt (·; ·) = K1 (·; ·). (r) The network function f(x; θt) follows a linear differential for r > 1. In this notation, σ` (x) are diagonal matri- ces. With those notations, explicitly, the continuous time equation (Jacot et al., 2018): gradient descent dynamic (3) is n 1 X @ f(x; θ ) = − K(2)(x; x )(f(x ; θ ) − y ); (8) t t n 1 β β t β (`) β=1 @tWt = −@W (`) L(θt) n (`+1) > ! which becomes analytically tractable. In other words, the 1 X 0 (Wt ) 0 at = − σ (xβ) p ··· σ (xβ)p (4) n ` m H m training dynamic is equivalent to the kernel regression using β=1 (2) the limiting NTK K1 (·; ·). While the linearization (8) is (`−1) > only exact in the infinite width limit, for a sufficiently wide ⊗ (xβ ) (f(xβ; θt) − yβ); deep neural network, (8) still provides a good approxima- for ` = 1; 2; ··· ;H, and tion of the learning dynamic for the corresponding deep neural network (Du et al., 2018b;a; Lee et al., 2019). As a n 1 X (H) consequence, it was proven in (Du et al., 2018b;a) that, for @ a = −@ L(θ ) = − x (f(x ; θ ) − y ): (5) 4 t t a t n β β t β a fully-connected wide neural network with m & n under β=1 certain assumptions on the data set, the gradient descent converges to zero training loss at a linear rate. Although 1.1. Neural Tangent Kernel highly overparametrized neural networks is equivalent to the kernel regression, it is possible to show that the class A recent paper (Jacot et al., 2018) introduced the Neural of finite width neural networks is more expressive than the Tangent Kernel (NTK) and proved the limiting NTK cap- limiting NTK. It has been constructed in (Ghorbani et al., tures the behavior of fully-connected deep neural networks 2019; Yehudai & Shamir, 2019; Allen-Zhu & Li, 2019) that in the infinite width limit trained by gradient descent: there are simple functions that can be efficiently learnt by finite width neural networks, but not the kernel regression @tf(x; θt) = @θf(x; θt)@tθt = −@θf(x; θt)@θL(θt) using the limiting NTK. n 1 X = − @ f(x; θ ) @ f(x ; θ )(f(x ; θ ) − y ) n θ t θ β t β t β 1.2. Contribution β=1 n There is a performance gap between the kernel regression 1 X (2) = − K (x; xβ)(f(xβ; θt) − yβ); (8) using the limiting NTK and the deep neural networks. It n t β=1 was observed in (Arora et al., 2019a) that the convolutional (6) neural networks outperform their corresponding limiting NTK by 5% - 6%. This performance gap is likely to origi- (2) where the NTK Kt (·; ·) is given by nate from the change of the NTK along training due to the finite width effect. The change of the NTK along training (2) has its benefits on generalization. Kt (xα; xβ) = h@θf(xα; θt);@θf(xβ; θt)i H+1 In the current paper, we study the dynamic of the NTK for X (`) (7) = Gt (xα; xβ); finite width deep fully-connected neural networks. Here we `=1 summarize our main contributions: Dynamics of Deep Neural Networks and Neural Tangent Hierarchy • We show the gradient descent dynamic is captured by 1.4. Related Work an infinite hierarchy of ordinary differential equations, In this section, we survey an incomplete list of previous the neural tangent hierarchy (NTH). Similar recursive works on optimization aspect of deep neural networks. differential equations were also obtained by Dyer and Gur-Ari (Dyer & Gur-Ari, 2019). Different from the Because of the highly non-convexity nature of deep neural limiting NTK (7), which depends only on the neural networks, the gradient based algorithms can potentially get network architecture, the NTH is data dependent and stuck near a critical point, i.e., saddle point or local mini- capable of learning data-dependent features.
