Based Approaches to Investigate Targeted Microbial Processes

Total Page:16

File Type:pdf, Size:1020Kb

Based Approaches to Investigate Targeted Microbial Processes Utilizing “Omics” Based Approaches to Investigate Targeted Microbial Processes By Vanessa Lynn Brisson A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Civil and Environmental Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Lisa Alvarez-Cohen, Chair Professor Kara Nelson Professor Fiona Doyle Spring 2015 Utilizing “Omics” Based Approaches to Investigate Targeted Microbial Processes Copyright © 2015 By Vanessa Lynn Brisson Abstract Utilizing “Omics” Based Approaches to Investigate Targeted Microbial Processes by Vanessa Lynn Brisson Doctor of Philosophy in Engineering – Civil and Environmental Engineering University of California, Berkeley Professor Lisa Alvarez-Cohen, Chair Metabolomic, genomic, and metagenomic analyses were used to provide insight into two different environmentally relevant microbial processes: bioleaching of rare earth elements from monazite sand and reductive dechlorination of chlorinated ethenes. Although rare earth elements are important for a variety of technologies, current extraction techniques are severely environmentally damaging. The research presented here demonstrates that some microorganisms are capable of biological leaching of rare earth elements from monazite, opening the possibility of a novel, environmentally sustainable bioleaching extraction process. Metabolomic analysis of a monazite bioleaching microorganism was used to further our understanding of the bioleaching process. Chlorinated ethenes are common groundwater contaminants with human health risks. Dehalococcoides mccartyi bacteria are the only organisms known to completely reduce chlorinated ethenes to the harmless product ethene. However, D. mccartyi dechlorinate these chemicals more effectively and grow more robustly in mixed microbial communities than in isolation. Genomic and metagenomic analyses were used to advance our understanding of D. mccartyi in a mixed microbial community and in isolation. Successful isolation and characterization of monazite bioleaching microorganisms provided a proof of concept for monazite bioleaching as an environmentally friendly alternative to conventional extraction of rare earth elements from monazite, a rare earth phosphate mineral. Three fungal strains were found to be capable of bioleaching monazite, utilizing the mineral as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. The rare earth elements were released in proportions similar to those present in the monazite, which was dominated by cerium, lanthanum, neodymium, and praseodymium. Although monazite also contains the radioactive element thorium, bioleaching by these fungi preferentially solubilized rare earth elements over thorium, leaving the thorium in the solid residual. Adjustments in growth medium composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite retained robust bioleaching capacity, indicating that compounds exogenously released by these organisms contribute substantially to leaching activity. Organic acids released by the organisms were identified and quantified. Abiotic leaching with laboratory prepared solutions of the identified organic acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, 1 indicating that compounds other than the identified organic acids contribute to leaching performance. Metabolomic analysis of a monazite bioleaching microorganism was performed in order to better understand the bioleaching process. Overall metabolite profiling, in combination with biomass accumulation data, identified a lag in growth phase when this organism was grown under phosphate limitation stress. Analysis of the relationships between metabolite concentrations, rare earth element solubilization levels, and bioleaching growth conditions identified several metabolites potentially associated with bioleaching. Further investigation using laboratory prepared solutions of 17 of these metabolites indicated significant leaching contributions from citric and citramalic acids only. These contributions were relatively small compared to bioleaching effectiveness of microbial supernatant, suggesting that other still unknown factors contribute to bioleaching activity. Further investigations of bioleaching supernatant using gel permeation chromatography indicated that the compounds involved in leaching form only weakly held complexes, like those of citric acid, with the solubilized rare earth elements, rather than forming more strongly held complexes. The phylogenetic composition and gene content of a functionally stable trichloroethene degrading microbial community was examined using metagenomic sequencing and analysis. For phylogenetic classification, contiguous sequences (contigs) longer than 2,500 bp were grouped into classes according to tetranucleotide frequencies and assigned to taxa based on rRNA genes and other phylogenetic marker genes. Classes were identified for Clostridiaceae, Dehalococcoides, Desulfovibrio, Methanobacterium, Methanospirillum, as well as a Spirochaete, a Synergistete, and an unknown Deltaproteobacterium. D. mccartyi contigs were also identified based on sequence similarity to previously sequenced genomes, allowing the identification of 170 kb on contigs shorter than 2,500 bp. Examination of metagenome sequences affiliated with D. mccartyirevealed 406 genes not found in previously sequenced D. mccartyi genomes, including nine cobalamin biosynthesis genes related to corrin ring synthesis. This is the first time that a D. mccartyi strain has been found to