Naming Materials in the Magma/Igneous Rock System

Total Page:16

File Type:pdf, Size:1020Kb

Naming Materials in the Magma/Igneous Rock System EARTH SCIENCE REVIEWS ELSEVIER Earth-Science Reviews 37 (1994) 215-224 Naming materials in the magma/igneous rock system Eric A.K. Middlemost Department of Geology and Geophysics, Unit,ersity of Sydney, NSW 2006, Australia Received 22 June, 1993; revised and accepted 25 August, 1994 Abstract The main aim of igneous petrology is to develop a complete specification of the magma/igneous rock system. This paper is a sequel to an earlier essay (Middlemost, 1991) on the classification of igneous rocks and magmas. It explores the ways and means of developing a single, consistent method of naming all igneous materials. All modal classifications are fettered by problems arising from heteromorphism, extremes in grain size, and the presence of glass. Only chemical parameters can provide a reliable and straightforward method of classifying all the common igneous rocks and their magmas. This is undoubtedly true of glassy rocks and magmas. The potential of the TAS diagram in this new and enlarged role is evaluated, resulting in a modification of some boundaries recommended for the volcanic rocks. A new comprehensive chemical classification of the plutonic rocks is introduced. To keep it and the volcanic classification in tandem, several new terms are proposed. They include gabbroic diorite as a plutonic equivalent of basaltic andesite and peridotgabbro as a plutonic equivalent of picrobasalt. Peridotite is defined as the plutonic equivalent of picrite and by taking the idea of equivalence a step further, it is defined as a peridotgabbroic or gabbroic rock that contains more than 18% MgO and less than 2% total alkalis. The picrobasaltic and basaltic rocks that contained more than 18% MgO and more than 2% (Na20 + K20) are called alkalic picrites. Their plutonic equivalents are named alkalic peridotites. A benefit of this new chemical classification of plutonic rocks is that it enables one to avoid the awkward term ultramafic. A single classification that links magmas, plutonic and volcanic rocks should be appreciated by all geochemists and petrologists who amass, and manipulate, large geochemical databases but are unwilling, or unable, to carry out quantitative modal analyses. This classification also enables geoscientists to focus on magma -- the most important concept in igneous petrology. 1. Introduction nately, the lUGS Subcommission on the System- atics of Igneous Rocks has spent over 20 years The primary aim of igneous petrology is to considering the various problems of igneous rock provide a full specification of the magma/igneous nomenclature (Le Maitre et al., 1989). Their cogi- rock system that operates in and on the surface of tations and recommendations are a valuable re- the Earth. Research into how this intricate sys- source, but these data need to be evaluated and tem functions is presently unnecessarily impeded winnowed before they can provide a systematic by the absence of a single, consistent method of set of names for the common magmas and ig- naming the various magmas and rocks that trans- neous rocks. An important reason why the Sub- fer heat and materials within this system. Fortu- commission's recommendations appear to be 0012-8252/94/$29.00 © 1994 Elsevier Science B.V. All rights reserved SSDI 0012-8252(94)00052-2 216 E.A.K. Middlemost / Earth-Science Re~iews 37 (l 994) 215-224 cumbersome is that their deliberations were methods are refined in the future, the presence guided by nine principles (Le Maitre et al., 1989, of glass will always restrict the use of modal data pp. 2-4; Le Bas and Streckeisen, 1991). These in the classification of many volcanic rocks. Seri- principles not only set their agenda, they also ous problems also arise in determining the modes seem to have ossified some of their deliberations of coarse-grained rocks and rocks with granitic, and conclusions. The Subcommission affirmed poikilitic, banded and directive textures. Chayes that the igneous rocks include a variety of "ig- (1956, p. 1) observed that "the number of reliable neous-looking" materials produced by deuteric, modes obtained by measurements made on pol- metasomatic and even metamorphic processes ished slabs is almost vanishingly small." In mod- and they also proposed that the primary classifi- ern research into the origin and evolution of cation of igneous rocks should be based on their coarse-grained rocks, the trend appears to be mineral content or mode. If petrologists wish to away from quantitative petrographic modal analy- preserve the Subcommission's all-embracing defi- sis, because this process requires "tedious slab- nition of igneous rocks it would be appropriate to bing, messy staining, and mindless point-count- use the expression magmatic rocks to describe ing" (Clarke, 1992, p. 6). Contemporary research those rocks that solidify from a hot, molten, or papers in igneous petrology are much more likely partly molten, condition. This definition hinges to contain major element data than accurately on the inexact term hot. There is clearly a need determined modes. Perhaps in the future re- to assign a lower limit to the temperatures at- search practice will swing the other way as there tained by normal magmatic processes. The singu- is now a growing demand for accurately deter- lar natrocarbonatite lavas of Oldoinyo Lengai mined modes for the development of effective Volcano in Tanzania are reported to erupt at major and trace element models that simulate temperatures as low as 580°C (Dawson, 1989, p. dynamic magma systems. 