Recommended publications
  • Neural Tangent Generalization Attacks
    Neural Tangent Generalization Attacks Chia-Hung Yuan 1 Shan-Hung Wu 1 Abstract data. They may not want their data being used to train a mass surveillance model or music generator that violates The remarkable performance achieved by Deep their policies or business interests. In fact, there has been Neural Networks (DNNs) in many applications is an increasing amount of lawsuits between data owners and followed by the rising concern about data privacy machine-learning companies recently (Vincent, 2019; Burt, and security. Since DNNs usually require large 2020; Conklin, 2020). The growing concern about data pri- datasets to train, many practitioners scrape data vacy and security gives rise to a question: is it possible to from external sources such as the Internet. How- prevent a DNN model from learning on given data? ever, an external data owner may not be willing to let this happen, causing legal or ethical issues. Generalization attacks are one way to reach this goal. Given In this paper, we study the generalization attacks a dataset, an attacker perturbs a certain amount of data with against DNNs, where an attacker aims to slightly the aim of spoiling the DNN training process such that modify training data in order to spoil the training a trained network lacks generalizability. Meanwhile, the process such that a trained network lacks gener- perturbations should be slight enough so legitimate users alizability. These attacks can be performed by can still consume the data normally. These attacks can data owners and protect data from unexpected use. be performed by data owners to protect their data from However, there is currently no efficient generaliza- unexpected use.
    [Show full text]
  • Wide Neural Networks of Any Depth Evolve As Linear Models Under Gradient Descent
    Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent Jaehoon Lee∗, Lechao Xiao∗, Samuel S. Schoenholz, Yasaman Bahri Roman Novak, Jascha Sohl-Dickstein, Jeffrey Pennington Google Brain {jaehlee, xlc, schsam, yasamanb, romann, jaschasd, jpennin}@google.com Abstract A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Fur- thermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions. 1 Introduction Machine learning models based on deep neural networks have achieved unprecedented performance across a wide range of tasks [1, 2, 3]. Typically, these models are regarded as complex systems for which many types of theoretical analyses are intractable. Moreover, characterizing the gradient-based training dynamics of these models is challenging owing to the typically high-dimensional non-convex loss surfaces governing the optimization.
    [Show full text]
  • Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
    Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation Greg Yang 1 Abstract Several recent trends in machine learning theory and practice, from the design of state-of-the-art Gaussian Process to the convergence analysis of deep neural nets (DNNs) under stochastic gradient descent (SGD), have found it fruitful to study wide random neural networks. Central to these approaches are certain scaling limits of such networks. We unify these results by introducing a notion of a straightline tensor program that can express most neural network computations, and we characterize its scaling limit when its tensors are large and randomized. From our framework follows 1. the convergence of random neural networks to Gaussian processes for architectures such as recurrent neural networks, convolutional neural networks, residual networks, attention, and any combination thereof, with or without batch normalization; 2. conditions under which the gradient independence assumption – that weights in backpropagation can be assumed to be independent from weights in the forward pass – leads to correct computation of gradient dynamics, and corrections when it does not; 3. the convergence of the Neural Tangent Kernel, a recently proposed kernel used to predict training dynamics of neural networks under gradient descent, at initialization for all architectures in (1) without batch normalization. Mathematically, our framework is general enough to rederive classical random matrix results such as the semicircle and the Marchenko-Pastur laws, as well as recent results in neural network Jacobian singular values. We hope our work opens a way toward design of even stronger Gaussian Processes, initialization schemes to avoid gradient explosion/vanishing, and deeper understanding of SGD dynamics in modern architectures.
    [Show full text]
  • The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
    The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization Ben Adlam * y 1 Jeffrey Pennington * 1 Abstract Classical regime Abundant parameterization Superabundant parameterization Modern deep learning models employ consider- ably more parameters than required to fit the train- Loss Deterministic ing data. Whereas conventional statistical wisdom NTK Linear suggests such models should drastically overfit, scaling scaling Quadratic in practice these models generalize remarkably pm pm 2 well. An emerging paradigm for describing this Trainable parameters unexpected behavior is in terms of a double de- scent curve, in which increasing a model’s ca- Figure 1. An illustration of multi-scale generalization phenomena pacity causes its test error to first decrease, then for neural networks and related kernel methods. The classical U-shaped under- and over-fitting curve is shown on the far left. increase to a maximum near the interpolation After a peak near the interpolation threshold, when the number threshold, and then decrease again in the over- of parameters p equals the number of samples m, the test loss de- parameterized regime. Recent efforts to explain creases again, a phenomenon known as double descent. On the far this phenomenon theoretically have focused on right is the limit when p ! 1, which is described by the Neural simple settings, such as linear regression or ker- Tangent Kernel. In this work, we identify a new scale of interest in nel regression with unstructured random features, between these two regimes, namely when p is quadratic in m, and which we argue are too coarse to reveal important show that it exhibits complex non-monotonic behavior, suggesting nuances of actual neural networks.
