Homotopy Type Theory: Univalent Foundations of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Homotopy Type Theory: Univalent Foundations of Mathematics Homotopy Type Theory Univalent Foundations of Mathematics arXiv:1308.0729v1 [math.LO] 3 Aug 2013 THE UNIVALENT FOUNDATIONS PROGRAM INSTITUTE FOR ADVANCED STUDY Homotopy Type Theory Univalent Foundations of Mathematics The Univalent Foundations Program Institute for Advanced Study “Homotopy Type Theory: Univalent Foundations of Mathematics” c 2013 The Univalent Foundations Program Book version: first-edition-257-g5561b73 MSC 2010 classification: 03-02, 55-02, 03B15 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/. This book is freely available at http://homotopytypetheory.org/book/. Acknowledgment Apart from the generous support from the Institute for Advanced Study, some contributors to the book were partially or fully supported by the following agencies and grants: • Association of Members of the Institute for Advanced Study: a grant to the Institute for Advanced Study • Agencija za raziskovalno dejavnost Republike Slovenije: P1–0294, N1–0011. • Air Force Office of Scientific Research: FA9550-11-1-0143, and FA9550-12-1-0370. This material is based in part upon work supported by the AFOSR under the above awards. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the AFOSR. • Engineering and Physical Sciences Research Council: EP/G034109/1, EP/G03298X/1. • European Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath). • National Science Foundation: DMS-1001191, DMS-1100938, CCF-1116703, and DMS-1128155. This material is based in part upon work supported by the National Science Foundation under the above awards. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. • The Simonyi Fund: a grant to the Institute for Advanced Study Preface IAS Special Year on Univalent Foundations A Special Year on Univalent Foundations of Mathematics was held in 2012-13 at the Institute for Advanced Study, School of Mathematics, organized by Steve Awodey, Thierry Coquand, and Vladimir Voevodsky. The following people were the official participants. Peter Aczel Eric Finster Alvaro Pelayo Benedikt Ahrens Daniel Grayson Andrew Polonsky Thorsten Altenkirch Hugo Herbelin Michael Shulman Steve Awodey Andre´ Joyal Matthieu Sozeau Bruno Barras Dan Licata Bas Spitters Andrej Bauer Peter Lumsdaine Benno van den Berg Yves Bertot Assia Mahboubi Vladimir Voevodsky Marc Bezem Per Martin-Lof¨ Michael Warren Thierry Coquand Sergey Melikhov Noam Zeilberger There were also the following students, whose participation was no less valuable. Carlo Angiuli Guillaume Brunerie Egbert Rijke Anthony Bordg Chris Kapulkin Kristina Sojakova In addition, there were the following short- and long-term visitors, including student visitors, whose contributions to the Special Year were also essential. Jeremy Avigad Richard Garner Nuo Li Cyril Cohen Georges Gonthier Zhaohui Luo Robert Constable Thomas Hales Michael Nahas Pierre-Louis Curien Robert Harper Erik Palmgren Peter Dybjer Martin Hofmann Emily Riehl Mart´ın Escardo´ Pieter Hofstra Dana Scott Kuen-Bang Hou Joachim Kock Philip Scott Nicola Gambino Nicolai Kraus Sergei Soloviev iv About this book We did not set out to write a book. The present work has its origins in our collective attempts to develop a new style of “informal type theory” that can be read and understood by a human be- ing, as a complement to a formal proof that can be checked by a machine. Univalent foundations is closely tied to the idea of a foundation of mathematics that can be implemented in a computer proof assistant. Although such a formalization is not part of this book, much of the material presented here was actually done first in the fully formalized setting inside a proof assistant, and only later “unformalized” to arrive at the presentation you find before you — a remarkable inversion of the usual state of affairs in formalized mathematics. Each of the above-named individuals contributed something to the Special Year — and so to this book — in the form of ideas, words, or deeds. The spirit of collaboration that prevailed throughout the year was truly extraordinary. Special thanks are due to the Institute for Advanced Study, without which this book would obviously never have come to be. It proved to be an ideal setting for the creation of this new branch of mathematics: stimulating, congenial, and supportive. May some trace of this unique atmosphere linger in the pages of this book, and in the future development of this new field of study. The Univalent Foundations Program Institute for Advanced Study Princeton, April 2013 Contents Introduction 1 I Foundations 15 1 Type theory 17 1.1 Type theory versus set theory . 