Non-Catalytic Steam Hydrolysis of Fats and Oils by Richard Charles

Total Page:16

File Type:pdf, Size:1020Kb

Non-Catalytic Steam Hydrolysis of Fats and Oils by Richard Charles Non-catalytic steam hydrolysis of fats and oils by Richard Charles Archuleta A thesis submitted in partial fulfillment of the requirement's for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by Richard Charles Archuleta (1991) Abstract: The hydrolysis of fats or oils with water produces fatty acids and glycerol. Currently, the countercurrent, continuous, high pressure, high temperature, liquid phase Colgate-Emery process, which uses a catalyst to promote the reaction, is the state-of-the-art method of fat hydrolysis. Non-catalytic steam hydrolysis is a possible alternative. Significant degrees of hydrolysis may be achieved by continuously sparging superheated steam through high temperature fat at atmospheric pressure. A "bench-scale" hydrolyzer was designed and constructed to investigate the feasibility of steam hydrolysis and was tested with soybean oil and beef tallow. Each of the five stages in the 316 Stainless Steel, 1.77 inch inside diameter, 18-3/4 feet high hydrolyzer included a riser, a downcomer, and a steam dispersion plate similar to a distillation column. Investigations of the degree of hydrolysis were conducted at various temperatures and fat/steam feed ratios. The compositions of the overhead and bottoms products as well as stage liquid samples were analyzed. Soybean oil was not a good feed source because its highly unsaturated fatty acids polymerized at high temperatures. The degrees of hydrolysis achieved using tallow were 15% at 280°C and 35% at 300°C at a tallow-to-steam feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300°C. Decomposition of glycerol was strongly evident at 325°C but not at lower temperatures. Over 95% fatty acids were present in the readily separated organic portion of the overhead product. NON-CATALYTIC STEAM HYDROLYSIS OF FATS AND OILS by Richard Charles Archuleta A thesis submitted in partial fulfillment of the requirement's for the degree of Master of Science in Chemical Engineering MONTANA STATE UNIVERSITY Bozeman, Montana June, 1991 i i APPROVAL of a thesis submitted by Richard Archuleta This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Date 3 Chafrpersdn, Graduate Committee Approved for the Major Department <— c tT /f ____________ — Date Head, Maj or Department Approved for the College of Graduate Studies D & te Graduafte Dean iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his/her absence, by the Dean of Libraries when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission. Signature Date ACKNOWLEDGEMENTS I would like to thank those who contributed to my efforts in completion of my research. My thanks to. Mr. Lyman Fellows, the Chemical Engineering technician who helped significantly in building and repairing the hydrolyzer. To Dr. Max Deibert, who impressed upon me the importance of maturity in conducting research. I would also like to thank Max for the guidance given to me, and the support I needed when things were not going as planned. To Rajesh Mirpuri, my graduate studies friend who made life easier when research Was not. My thanks to the rest of the Chemical Engineering Department for their continual support and persistence in educating my stressed mind. Finally, I would like to thank Rebekah Keene who helped me through this long process and gave me support when I most needed it. V TABLE OF CONTENTS Page 1. INTRODUCTION ............................................ I Industrial Uses for Fat and Oil Hydrolysis Products ............................................. I The Chemistry of Fat and Oil Hydrolysis ........... 2 2. CURRENT INDUSTRIAL HYDROLYSIS TECHNOLOGY ............. 5 The Colgate-Emery Process .......................... 5 Reaction Kinetics of Hydrolyzing FatS and Oils .... 6 3. THE FEASIBILITY OF STEAM HYDROLYSIS .................. 8 Steam Hydrolysis of Fats and O i l s ................. 8 Previous Experimental Results on Steam Hydrolysis . 10 Research Objectives.................................. 