possess genes for synthesizing this cofactor critical to reductive dechlorination. Besides D. mccartyi, several other members of this community appear to have genes for complete or near-complete cobalamin biosynthesis pathways. Seventeen genes for putative reductive dehalogenases were identified, including 11 novel ones, all associated with D. mccartyi. Genes for hydrogenase components (271 in total) were widespread, highlighting the importance of hydrogen metabolism in this community. PhyloChip microarray analysis confirmed the stability of this microbial community over time. Bioinformatic analyses using genomic and metagenomic data were used to further advance investigations of organisms from the genus Dehalococcoides. In the first of these analyses, metagenomic sequencing data from three dechlorinating microbial communities was used to evaluate the specificity of a genus wide microarray targeting Dehalococcoides genes from four sequenced Dehalococcoides genomes. Based on this analysis, the microarray was found to detect sequences with a minimum estimated sequence identity of 90 to 95%, remaining highly specific for the target sequences while allowing for small sequence variation. However, the microarray did not detect all genes with > 95% sequence identity, and failed to detect some genes with apparently 100% sequence identity. In the second analysis, a comparative genomics analysis was used to evaluate the prevalence of the recently reported incomplete Wood- Ljungdahl pathway of Dehalococcoides. This analysis revealed that the genetic pattern of genes 2 associated with this incomplete pathway is unique to the Dehalococcoides genus among sequenced bacterial and archaeal genomes. 3 Dedication To Gabriel, Abigail, and Madeline i Table of Contents Abstract............................................................................................................................................1 Dedication.........................................................................................................................................i Table of Contents.............................................................................................................................ii List of Figures.................................................................................................................................vi List of Tables................................................................................................................................viii Acknowledgements.........................................................................................................................ix Chapter 1: Introduction and Background...................................................................................1 1.1 “Omics” techniques...................................................................................................................2 1.2 Targeted microbial processes.....................................................................................................3 1.2.1 Bioleaching of rare earth elements from monazite...........................................................3 1.2.2 Microbial reductive dehalogenation of chlorinated ethenes.............................................7 1.3 Dissertation overview................................................................................................................9 Chapter 2: Bioleaching of Rare Earth Elements from Monazite Sand..................................11 2.1 Introduction..............................................................................................................................12
Recommended publications
  • Crystal Chemistry of the Monazite and Xenotime Structures Yuxxnnc Nr
    American Mineralogist, Volume 80, pages2I-26, 1995 Crystal chemistry of the monazite and xenotime structures YuxxnNc Nr, JonN M. Hucnns Department of Geology, Miami University, Oxford, Ohio 45056' U.S.A. ANrrrotvv N. M.q'nr,lNo 48 PageBrook Road, Carlisle, Massachusetts01741' U.S.A. Arsrnlcr Monazite and xenotime, the RE(PO,) dimorphs, are the most ubiquitous rare earth (RE) minerals, yet accuratestructure studiesof the natural phaseshave not been reported. Here we report the results of high-precision structure studies of both the natural phasesand the synthetic RE(PO4)phases for all individual stable rare earth elements. Monazite is monoclinic, P2r/n, and xenotime is isostructural with zircon (spacegroup 14r/amd)- Both atomic arrangementsare basedon [001] chains of intervening phosphate tetrahedra and RE polyhedra, with a REO, polyhedron in xenotime that accommodates the heavy lanthanides(Tb-Lu in the synthetic phases)and a REO, polyhedron in monazite that preferentially incorporatesthe larger light rare earth elements(Ia-Gd). As the struc- ture "transforms" from xenotime to monazite, the crystallographic properties are com- parable along the [001] chains, with structural adjustments to the different sizes of RE atoms occurring principally in (001). There are distinct similarities betweenthe structuresthat are evident when their atomic arrangementsare projected down [001]. In that projection, the chains exist i! (100) planes, with two planes per unit cell. In monazite the planes are offset by 2.2 A along [010], relative to those in xenotime, in order to accommodate the larger light RE atoms. The shift of the planes in monazite allows the RE atom in that phaseto bond to an additional 02' atom to complete the REO' polyhedron.
    [Show full text]
  • NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
    JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr.