17 1.2 Function types . 21 1.3 Universes and families . 24 1.4 Dependent function types (P-types) . 25 1.5 Product types . 26 1.6 Dependent pair types (S-types) . 30 1.7 Coproduct types . 33 1.8 The type of booleans . 34 1.9 The natural numbers . 36 1.10 Pattern matching and recursion . 39 1.11 Propositions as types . 41 1.12 Identity types . 47 Notes................................................ 53 Exercises . 55 2 Homotopy type theory 57 2.1 Types are higher groupoids . 60 2.2 Functions are functors . 68 2.3 Type families are fibrations . 69 2.4 Homotopies and equivalences . 73 2.5 The higher groupoid structure of type formers . 77 2.6 Cartesian product types . 78 2.7 S-types . 80 2.8 The unit type . 83 2.9 P-types and the function extensionality axiom . 83 2.10 Universes and the univalence axiom . 85 2.11 Identity type . 87 vi Contents 2.12 Coproducts . 89 2.13 Natural numbers . 91 2.14 Example: equality of structures . 93 2.15 Universal properties . 96 Notes................................................ 98 Exercises . 100 3 Sets and logic 103 3.1 Sets and n-types . 103 3.2 Propositions as types? . 105 3.3 Mere propositions . 107 3.4 Classical vs. intuitionistic logic . 109 3.5 Subsets and propositional resizing . 110 3.6 The logic of mere propositions . 112 3.7 Propositional truncation . 113 3.8 The axiom of choice . 114 3.9 The principle of unique choice . 116 3.10 When are propositions truncated? . 117 3.11 Contractibility . 119 Notes................................................ 122 Exercises . 123 4 Equivalences 125 4.1 Quasi-inverses . 126 4.2 Half adjoint equivalences . 128 4.3 Bi-invertible maps . 132 4.4 Contractible fibers . 133 4.5 On the definition of equivalences . 134 4.6 Surjections and embeddings . 134 4.7 Closure properties of equivalences . 135 4.8 The object classifier . 138 4.9 Univalence implies function extensionality . 140 Notes................................................ 142 Exercises . 142 5 Induction 145 5.1 Introduction to inductive types . 145 5.2 Uniqueness of inductive types . 148 5.3 W-types . 150 5.4 Inductive types are initial algebras . 153 5.5 Homotopy-inductive types . 156 5.6 The general syntax of inductive definitions . 160 5.7 Generalizations of inductive types . 164 5.8 Identity types and identity systems . 166 Contents vii Notes................................................ 170 Exercises . 171 6 Higher inductive types 173 6.1 Introduction . 173 6.2 Induction principles and dependent paths . 175 6.3 The interval . 180 6.4 Circles and spheres . 181 6.5 Suspensions . 183 6.6 Cell complexes . 187 6.7 Hubs and spokes . 188 6.8 Pushouts . 190 6.9 Truncations . 193 6.10 Quotients . 195 6.11 Algebra . ..
Recommended publications
  • Linear Type Theory for Asynchronous Session Types
    JFP 20 (1): 19–50, 2010. c Cambridge University Press 2009 19 ! doi:10.1017/S0956796809990268 First published online 8 December 2009 Linear type theory for asynchronous session types SIMON J. GAY Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK (e-mail: [email protected]) VASCO T. VASCONCELOS Departamento de Informatica,´ Faculdade de Ciencias,ˆ Universidade de Lisboa, 1749-016 Lisboa, Portugal (e-mail: [email protected]) Abstract Session types support a type-theoretic formulation of structured patterns of communication, so that the communication behaviour of agents in a distributed system can be verified by static typechecking. Applications include network protocols, business processes and operating system services. In this paper we define a multithreaded functional language with session types, which unifies, simplifies and extends previous work. There are four main contributions. First is an operational semantics with buffered channels, instead of the synchronous communication of previous work. Second, we prove that the session type of a channel gives an upper bound on the necessary size of the buffer. Third, session types are manipulated by means of the standard structures of a linear type theory, rather than by means of new forms of typing judgement. Fourth, a notion of subtyping, including the standard subtyping relation for session types (imported into the functional setting), and a novel form of subtyping between standard and linear function types, which allows the typechecker to handle linear types conveniently. Our new approach significantly simplifies session types in the functional setting, clarifies their essential features and provides a secure foundation for language developments such as polymorphism and object-orientation.