11 4. THE BENCH SCALE HYDROLYZER ............................ 12 Background............................................12 The Steam Feed System ................. 13 The Fat/Oil Feed System ............................ 19 The Hydrolyzer...................................... 2 3 The Bottoms Product Collection System ............. 28 The Overhead Product Collection System ............ 30 Temperature Monitoring Thermocouples .............. 33 Temperature Control ................................. 33 5. OPERATING THE HYDROLYZE R ...... ........................ 3 5 Start-Up Procedure .................................. 35 Operating Procedure.................................. 37 Shut-Down Procedure ................................. 38 6. CHEMICAL ANALYSIS OF HYDROLYZER FEEDS AND PRODUCTS ... 40 Product An a l y s i s ................................ 40 Degree of Hydrolysis......... 40 Acid Value Procedure................................4 2 Saponification Value Procedure............ 43 7. HYDROLYZER MATERIALS INVESTIGATION ................. ... 4 5 v i TABLE OF COMTENTS-Continued Page 8. DETERMINATION OF OPERATION PARAMETERS FOR TESTING .... 47 9. RESULTS OF HYDROLYZER INVESTIGATION ................. 52 10. DISCUSSION............................................... 59 Steady State Analysis of the Hydrolyzer ........... 59 Temperature Effects on the Rate of Reaction ...... 60 Steam Feed Effects on the Rate of Reaction ....... 60 Overhead and Bottoms Product Analysis ............. 61 Stage Product Analysis ............................. 62 Decomposition of the Reaction Products ...... .... 62 Commercial Feasibility of Steam Hydrolysis ....... 63 11. SUMMARY AND CONCLUSIONS................................ 64 12. RECOMMENDATIONS FOR FUTURE RESEARCH ................ .. 66 REFERENCES CITED ............................................ 68 v i i LIST OF TABLES Ie Page 1. Thermocouple Numbering on the Selector Switch ... 34 2. Corrosion Rates of Various Metal Alloys ......... 46 3. Investigated Flow Tests for the Hydrolyzer ..... 51 4. Overall Degree of Hydrolysis for Run I Measured During Reactor Operation Using Equation I ...... 52 5. Overall Degree of Hydrolysis for Run I from the Analysis of Collected Reactor Samples Using Equation 2 .......................................... 53 6. Overall Degree of Hydrolysis for Run 2 Measured During Reactor Operation Using Equation I ........ 54 7. Overall Degree of Hydrolysis for Run 2 from the Analysis of Collected Reactor Samples Using Equation 2 ........................................ 54 8. Overall Degree of Hydrolysis for Run 4 Measured During Reactor Operation Using Equation I ....... 55 9. Overall Degree of Hydrolysis for Run 4 from the Analysis of Collected Reactor Samples Using Equation 2 ......... 55 10. Overall Degree of Hydrolysis for Run 5 Measured During Reactor Operation Using Equation I . 56 11. Overall Degree of Hydrolysis for Run 5 from the Analysis of Collected Reactor Samples Using Equation 2 ........................................ 56 12. Residence Time of the Tallow and Steam in the Reactor ............................................ 57 13. Degree of Hydrolysis for Stages One Through Four 58 v i i i LIST OF FIGURES Figure Page 1. The Bench Scale Hydrolyzer ............... ......... 14 2. The Steam Feed System .............................. 15 3. Needle Valve Calibration of Steam Feed ..... ...... 18 4. The Fat/Oil Feed System ............................ 2 0 5. Feed Pump Calibration for Tallow F e e d ............ 22 6. Hydrolyzer Stage Design................. * . ......... 25 7. Hydrolyzer Stage Disperser Plate .............. 26 8. Bottoms Product Collection System ................. 29 9. Overhead Product Collection System ................ 