    [Show full text]
  • Mean-Field Behaviour of Neural Tangent Kernel for Deep Neural
    Mean-field Behaviour of Neural Tangent Kernel for Deep Neural Networks Soufiane Hayou 1 Arnaud Doucet 1 Judith Rousseau 1 Abstract DNNs and how it differs from the actual training of DNNs with Stochastic Gradient Descent. Recent work by Jacot et al.(2018) has shown that training a neural network of any kind, with gradi- Neural Tangent Kernel. Jacot et al.(2018) showed that ent descent in parameter space, is strongly related training a neural network (NN) with GD (Gradient Descent) to kernel gradient descent in function space with in parameter space is equivalent to a GD in a function space respect to the Neural Tangent Kernel (NTK). Lee with respect to the NTK. Du et al.(2019) used a similar et al.(2019) built on this result by establishing approach to prove that full batch GD converges to global that the output of a neural network trained using minima for shallow neural networks, and Karakida et al. gradient descent can be approximated by a linear (2018) linked the Fisher information matrix to the NTK, model for wide networks. In parallel, a recent line studying its spectral distribution for infinite width NN. The of studies (Schoenholz et al., 2017; Hayou et al., infinite width limit for different architectures was studied by 2019) has suggested that a special initialization, Yang(2019), who introduced a tensor formalism that can known as the Edge of Chaos, improves training. express the NN computations. Lee et al.(2019) studied a In this paper, we connect these two concepts by linear approximation of the full batch GD dynamics based quantifying the impact of the initialization and the on the NTK, and gave a method to approximate the NTK for activation function on the NTK when the network different architectures.
    [Show full text]
  • Limiting the Deep Learning Yiping Lu Peking University Deep Learning Is Successful, But…
    LIMITING THE DEEP LEARNING YIPING LU PEKING UNIVERSITY DEEP LEARNING IS SUCCESSFUL, BUT… GPU PHD PHD Professor LARGER THE BETTER? Test error decreasing LARGER THE BETTER? 풑 Why Not Limiting To = +∞ 풏 Test error decreasing TWO LIMITING Width Limit Width Depth Limiting DEPTH LIMITING: ODE [He et al. 2015] [E. 2017] [Haber et al. 2017] [Lu et al. 2017] [Chen et al. 2018] BEYOND FINITE LAYER NEURAL NETWORK Going into infinite layer Differential Equation ALSO THEORETICAL GUARANTEED TRADITIONAL WISDOM IN DEEP LEARNING ? BECOMING HOT NOW… NeurIPS2018 Best Paper Award BRIDGING CONTROL AND LEARNING Neural Network Feedback is the learning loss Optimization BRIDGING CONTROL AND LEARNING Neural Network Interpretability? PDE-Net ICML2018 Feedback is the learning loss Optimization BRIDGING CONTROL AND LEARNING Neural Network Interpretability? PDE-Net ICML2018 Chang B, Meng L, Haber E, et al. Reversible LM-ResNet ICML2018 architectures for arbitrarily deep residual neural networks[C]//Thirty-Second AAAI Conference A better model?DURR ICLR2019 on Artificial Intelligence. 2018. Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Macaroon submitted Networks, Nonlocal Diffusion and Nonlocal Feedback is the Modeling[C]//Advances in Neural Information learning loss Processing Systems. 2018: 496-506. Optimization BRIDGING CONTROL AND LEARNING Neural Network Interpretability? PDE-Net ICML2018 Chang B, Meng L, Haber E, et al. Reversible LM-ResNet ICML2018 architectures for arbitrarily deep residual neural networks[C]//Thirty-Second AAAI Conference A better model?DURR ICLR2019 on Artificial Intelligence. 2018. Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Macaroon submitted Networks, Nonlocal Diffusion and Nonlocal Feedback is the Modeling[C]//Advances in Neural Information learning loss Processing Systems.