    [Show full text]
  • Sets in Homotopy Type Theory
    Predicative topos Sets in Homotopy type theory Bas Spitters Aarhus Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos About me I PhD thesis on constructive analysis I Connecting Bishop's pointwise mathematics w/topos theory (w/Coquand) I Formalization of effective real analysis in Coq O'Connor's PhD part EU ForMath project I Topos theory and quantum theory I Univalent foundations as a combination of the strands co-author of the book and the Coq library I guarded homotopy type theory: applications to CS Bas Spitters Aarhus Sets in Homotopy type theory Most of the presentation is based on the book and Sets in HoTT (with Rijke). CC-BY-SA Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Bas Spitters Aarhus Sets in Homotopy type theory Formalization of discrete mathematics: four color theorem, Feit Thompson, ... computational interpretation was crucial. Can this be extended to non-discrete types? Predicative topos Challenges pre-HoTT: Sets as Types no quotients (setoids), no unique choice (in Coq), ..
    [Show full text]
  • Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
    Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types.
    [Show full text]
  • Fomus: Foundations of Mathematics: Univalent Foundations and Set Theory - What Are Suitable Criteria for the Foundations of Mathematics?
    Zentrum für interdisziplinäre Forschung Center for Interdisciplinary Research UPDATED PROGRAMME Universität Bielefeld ZIF WORKSHOP FoMUS: Foundations of Mathematics: Univalent Foundations and Set Theory - What are Suitable Criteria for the Foundations of Mathematics? Convenors: Lukas Kühne (Bonn, GER) Deborah Kant (Berlin, GER) Deniz Sarikaya (Hamburg, GER) Balthasar Grabmayr (Berlin, GER) Mira Viehstädt (Hamburg, GER) 18 – 23 July 2016 IN COOPERATION WITH: MONDAY, JULY 18 1:00 - 2:00 pm Welcome addresses by Michael Röckner (ZiF Managing Director) Opening 2:00 - 3:30 pm Vladimir Voevodsky Multiple Concepts of Equality in the New Foundations of Mathematics 3:30 - 4:00 pm Tea / coffee break 4:00 - 5:30 pm Marc Bezem "Elements of Mathematics" in the Digital Age 5:30 - 7:00 pm Parallel Workshop Session A) Regula Krapf: Introduction to Forcing B) Ioanna Dimitriou: Formalising Set Theoretic Proofs with Isabelle/HOL in Isar 7:00 pm Light Dinner PAGE 2 TUESDAY, JULY 19 9:00 - 10:30 am Thorsten Altenkirch Naïve Type Theory 10:30 - 11:00 am Tea / coffee break 11:00 am - 12:30 pm Benedikt Ahrens Univalent Foundations and the Equivalence Principle 12:30 - 2.00 pm Lunch 2:00 - 3:30 pm Parallel Workshop Session A) Regula Krapf: Introduction to Forcing B) Ioanna Dimitriou: Formalising Set Theoretic Proofs with Isabelle/HOL in Isar 3:30 - 4:00 pm Tea / coffee break 4:00 - 5:30 pm Clemens Ballarin Structuring Mathematics in Higher-Order Logic 5:30 - 7:00 pm Parallel Workshop Session A) Paige North: Models of Type Theory B) Ulrik Buchholtz: Higher Inductive Types and Synthetic Homotopy Theory 7:00 pm Dinner WEDNESDAY, JULY 20 9:00 - 10:30 am Parallel Workshop Session A) Clemens Ballarin: Proof Assistants (Isabelle) I B) Alexander C.
    [Show full text]
  • On Modeling Homotopy Type Theory in Higher Toposes
    Review: model categories for type theory Left exact localizations Injective fibrations On modeling homotopy type theory in higher toposes Mike Shulman1 1(University of San Diego) Midwest homotopy type theory seminar Indiana University Bloomington March 9, 2019 Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Some caveats 1 Classical metatheory: ZFC with inaccessible cardinals. 2 Classical homotopy theory: simplicial sets. (It's not clear which cubical sets can even model the (1; 1)-topos of 1-groupoids.) 3 Will not mention \elementary (1; 1)-toposes" (though we can deduce partial results about them by Yoneda embedding). 4 Not the full \internal language hypothesis" that some \homotopy theory of type theories" is equivalent to the homotopy theory of some kind of (1; 1)-category. Only a unidirectional interpretation | in the useful direction! 5 We assume the initiality hypothesis: a \model of type theory" means a CwF.