31 10. Hydrolyzer Operation Range for Nitrogen/Water Feed 49 i x ABSTRACT The hydrolysis of fats or oils with water produces fatty acids and glycerol. Currently, the countercurrent, continuous, high pressure, high temperature, liquid phase Colgate-Emery process, which uses a catalyst to promote the reaction, is the state-of-the-art method of fat hydrolysis. Non-catalytic steam hydrolysis is a possible alternative. Significant degrees of hydrolysis may be achieved by continuously sparging superheated steam through high temperature fat at atmospheric pressure. A "bench-scale" hydfolyzer was designed and constructed to investigate the feasibility of steam hydrolysis and was tested with soybean oil and beef tallow. Each of the five stages in the 316 Stainless Steel, 1.77 inch inside diameter, 18-3/4 feet high hydrolyzer included a riser, a downcomer, and a steam dispersion plate similar to a distillation column. Investigations of the degree of hydrolysis were conducted at various temperatures and fat/steam feed ratios. The compositions
Recommended publications
  • Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil Via a Microwave Reactor Using a Homogeneous Alkaline Catalyst †
    energies Article Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst † Ming-Chien Hsiao 1,2, Peir-Horng Liao 1, Nguyen Vu Lan 3 and Shuhn-Shyurng Hou 2,4,* 1 Department of Environmental Engineering, Kun Shan University, Tainan 71070, Taiwan; [email protected] (M.-C.H.); [email protected] (P.-H.L.) 2 Green Energy Technology Research Center, Kun Shan University, Tainan 71070, Taiwan 3 Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 70000, Vietnam; [email protected] 4 Department of Mechanical Engineering, Kun Shan University, Tainan 71070, Taiwan * Correspondence: [email protected]; Tel.: +886-6-205-0496 † This article is an extended version of our paper presented in 2019 IEEE International Conference on Applied System Innovation, 11–15 April 2019, Fukuoka, Japan. Abstract: In this study, low quality oils (waste cooking oils) with high acid value (4.81 mg KOH/g) were utilized as the feedstocks for a transesterification reaction enhanced by additional microwave power and the use of an NaOH catalyst. The kinetics of the transesterification reaction under different reaction times and temperatures was studied. It was found that in the microwave-assisted transesterification reaction, the optimum conditions under a microwave power of 600 W were as follows: an NaOH catalyst of 0.8 wt %, a 12:1 molar ratio of methanol to oil, a reaction time of 2 min, and a reaction temperature of 65 ◦C. The conversion of waste cooking oil into biodiesel reached 98.2% after this short reaction time.
    [Show full text]
  • Characteristics, Composition and Oxidative Stability of Lannea Microcarpa Seed and Seed Oil
    Molecules 2014, 19, 2684-2693; doi:10.3390/molecules19022684 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil Patrice Bazongo 1, Imaël Henri Nestor Bassolé 1,*, Søren Nielsen 2, Adama Hilou 3, Mamoudou Hama Dicko 1 and Vijai K. S. Shukla 2 1 Laboratoire de Biochimie Alimentaire, Enzymologie, Biotechnologie Industrielle et Bioinformatique (Laboratoire BAEBIB), Department of Biochemistry and Microbiology, Université de Ouagadougou, Ouagadougou 03 03 BP 7021, Burkina Faso; E-Mails: [email protected] (P.B.); [email protected] (M.H.D.) 2 International Food Science Centre (IFSC A/S), Sønderskovvej, Lystrup 7 DK-8520, Denmark; E-Mails: [email protected] (S.N.); [email protected] (V.K.S.S.) 3 Laboratoire de Biochimie et Chimie Appliquées (LABIOCA), UFR/SVT, Université de Ouagadougou, Ouagadougou 09 09 BP 848, Burkina Faso; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +226-7812-5004. Received: 13 November 2013; in revised form: 6 December 2013 / Accepted: 9 December 2013 / Published: 24 February 2014 Abstract: The proximate composition of seeds and main physicochemical properties and thermal stability of oil extracted from Lannea microcarpa seeds were evaluated. The percentage composition of the seeds was: ash (3.11%), crude oil (64.90%), protein (21.14%), total carbohydrate (10.85%) and moisture (3.24%). Physicochemical properties of the oil were: refractive index, 1.473; melting point, 22.60°C; saponification value, 194.23 mg of KOH/g of oil; iodine value, 61.33 g of I2/100 g of oil; acid value, 1.21 mg of KOH/g of oil; peroxide value, 1.48 meq of O2/kg of oil and oxidative stability index, 43.20 h.