    [Show full text]
  • Monazite, Rhabdophane, Xenotime & Churchite
    Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux To cite this version: Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Elsevier, 2018, 205, pp.85-94. 10.1016/j.saa.2018.07.016. hal-02045615 HAL Id: hal-02045615 https://hal.archives-ouvertes.fr/hal-02045615 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monazite, rhabdophane, xenotime & churchite : vibrational spectroscopy of gadolinium phosphate polymorphs N. Clavier 1,*, A. Mesbah 1, S. Szenknect 1, N. Dacheux 1 1 ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols/Cèze cedex, France * Corresponding author: Dr. Nicolas CLAVIER ICSM, CEA, CNRS, ENSCM, Univ Montpellier Site de Marcoule BP 17171 30207 Bagnols sur Cèze France Phone : + 33 4 66 33 92 08 Fax : + 33 4 66 79 76 11 [email protected] - 1 - Abstract : Rare-earth phosphates with the general formula REEPO4·nH2O belong to four distinct structural types: monazite, rhabdophane, churchite, and xenotime.
    [Show full text]
  • Genomic Insights Into the Uncultured Genus &Lsquo
    The ISME Journal (2014) 8, 2463–2477 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae Wei Lin1,2,7, Aihua Deng3,7, Zhang Wang4, Ying Li2,5, Tingyi Wen3, Long-Fei Wu2,6, Martin Wu4 and Yongxin Pan1,2 1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; 2France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China; 3CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 4Department of Biology, University of Virginia, Charlottesville, VA, USA; 5State Key Laboratory of Agro-Biotechnology and Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, College of Biological Sciences, China Agricultural University, Beijing, China and 6Laboratoire de Chimie Bacte´rienne, Aix-Marseille Universite´, CNRS, Marseille Cedex 20, France Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium’ in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magneto- somes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Geobiology of Marine Magnetotactic Bacteria Sheri Lynn Simmons
    Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons A.B., Princeton University, 1999 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION June 2006 c Woods Hole Oceanographic Institution, 2006. Author.............................................................. Joint Program in Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution May 19, 2006 Certified by. Katrina J. Edwards Associate Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Thesis Supervisor Accepted by......................................................... Ed DeLong Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons Submitted to the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION on May 19, 2006, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography Abstract Magnetotactic bacteria (MTB) biomineralize intracellular membrane-bound crystals of magnetite (Fe3O4) or greigite (Fe3S4), and are abundant in the suboxic to anoxic zones of stratified marine environments worldwide. Their population densities (up to 105 cells ml−1) and high intracellular iron content suggest a potentially significant role in iron
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Life Cycle Assessment of Separation Methods of Cerium Oxide
    907 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 74, 2019 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza Copyright © 2019, AIDIC Servizi S.r.l. ISBN 978-88-95608-71-6; ISSN 2283-9216 DOI: 10.3303/CET1974152 Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore a b Dussadee. Ratthanapra , Unchalee. Suwanmanee* aResearch and Development Division, Thailand Institute and Nuclear Technology, Nakhon Nayok 26120, Thailand. b Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhon Nayok 26120, Thailand. [email protected] Life cycle assessment was applied to evaluate the environmental impact of cerium oxide (CeO2) production systems from monazite ore using integrating and excluding liquid-liquid extraction methods. It is a heterogeneous rare earths oxides catalyst which can be utilized for catalysed transesterification to produce biodiesel. The impact assessment methodology used for characterization was the midpoint CML baseline method in terms the potentials of abiotic depletion, global warming, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. The Eco-indicator 99 method was performed an endpoint approach: human health, ecosystem quality, and resources. The data on process was available from a field study conducted in Thailand Institute of Nuclear Technology and applied into SimaPro 8.2.5. The LCA results showed that the removal of solvent extraction process can achievable the higher purity of CeO2 concentration and presented the most attractive process for cerium oxide from monazite ore in term of environmental impact assessment.