    [Show full text]
  • Theory of Deep Learning
    CONTRIBUTORS:RAMANARORA,SANJEEVARORA,JOANBRUNA,NADAVCOHEN,RONG GE,SURIYAGUNASEKAR,CHIJIN,JASONLEE,TENGYUMA,BEHNAMNEYSHABUR,ZHAO SONG,... THEORYOFDEEP LEARNING Contents 1 Basic Setup and some math notions 11 1.1 List of useful math facts 12 1.1.1 Probability tools 12 1.1.2 Singular Value Decomposition 13 2 Basics of Optimization 15 2.1 Gradient descent 15 2.1.1 Formalizing the Taylor Expansion 16 2.1.2 Descent lemma for gradient descent 16 2.2 Stochastic gradient descent 17 2.3 Accelerated Gradient Descent 17 2.4 Local Runtime Analysis of GD 18 2.4.1 Pre-conditioners 19 3 Backpropagation and its Variants 21 3.1 Problem Setup 21 3.1.1 Multivariate Chain Rule 23 3.1.2 Naive feedforward algorithm (not efficient!) 24 3.2 Backpropagation (Linear Time) 24 3.3 Auto-differentiation 25 3.4 Notable Extensions 26 3.4.1 Hessian-vector product in linear time: Pearlmutter’s trick 27 4 4 Basics of generalization theory 29 4.0.1 Occam’s razor formalized for ML 29 4.0.2 Motivation for generalization theory 30 4.1 Some simple bounds on generalization error 30 4.2 Data dependent complexity measures 32 4.2.1 Rademacher Complexity 32 4.2.2 Alternative Interpretation: Ability to correlate with random labels 33 4.3 PAC-Bayes bounds 33 5 Advanced Optimization notions 37 6 Algorithmic Regularization 39 6.1 Linear models in regression: squared loss 40 6.1.1 Geometry induced by updates of local search algorithms 41 6.1.2 Geometry induced by parameterization of model class 44 6.2 Matrix factorization 45 6.3 Linear Models in Classification 45 6.3.1 Gradient Descent
    [Show full text]
  • Wide Neural Networks of Any Depth Evolve As Linear Models Under Gradient Descent
    Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent Jaehoon Lee⇤, Lechao Xiao⇤, Samuel S. Schoenholz, Yasaman Bahri Roman Novak, Jascha Sohl-Dickstein, Jeffrey Pennington Google Brain {jaehlee, xlc, schsam, yasamanb, romann, jaschasd, jpennin}@google.com Abstract A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Fur- thermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions. 1 Introduction Machine learning models based on deep neural networks have achieved unprecedented performance across a wide range of tasks [1, 2, 3]. Typically, these models are regarded as complex systems for which many types of theoretical analyses are intractable. Moreover, characterizing the gradient-based training dynamics of these models is challenging owing to the typically high-dimensional non-convex loss surfaces governing the optimization.
    [Show full text]
  • When and Why the Tangent Kernel Is Constant
    On the linearity of large non-linear models: when and why the tangent kernel is constant Chaoyue Liu∗ Libin Zhuy Mikhail Belkinz Abstract The goal of this work is to shed light on the remarkable phenomenon of transition to linearity of certain neural networks as their width approaches infinity. We show that the transition to linearity of the model and, equivalently, constancy of the (neural) tangent kernel (NTK) result from the scaling properties of the norm of the Hessian matrix of the network as a function of the network width. We present a general framework for understanding the constancy of the tangent kernel via Hessian scaling applicable to the standard classes of neural networks. Our analysis provides a new perspective on the phenomenon of constant tangent kernel, which is different from the widely accepted “lazy training”. Furthermore, we show that the transition to linearity is not a general property of wide neural networks and does not hold when the last layer of the network is non-linear. It is also not necessary for successful optimization by gradient descent. 1 Introduction As the width of certain non-linear neural networks increases, they become linear functions of their parameters. This remarkable property of large models was first identified in [12] where it was stated in terms of the constancy of the (neural) tangent kernel during the training process. More precisely, consider a neural network or, generally, a machine learning model f(w; x), which takes x as input and has w as its (trainable) parameters. Its tangent kernel K(x;z)(w) is defined as follows: T d K(x;z)(w) := rwf(w; x) rwf(w; z); for fixed inputs x; z 2 R : (1) The key finding of [12] was the fact that for some wide neural networks the kernel K(x;z)(w) is a constant function of the weight w during training.