    [Show full text]
  • Influence of Animal Type and Pedigrees on Physicochemical Properties of Fat Extracted from Meats
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 7, JULY 2014 ISSN 2277-8616 Influence Of Animal Type And Pedigrees On Physicochemical Properties Of Fat Extracted From Meats Khadir E. Khadir, Omer M. Izzeldin, Gaafar A. Nugdallah, Mohammed Abdalbasit A. Gasmalla, Azhari A. Mohammed Nour, Amir M. M. Bushara ABSTRACT: In this study used five pedigrees from animals, actually two kind from each pedigree or genus (Kabashi and Hamari from Sheep, Baggara and Nilotic from Beef, Anafi and Hawari fom Camels, Ross and Hubbard from Chicken, Synodoutis. (Garqur or Galabeya.) and Bagrus. (Bayad or Kabarus.) from Fish), where taken comprehend samples from animals meat, then extracted the fat from it and analyzed the physiochemical of fats. The result showed that the physical characteristics values for animal fats was a significant difference (P≤ 0.05) between most samples, when melting point (Co) was determinated the higher value of melting point (50.20) recorded by Gargur and the lower value recorded by Bagara (34 C⁰ ), in density(g/Cm3) the higher value of density (1.421) recorded by Kabashi sheep and the lower value recorded by Ross chicken (0.960), in the refractive index (o) the higher value of it recorded by bayad fish (1.465) but the lower value recorded by Baggara beef (1.453), in the viscosity (CPs) the higher value recorded by Baggara beef (28.4), lower value recorded by Anafi camel (23.6), in fats colour (0) analysis Anafi camel recorded higher value in blue colour (0.200) and lower value was zerro (0.00) recorded by Ross chicken, in yellow colour nilotic beef was recorded higher value (50.5), lower value recorded by Ross chicken and Hummary sheep (20.7), but in red colour Garqur fish recorded higher value (8.6) and nilotic beef recorded lower value (1.4).
    [Show full text]
  • Rice Bran Oil It’S Smoking-Hot and All Good
    Comparative Test Rice Bran Oil It’s smoking-hot and all good Rice bran oil is an excellent source of oryzanol, a natural and powerful antioxidant. Besides, it meets many of the criteria that define healthy edible oil for us, covering smoking point (a high smoking point means the oil holds on to its nutritional content at higher temperatures), good monounsaturated and polyunsaturated fats (as against bad saturated fats), HDL (good) cholesterol, and so on. At the same time, health claims by edible oil brands are a dime a dozen and can leave the consumer confused about the best/better buy. So, are all rice bran oils equally suitable for your consumption? Do they all meet the basic requirements? What do we know about their ‘fatty acid profile’? Do we know that the iodine value in your rice bran oil is a measure of the unsaturated fats therein? Is there a way to find out if there are other oils or fats in your edible oil? How many of us know that the lower the acid value, the better the quality? This report is a firsthand study of nine brands of rice bran oil available with various retailers in India. A Consumer Voice Report 8 • Rice Bran Oil e tested the nine popular brands edible purposes. All brands except Patanjali were in on a range of quality, safety high-density polypacks of one litre capacity; Patanjali and acceptability parameters. was packed in plastic bottle. All mentioned the These included oryzanol, fatty nutritional values of the oil on the packaging. acid composition (saturated Wand unsaturated fatty acids), unsaponifiable matter, The samples were tested as per specification saponification and iodine values, acid and peroxide laid out by FSS Regulations, 2011, and relevant values, refractive index and flash point.
    [Show full text]
  • Determination of Iodine Value and Acid Value of Red Fruit Oil by Infrared Spectroscopy and Multivariate Calibration 1,2Triyasmono, L., 1Riyanto, S
    International Food Research Journal 20(6): 3259-3263 (2013) Journal homepage: http://www.ifrj.upm.edu.my Determination of iodine value and acid value of red fruit oil by infrared spectroscopy and multivariate calibration 1,2Triyasmono, L., 1Riyanto, S. and 1,3,4*Rohman, A. 1Faculty of Pharmacy, Gadjah Mada University, Yogyakarta 55281 Indonesia 2Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjar Baru 70713, Indonesia 3Centre of Research for Fiqh Science and Technology (CFirst), Universiti Teknologi Malaysia, Skudai 80200, Malaysia 4Research Center of Halal products, Gadjah Mada University, Yogyakarta, 55281, Indonesia Article history Abstract Received: 23 January 2013 A rapid method for the quantitative determination of iodine value (IV) and acid value (AV) of Received in revised form: red fruit oil (RFO) using FTIR spectroscopy and multivariate calibration of partial least square 21 June 2013 (PLS) is described. A calibration standard was developed using a series of RFO subjected to Accepted: 25 June 2013 thermal treatment at without heating (ambient temperature); 100oC, 150oC, 180oC, 200oC and 300oC, respectively. Based on optimization processes, the FTIR spectra of RFO samples were Keywords measured in the frequency region of 1080 - 1114 cm-1 for IV determination, and at frequency -1 FTIR spectroscopy region of 1731 - 1762 cm for AV determination. PLS calibration model was developed for the Iodine value prediction of IV and AV in RFO samples. The relationship between actual values of IV and AV as Acid value determined using AOCS method and FTIR predicted value as determined with PLS calibration Red fruit oil model show a close relationship with coefficient of determination (R2) of 0.998 for IV and Partial least square 0.998 for AV.