    [Show full text]
  • Coupled Physiology and Genomic Studies of Isolate 1L, a Sulfate-Reducing Bacterium From
    Coupled Physiology and Genomic studies of Isolate 1L, a sulfate-reducing bacterium from the Prairie Pothole Lake Region A Senior Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Microbiology in the undergraduate colleges of The Ohio State University By Mackenzie Lynes The Ohio State University April 2016 Project Advisor: Michael Wilkins, Departments of Microbiology and School of Earth Sciences Table of Contents Abstract _____________________________________________________________________________________________2 1. Introduction_________________________________________________________________________________3 2. Methods a. Experimental Design_______________________________________________________________5 b. Monitoring Growth_________________________________________________________________5 c. Isolation Techniques_______________________________________________________________6 d. Assessment of Isolate Purity ______________________________________________________6 e. Characterization____________________________________________________________________7 f. Anaerobic media and stock preparation__________________________________________9 g. Genomic Analyses __________________________________________________________________9 3. Results and Discussion a. Isolates from Enrichments _______________________________________________________11 b. Characterization of Isolate 1L____________________________________________________12 c. Genome Analysis__________________________________________________________________14
    [Show full text]
  • Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation
    Malaysian Journal of Analytical Sciences, Vol 20 No 1 (2016): 44 - 50 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society PRODUCTION OF RARE EARTH ELEMENTS FROM MALAYSIAN MONAZITE BY SELECTIVE PRECIPITATION (Penghasilan Unsur Nadir Bumi daripada Mineral Monazit Menggunakan Pemendakan Terpilih) Che Nor Aniza Che Zainul Bahri*, Wadeeah M. Al- Areqi, Amran Ab. Majid, Mohd Izzat Fahmi Mohd Ruf Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia *Corresponding author: [email protected] Received: 2 November 2015; Accepted: 31 December 2015 Abstract Rare earth elements (REEs) are very valuable and have high demands for advanced technology nowadays. REEs can be classified to light rare earth elements (LREEs) and heavy rare earth elements (HREEs). Malaysian rare earth ore especially monazite, is rich with LREEs compared to HREEs. Therefore a study was carried out to extract the REE from Malaysian monazite. The objectives of this study are to determine the content of REEs in Malaysian monazite leach solution, as well as to produce high grade of REEs. Concentrated sulphuric acid was used in digestion process and the filtrate containing the REEs was determined using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS). Ammonia solution was used for REEs precipitation from monazite leach solution. The result indicated that REEs was successfully separated from monazite leach solution through selective precipitation using ammonia at pH 2.34 and the percentage of REEs that successfully separated was 70.03 – 81.85%. The percentage of REEs which successfully separated from final solution was 96.05 – 99.10%.
    [Show full text]
  • Rethinking Rare Earths Monazite
    TSX-V: MDL TSX-V: MDL OTCQX: MLLOF FSE: MRD Issued and Outstanding 44.6 M Rethinking Rare Earths Warrants 9.2 M Medallion is rethinking accepted rare-earth exploration and development strategies under the leadership of veteran geologist and rare-earth expert Dr. Bill Bird. With the accelerated need Options 4.0 M to relaunch the rare-earth exploration and development industry, most company strategies Fully Diluted 57.8 M focused on the portfolio of hard-rock occurrences that were discovered in the mid-20th Century, Market Capitalization approx. $8 M before China’s dominance. Most of these occurrences require complex metallurgy, huge investments for infrastructure and years to get to production. Medallion recognized in 2010 that there was no company or REE-project, with the possible The Medallion strategy, producing rare earths exception of Molycorp’s Mountain Pass Mine, that could solve the most critical REE-supply issues: from heavy-mineral-sands monazite, is a 1. a near-term shortage of rare-earth elements, and great idea. I have worked with mineral-sands 2. a lack of low-production-cost projects. producers for many years and, generally, Over the past two years, solving these issues has been the driving force of Medallion’s they have just discarded their monazite. The exploration and project-acquisition strategy. Rather than focusing on properties with producers are always keen to maximize value complicated, expensive and untested metallurgy, Medallion is pursuing monazite processing partnerships and purchase-agreements. Monazite is a rare-earth phosphate mineral that is from their resources, and Medallion is offering a major source of rare earths.
    [Show full text]
  • Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals
    metals Review Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals Adrián Carrillo García 1, Mohammad Latifi 1,2, Ahmadreza Amini 1 and Jamal Chaouki 1,* 1 Process Development Advanced Research Lab (PEARL), Chemical Engineering Department, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada; [email protected] (A.C.G.); mohammad.latifi@polymtl.ca (M.L.); [email protected] (A.A.) 2 NeoCtech Corp., Montreal, QC H3G 2N7, Canada * Correspondence: [email protected] Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Rare earth elements (REE), originally found in various low-grade deposits in the form of different minerals, are associated with gangues that have similar physicochemical properties. However, the production of REE is attractive due to their numerous applications in advanced materials and new technologies. The presence of the radioactive elements, thorium and uranium, in the REE deposits, is a production challenge. Their separation is crucial to gaining a product with minimum radioactivity in the downstream processes, and to mitigate the environmental and safety issues. In the present study, different techniques for separation of the radioactive elements from REE are reviewed, including leaching, precipitation, solvent extraction, and ion chromatography. In addition, the waste management of the separated radioactive elements is discussed with a particular conclusion that such a waste stream can be
    [Show full text]