    [Show full text]
  • Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks
    The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21) Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks Russell Tsuchida,12 Tim Pearce,3 Chris van der Heide,2 Fred Roosta,24 Marcus Gallagher2 1CSIRO, 2The University of Queensland, 3University of Cambridge, 4International Computer Science Institute f(x ) = p1 P U (W>x )+V Abstract 1 n i=1 i fi e1 b, where is an activa- > > Analysing and computing with Gaussian processes arising tion function and xe1 = (x1 ; 1) . The covariance between from infinitely wide neural networks has recently seen a any two outputs is resurgence in popularity. Despite this, many explicit covari- (1) ance functions of networks with activation functions used in k (x1; x2) n n modern networks remain unknown. Furthermore, while the h X X i kernels of deep networks can be computed iteratively, theo- E > > 2 = Vi (Wfi xe1) Vj (Wfj xe2) +σb retical understanding of deep kernels is lacking, particularly i=1 j=1 with respect to fixed-point dynamics. Firstly, we derive the h i 2 E > > 2 covariance functions of multi-layer perceptrons (MLPs) with = σw (Wf1 xe1) (Wf1 xe2) + σb : exponential linear units (ELU) and Gaussian error linear units (GELU) and evaluate the performance of the limiting Gaus- The expectation over d + 1 random variables reduces sian processes on some benchmarks. Secondly, and more gen- to an expectation over 2 random variables, W>x and erally, we analyse the fixed-point dynamics of iterated ker- f1 e1 > nels corresponding to a broad range of activation functions. Wf1 xe2.
    [Show full text]
  • On the Neural Tangent Kernel of Equilibrium Models
    Under review as a conference paper at ICLR 2021 ON THE NEURAL TANGENT KERNEL OF EQUILIBRIUM MODELS Anonymous authors Paper under double-blind review ABSTRACT Existing analyses of the neural tangent kernel (NTK) for infinite-depth networks show that the kernel typically becomes degenerate as the number of layers grows. This raises the question of how to apply such methods to practical “infinite depth” architectures such as the recently-proposed deep equilibrium (DEQ) model, which directly computes the infinite-depth limit of a weight-tied network via root- finding. In this work, we show that because of the input injection component of these networks, DEQ models have non-degenerate NTKs even in the infinite depth limit. Furthermore, we show that these kernels themselves can be computed by an analogous root-finding problem as in traditional DEQs, and highlight meth- ods for computing the NTK for both fully-connected and convolutional variants. We evaluate these models empirically, showing they match or improve upon the performance of existing regularized NTK methods. 1 INTRODUCTION Recent works empirically observe that as the depth of a weight-tied input-injected network increases, its output tends to converge to a fixed point. Motivated by this phenomenon, DEQ models were proposed to effectively represent an “infinite depth” network by root-finding. A natural question to ask is, what will DEQs become if their widths also go to infinity? It is well-known that at certain random initialization, neural networks of various structures converge to Gaussian processes as their widths go to infinity (Neal, 1996; Lee et al., 2017; Yang, 2019; Matthews et al., 2018; Novak et al., 2018; Garriga-Alonso et al., 2018).
    [Show full text]
  • The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
    The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks Wei Hu∗ Lechao Xiaoy Ben Adlamz Jeffrey Penningtonx Abstract Modern neural networks are often regarded as complex black-box functions whose behavior is difficult to understand owing to their nonlinear dependence on the data and the nonconvexity in their loss landscapes. In this work, we show that these common perceptions can be completely false in the early phase of learning. In particular, we formally prove that, for a class of well-behaved input distributions, the early-time learning dynamics of a two-layer fully-connected neural network can be mimicked by training a simple linear model on the inputs. We additionally argue that this surprising simplicity can persist in networks with more layers and with convolutional architecture, which we verify empirically. Key to our analysis is to bound the spectral norm of the difference between the Neural Tangent Kernel (NTK) at initialization and an affine transform of the data kernel; however, unlike many previous results utilizing the NTK, we do not require the network to have disproportionately large width, and the network is allowed to escape the kernel regime later in training. 1 Introduction Modern deep learning models are enormously complex function approximators, with many state- of-the-art architectures employing millions or even billions of trainable parameters [Radford et al., 2019, Adiwardana et al., 2020]. While the raw parameter count provides only a crude approximation of a model’s capacity, more sophisticated metrics such as those based on PAC-Bayes [McAllester, 1999, Dziugaite and Roy, 2017, Neyshabur et al., 2017b], VC dimension [Vapnik and Chervonenkis, 1971], and parameter norms [Bartlett et al., 2017, Neyshabur et al., 2017a] also suggest that modern architectures have very large capacity.
    [Show full text]