    [Show full text]
  • Chemical and Quality Evaluation of Some Alternative Lipid Sources for Aqua Feed Production Babalola T.O.O1* and D.F
    AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2011.2.6.935.943 © 2011, ScienceHuβ, http://www.scihub.org/ABJNA Chemical and quality evaluation of some alternative lipid sources for aqua feed production Babalola T.O.O1* and D.F. Apata 2 1National Institute for Freshwater Fisheries Research, New-Bussa, Nigeria 2Department of Animal Production, University of Ilorin, Ilorin, Nigeria * Author for correspondence: E-mail:[email protected] ABTSTRACT A study was carried out on fish oil, two terrestrial animal fats (lard and chicken fat) and eight vegetable oils (palm kernel, sheabutter, soybean, palm, coconut, sunflower, groundnut and melon seed oils) to investigate their chemical and quality characteristics and the possibility of using them as alternative lipids in aquafeed. The results showed that the peroxide value of lard was significantly (P < 0.05) higher than values obtained in the other vegetable oils and animal fat sources; acid values of the oils ranged from 1.38 in coconut oil to 14.04 NaOH/g in palm kernel oil and were significantly different; the iodine value of sunflower oil, fish oil and soybean oil were comparable and higher, while a lower value that was not significantly different were observed in groundnut oil, coconut oil and melon seed oil. Thiobarbituric acid reactive substances of the oils were significantly different and showed low concentrations. The main fatty acids predominating in terms of relative abundance in the vegetable oils and animal fats examined are Lauric, palmitic, oleic and linoleic acids. Substantial levels of n-3 PUFA was observed in soybean oil and groundnut oil.
    [Show full text]
  • Fatty Acid - Fatty Acid Is a Carboxylic Acid with a Long Aliphatic Chain, Which Is Either Saturated Or Unsaturated
    . UNIT- III: Fats and Oils Fatty acid - Fatty acid is a carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Saturated fatty acids. Unsaturated Fatty Acids Page | 1 . Chemistry of Fatty acids - The carbon chains of saturated fatty acids form a zigzag pattern when extended, as at low temperatures. At higher temperatures, some bonds rotate, causing chain shortening, - A type of geometric isomerism occurs in unsaturated fatty acids, depending on the orientation of atoms or groups around the axes of double bonds, which do not allow rotation. If the acyl chains are on the same side of the bond, it is cis-, as in oleic acid; if on opposite sides, it is trans-, as in elaidic acid, the trans isomer of oleic acid. - Naturally occurring unsaturated long-chain fatty acids are nearly all of the cis configuration, the molecules being “bent” 120 degrees at the double bond. Thus, oleic acid has an L shape, whereas elaidic acid remains “straight.” - Increase in the number of cis double bonds in a fatty acid leads to a variety of possible like arachidonic acid, with four cis double bonds, has “kinks” or a U shape. - Trans double bonds alter these spatial relationships. - The melting points of even-numbered-carbon fatty acids increase with chain length and decrease according to unsaturation. Trans and Cis- Fatty acid Saturated Fatty acid Unsaturated Fatty acid Note By: ► Naturally, occurring unsaturated vegetable oils have almost all Cis bonds, but using oil for frying causes some of the Cis bonds to convert to Trans bonds.