    [Show full text]
  • Univalent Foundations
    Univalent Foundations Talk by Vladimir Voevodsky from Institute for Advanced Study in Princeton, NJ. September 21 , 2011 1 Introduction After Goedel's famous results there developed a "schism" in mathemat- ics when abstract mathematics and constructive mathematics became largely isolated from each other with the "abstract" steam growing into what we call "pure mathematics" and the "constructive stream" into what we call theory of computation and theory of programming lan- guages. Univalent Foundations is a new area of research which aims to help to reconnect these streams with a particular focus on the development of software for building rigorously verified constructive proofs and models using abstract mathematical concepts. This is of course a very long term project and we can not see today how its end points will look like. I will concentrate instead its recent history, current stage and some of the short term future plans. 2 Elemental, set-theoretic and higher level mathematics 1. Element-level mathematics works with elements of "fundamental" mathematical sets mostly numbers of different kinds. 2. Set-level mathematics works with structures on sets. 3. What we usually call "category-level" mathematics in fact works with structures on groupoids. It is easy to see that a category is a groupoid level analog of a partially ordered set. 4. Mathematics on "higher levels" can be seen as working with struc- tures on higher groupoids. 3 To reconnect abstract and constructive mathematics we need new foundations of mathematics. The ”official” foundations of mathematics based on Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) make reasoning about objects for which the natural notion of equivalence is more complex than the notion of isomorphism of sets with structures either very laborious or too informal to be reliable.
    [Show full text]
  • A General Framework for the Semantics of Type Theory
    A General Framework for the Semantics of Type Theory Taichi Uemura November 14, 2019 Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-L¨oftype theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory. 1 Introduction One of the key steps in the semantics of type theory and logic is to estab- lish a correspondence between theories and models. Every theory generates a model called its syntactic model, and every model has a theory called its internal language. Classical examples are: simply typed λ-calculi and cartesian closed categories (Lambek and Scott 1986); extensional Martin-L¨oftheories and locally cartesian closed categories (Seely 1984); first-order theories and hyperdoctrines (Seely 1983); higher-order theories and elementary toposes (Lambek and Scott 1986). Recently, homotopy type theory (The Univalent Foundations Program 2013) is expected to provide an internal language for what should be called \el- ementary (1; 1)-toposes". As a first step, Kapulkin and Szumio (2019) showed that there is an equivalence between dependent type theories with intensional identity types and finitely complete (1; 1)-categories. As there exist correspondences between theories and models for almost all arXiv:1904.04097v2 [math.CT] 13 Nov 2019 type theories and logics, it is natural to ask if one can define a general notion of a type theory or logic and establish correspondences between theories and models uniformly.
    [Show full text]
  • Master of Science in Advanced Mathematics and Mathematical Engineering
    Master of Science in Advanced Mathematics and Mathematical Engineering Title: Logic and proof assistants Author: Tomás Martínez Coronado Advisor: Enric Ventura Capell Department: Matemàtiques Academic year: 2015 - 2016 An introduction to Homotopy Type Theory Tom´asMart´ınezCoronado June 26, 2016 Chapter 1 Introduction We give a short introduction first to the philosophical motivation of Intuitionistic Type Theories such as the one presented in this text, and then we give some considerations about this text and the structure we have followed. Philosophy It is hard to overestimate the impact of the problem of Foundations of Mathematics in 20th century philos- ophy. For instance, arguably the most influential thinker in the last century, Ludwig Wittgenstein, began its philosophical career inspired by the works of Frege and Russell on the subject |although, to be fair, he quickly changed his mind and quit working about it. Mathematics have been seen, through History, as the paradigma of absolute knowledge: Locke, in his Essay concerning Human Understanding, had already stated that Mathematics and Theology (sic!) didn't suffer the epistemological problems of empirical sciences: they were, each one in its very own way, provable knowledge. But neither Mathematics nor Theology had a good time trying to explain its own inconsistencies in the second half of the 19th century, the latter due in particular to the works of Charles Darwin. The problem of the Foundations of Mathematics had been the elephant in the room for quite a long time: the necessity of relying on axioms and so-called \evidences" in order to state the invulnerability of the Mathematical system had already been criticized by William Frend in the late 18th century, and the incredible Mathematical works of the 19th century, the arrival of new geometries which were \as consistent as Euclidean geometry", and a bunch of well-known paradoxes derived of the misuse of the concept of infinity had shown the necessity of constructing a logical structure complete enough to sustain the entire Mathematical building.