    [Show full text]
  • Oils and Fats Glossary
    OILS AND FATS GLOSSARY ACIDITY: Free fatty acids have, as the name implies, a weak acidic nature. There will be a naturally occurring level of these present in each oil and levels can be further increased by hydrolysis (water breakdown) of triglyceride. The level of acidity may be expressed in several ways (please refer to Acid Value and Free Fatty Acids). ACID OIL: Acid oil is a general term for a by-product obtained from the alkali refining of oils and fats. During alkali refining the free fatty acids are neutralised with alkali and this soapstock containing some emulsified neutral oil is separated. Acidification of the soapstock gives acid oil. Main components of acids oils are fatty acids, neutral oil and moisture. Acid oil requires further refining/purification before it is suitable for use in laundry soaps and washing powders. ACID PRE-TREATMENT: The crude oil or fat is pre-treated with phosphoric acid or citric acid to remove impurities such as gums, mucilaginous materials and phosphatides present. Also referred to as "degumming", it is essential since it removes impurities which would otherwise give a highly coloured product. ACIDULATE SOAPSTOCK (ACID OIL): Soapstock, which contains mainly soaps and entrained neutral oil, is treated with sulphuric acid and heated to decompose the soaps. This produces a layer of oil of high free fatty acid content (acid oil) and an aqueous phase which is separated and treated prior to discharge as an effluent. The acid oils can be used in animal feeds as they possess high calorific values. ACID VALUE: This is defined as the number of milligrams of potassium hydroxide required to neutralise the free fatty acids in one gram of fat.
    [Show full text]
  • Organic Chemistry IV 11-9-20
    Session-2018-19 Organic Chemistry IV Presented by: Dr. Neeraj Sharma Assistant Professor Properties of Lipids • Lipids may be either liquids or non-crystalline solids at room temperature. • Pure fats and oils are colorless, odorless, and tasteless. • They are energy-rich organic molecules. • Insoluble in water. • Soluble in organic solvents like alcohol, chloroform, acetone, benzene, etc. • No ionic charges. BCHC 0012 Organic Chemistry IV 2 Saponification number • The saponification number is the number of milligrams of potassium hydroxide required to neutralize the fatty acids resulting from the complete hydrolysis of 1g of fat. • Saponification value of fat/oil. • Saponification is the process by which the fatty aids in the triglycerides or fat are hyrdrolysed by an alkali to give glycerol and potassium salts of fatty acids. • A known quantity of fat or oil is refluxed with an excess amount of alcoholic KOH. BCHC 0012 Organic Chemistry IV 3 Saponification number • How do I find saponification number? • Saponification value is a measure of the content of ester linkages. • It is determined by back titration of potassium oxide in the presence of phenolphthalein indicator with 0.5 N sulfuric or hydrochloric acid. • First a sample is mixed with 25 ml of alcoholic solution of KOH and left for 1 h in steam bath to react BCHC 0012 Organic Chemistry IV 4 Saponification number • What is high saponification value? • The larger the saponification number, the better the soap making ability of the oil. • Higher saponification value for triglyceride indicates higher medium chain fatty acids. • Saponification value for unrefined vegetable oils may also be affected by the compounds in the nonsaponifiable fraction.
    [Show full text]
  • Medium-Chain Triglycerides Delete the Following: ▲ Glycerides, Mixed Decanoyl and Octanoyl; • LIMIT of COPPER Caprylic and Capric Triglycerides
    Interim Revision Announcement Triglycerides 1 Official March 1, 2019 Medium-Chain Triglycerides Delete the following: ▲ Glycerides, mixed decanoyl and octanoyl; · LIMIT OF COPPER Caprylic and capric triglycerides. [NOTE—Use this test for Medium-Chain Triglycerides intended for use in parenteral nutrition.] DEFINITION Sample stock solution and Sample solution: Proceed as Medium-Chain Triglycerides consist of a mixture of directed in the test for Limit of Chromium. triglycerides of saturated fatty acids, mainly of caprylic Copper standard stock solution: 0.393 mg/mL of cupric acid (C8H16O2) and capric acid (C10H20O2). The fatty acids sulfate in water are derived from the oil extracted from the hard, dried Copper standard solution: Immediately before use, fraction of the endosperm of Cocos nucifera L. or from the prepare 0.393 µg/mL of cupric sulfate in water, from the dried endosperm of Elaeis guineensis Jacq. They contain Copper standard stock solution. This solution contains the NLT 95% of saturated fatty acids with 8 and 10 carbon equivalent of 0.1 µg/mL of copper. atoms. Standard solutions: Into each of three 10-mL volumetric IDENTIFICATION flasks, transfer 4.0 mL of Sample stock solution. Add 1.0, · A. Meet the requirements in Specific Tests for Fats and 2.0, and 4.0 mL, respectively, of Copper standard solution, Fixed Oils á401ñ, Procedures, Saponification Value and dilute with diisobutyl ketone to volume. These · B. Meet the requirements in Specific Tests for Fats and solutions contain 0.01, 0.02, and 0.04 µg/mL of copper. Fixed Oils
    [Show full text]
  • Pharmaceutical Organic Chemistry-II Code: BP301T UNIT-III
    Semester: B. Pharm third semester Subject: Pharmaceutical Organic Chemistry-II Code: BP301T UNIT-III Prepared by: Dr Jnyanaranjan Panda Teacher’s registration No: T080326707 Roland Institute of Pharmaceutical Sciences 1 Fats and Oils Fats and oils are composed of molecules known as triglycerides, which are esters composed of three fatty acid units linked to glycerol [1, 2]. Fats and oils are called triglycerides because they are esters composed of three fatty acid units joined to glycerol, a trihydroxy alcohol: If all three OH groups on the glycerol molecule are esterified with the same fatty acid, the resulting ester is called a simple triglyceride. Although simple triglycerides have been synthesized in the laboratory, they rarely occur in nature. Instead, a typical triglyceride obtained from naturally occurring fats and oils contains two or three different fatty acid components and is thus termed a mixed triglyceride. A triglyceride is called a fat if it is a solid at 25°C; it is called oil if it is a liquid at that temperature. These differences in melting points reflect differences in the degree of unsaturation and number of carbon atoms in the constituent fatty acids. Triglycerides obtained from animal sources are usually solids, while those of plant origin are generally oils. Therefore, we commonly speak of animal fats and vegetable oils. 2 Saturated fats can stack themselves in a closely packed arrangement, so they can solidify easily and are typically solid at room temperature. For example, animal fats tallow and lard are high in saturated fatty acid content and are solids. Olive and linseed oils on the other hand are unsaturated and liquid.
    [Show full text]
  • Organic Chemistry IV Your Text Here
    Session-2018-19 Organic Chemistry IV Your text here Presented by: Dr. Neeraj Sharma Assistant Professor Properties of Lipids • Lipids may be either liquids or non-crystalline solids at room temperature. • Pure fats and oils are colorless, odorless, and tasteless. • They are energy-rich organic molecules. • Insoluble in water. • Soluble in organic solvents like alcohol, chloroform, acetone, benzene, etc. • No ionic charges. BCHC 0012 Organic Chemistry IV 2 Saponification number • The saponification number is the number of milligrams of potassium hydroxide required to neutralize the fatty acids resulting from the complete hydrolysis of 1g of fat. • Saponification value of fat/oil. • Saponification is the process by which the fatty aids in the triglycerides or fat are hyrdrolysed by an alkali to give glycerol and potassium salts of fatty acids. • A known quantity of fat or oil is refluxed with an excess amount of alcoholic KOH. BCHC 0012 Organic Chemistry IV 3 Saponification number • How do I find saponification number? • Saponification value is a measure of the content of ester linkages. • It is determined by back titration of potassium oxide in the presence of phenolphthalein indicator with 0.5 N sulfuric or hydrochloric acid. • First a sample is mixed with 25 ml of alcoholic solution of KOH and left for 1 h in steam bath to react BCHC 0012 Organic Chemistry IV 4 Saponification number • What is high saponification value? • The larger the saponification number, the better the soap making ability of the oil. • Higher saponification value for triglyceride indicates higher medium chain fatty acids. • Saponification value for unrefined vegetable oils may also be affected by the compounds in the nonsaponifiable fraction.
    [Show full text]