    [Show full text]
  • Chapter 1 Elementary Logic
    Principles of Mathematics (Math 2450) A®Ë@ Õæ Aë áÖ ß @.X.@ 2017-2018 ÈðB@ É®Ë@ Chapter 1 Elementary Logic The study of logic is the study of the principles and methods used in distinguishing valid argu- ments from those that are not valid. The aim of this chapter is to help the student to understand the principles and methods used in each step of a proof. The starting point in logic is the term statement (or proposition) which is used in a technical sense. We introduce a minimal amount of mathematical logic which lies behind the concept of proof. In mathematics and computer science, as well as in many places in everyday life, we face the problem of determining whether something is true or not. Often the decision is easy. If we were to say that 2 + 3 = 4, most people would immediately say that the statement was false. If we were to say 2 + 2 = 4, then undoubtedly the response would be \of course" or \everybody knows that". However, many statements are not so clear. A statement such as \the sum of the first n odd integers is equal to n2" in addition to meeting with a good deal of consternation, might be greeted with a response of \Is that really true?" or \why?" This natural response lies behind one of the most important concepts of mathematics, that of proof. 1.1 Statements and their connectives When we prove theorems in mathematics, we are demonstrating the truth of certain statements. We therefore need to start our discussion of logic with a look at statements, and at how we recognize certain statements as true or false.
    [Show full text]
  • Types, Sets and Categories
    TYPES, SETS AND CATEGORIES John L. Bell This essay is an attempt to sketch the evolution of type theory from its begin- nings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, I have elected to offer detailed technical presentations of just a few important instances. 1 THE ORIGINS OF TYPE THEORY The roots of type theory lie in set theory, to be precise, in Bertrand Russell’s efforts to resolve the paradoxes besetting set theory at the end of the 19th century. In analyzing these paradoxes Russell had come to find the set, or class, concept itself philosophically perplexing, and the theory of types can be seen as the outcome of his struggle to resolve these perplexities. But at first he seems to have regarded type theory as little more than a faute de mieux. In June 1901 Russell learned of the set-theoretic paradox, known to Cantor by 1899, that issued from applying the latter’s theorem concerning power sets to the class V of all sets. According to that theorem the class of all subclasses of V would, impossibly, have to possess a cardinality exceeding that of V . This stimulated Russell to formulate the paradox that came to bear his name (although it was independently discovered by Zermelo at about the same time) concerning the class of all classes not containing themselves (or predicates not predicable of themselves).
    [Show full text]
  • Constructivity in Homotopy Type Theory
    Ludwig Maximilian University of Munich Munich Center for Mathematical Philosophy Constructivity in Homotopy Type Theory Author: Supervisors: Maximilian Doré Prof. Dr. Dr. Hannes Leitgeb Prof. Steve Awodey, PhD Munich, August 2019 Thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Logic and Philosophy of Science contents Contents 1 Introduction1 1.1 Outline................................ 3 1.2 Open Problems ........................... 4 2 Judgements and Propositions6 2.1 Judgements ............................. 7 2.2 Propositions............................. 9 2.2.1 Dependent types...................... 10 2.2.2 The logical constants in HoTT .............. 11 2.3 Natural Numbers.......................... 13 2.4 Propositional Equality....................... 14 2.5 Equality, Revisited ......................... 17 2.6 Mere Propositions and Propositional Truncation . 18 2.7 Universes and Univalence..................... 19 3 Constructive Logic 22 3.1 Brouwer and the Advent of Intuitionism ............ 22 3.2 Heyting and Kolmogorov, and the Formalization of Intuitionism 23 3.3 The Lambda Calculus and Propositions-as-types . 26 3.4 Bishop’s Constructive Mathematics................ 27 4 Computational Content 29 4.1 BHK in Homotopy Type Theory ................. 30 4.2 Martin-Löf’s Meaning Explanations ............... 31 4.2.1 The meaning of the judgments.............. 32 4.2.2 The theory of expressions................. 34 4.2.3 Canonical forms ...................... 35 4.2.4 The validity of the types.................. 37 4.3 Breaking Canonicity and Propositional Canonicity . 38 4.3.1 Breaking canonicity .................... 39 4.3.2 Propositional canonicity.................. 40 4.4 Proof-theoretic Semantics and the Meaning Explanations . 40 5 Constructive Identity 44 5.1 Identity in Martin-Löf’s Meaning Explanations......... 45 ii contents 5.1.1 Intensional type theory and the meaning explanations 46 5.1.2 Extensional type theory and the meaning explanations 47 5.2 Homotopical Interpretation of Identity ............
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]