269). Sulphur flows erupt at even lower tempera- Volcanic and plutonic modal classifications can tures and cryovolcanism, or ice volcanism, has never be identical because minerals such as leucite been described from some of the icy satellites of and pigeonite are characteristic of some volcanic Jupiter and Neptune. A temperature of 650°C rocks, but are unstable under plutonic (sensu would seem an apt lower limit for normal silicate stricto) conditions. The main reason some petrog- magmatic activity. raphers support the retention of the hypabyssal Many problems are encountered when carry- class of igneous rocks is that the textures and ing out petrographic modal analyses. They arise modes of these rocks often differ from those of because of extremes in grain size, complicated comagmatic volcanic or plutonic rocks. In present textures, presence of megacrysts, heteromor- day regional geology there is a tendency to down- phism and the unwillingness of many geoscien- grade the abundance of hypabyssal rocks. For tists to undertake quantitative modal analyses. In example, hypabyssal microgranite is frequently his statistical appraisal of petrographic modal labelled granite. Rittmann (1973, p. 72) examined analysis Chayes (1956) showed that it is not feasi- the impact of heteromorphism on the modal clas- ble to determine the modal composition of ig- sifications of igneous rocks by classifying various neous rocks of all grain sizes and textures. The pairs of igneous rocks that had similar chemical principal reason for introducing the TAS classifi- compositions but different mineral assemblages. cation was that petrographers were unable to He showed that each rock in these pairs may plot determine the modes of rocks with glassy, or in in a different field on the QAPF diagram. Het- some samples fine-grained, mesostases. At pre- eromorphism is found even among granitic rocks. sent some of the problems created by fine-grained Tuttle and Bowen (1958, pp. 127-129) showed materials can be solved by the application of that samples of these quintessentiaIly plutonic image analysis software to back-scattered elec- rocks may have similar chemical compositions, tron images, and the use of quantitative X-ray but dissimilar modal compositions. Heteromor- powder diffraction methods. Howsoever these phism of this type is usually observed in rocks E.A.K. Middlemost ~Earth-Science Reviews 37 (1994) 215-224 217 that have experienced different cooling histories. normative kalsilite. Many other common mafic If, for example, most of the sodium and potas- minerals contain one, or more, of the normative sium in a hypersolvus granite is distributed into minerals quartz, orthoclase, albite, anorthite, alkali feldspar, such a rock may have the modal leucite, nepheline and/or kalsilite. The amphi- composition of an alkali feldspar granite; but in a boles, particularly the calcic amphiboles, gener- subsolvus granite of the same composition most ally contain normative QAPF minerals. Edenite, of the sodium may join with calcium to form pargasite, magnesio-hastingsite, hastingsite and plagioclase, and most of the potassium may con- the various types of katophorites, all contain more centrate in biotite thus giving the rock a granodi- than 10% normative nepheline and some norma- oritic mode. The pair andesite/diorite is another tive plagioclase. The pure edenite component excellent example of heteromorphism. These contains 7.9% normative albite and 12.7% nor- rocks usually have similar chemical compositions, mative nepheline, whereas the pure ferro-edenite but frequently contain quite different mafic min- component contains 27.4% normative albite and erals. The high temperature, quickly cooled an- 12.6% normative quartz. It must be emphasised desites typically contain pyroxenes, whereas the that components such as these occur in normal plutonic diorites invariably contain amphibole mafic minerals. A typical augite analysis from and/or biotite. The diorites tend to contain Deer et al. (1992, p. 152, No. 8) contains 7.0% quartz, whereas the equivalent excess of silica is normative plagioclase, and a typical biotite analy- usually concealed in the mesostases of the an- sis (p. 285, No. 6) contains 35.3% normative desites. The modal classification of the abundant leucite, 5.9% normative kalsilite and 1.9% nor- mid-oceanic ridge basalts also poses problems mative nepheline. because they have what appear to be vitrophyric textures, but according to Natland (1991, p. 65) they often contain megacrysts that are out of 2. History of the TAS diagram equilibrium with their quickly cooled mesostases.
Recommended publications
  • CONTRIBUTION to PETROLOGY and K/Ar AMPHIBOLE DATA for PLUTONIC ROCKS of the HAGGIER MTS., SOCOTRA ISLAND, YEMEN
    Acta Geodyn. Geomater., Vol. 6, No. 4 (156), 441–451, 2009 CONTRIBUTION TO PETROLOGY AND K/Ar AMPHIBOLE DATA FOR PLUTONIC ROCKS OF THE HAGGIER MTS., SOCOTRA ISLAND, YEMEN 1) 2) .Ferry FEDIUK * and Kadosa BALOGH 1) Geohelp, Na Petřinách 1897, Praha 6, Czech Republic 2) Institute of Nuclear Research of the Hungarian Academy of Sciences *Corresponding author‘s e-mail: [email protected] (Received June 2009, accepted November 2009) ABSTRACT A morphologically distinct intrusive massif emerges from sedimentary Mesozoic/Tertiary cover in Eastern Socotra forming the high Haggier Mts. It is mostly composed of peralkaline and hypersolvus granite partly accompanied by gabbroic rocks. Amphibole, the sole mafic mineral of the granite, shows predominately the arfvedsonite composition, while riebeckite, for which Socotra is reported in most manuals of mineralogy as the “locus typicus”, occurs subordinately only. Either Paleozoic or Tertiary age has been assumed for this massif for a long time. In the last decade, however, K/Ar datings have been published clearly showing Precambrian (Neoproterozoic) age. The present authors confirm with somewhat modified results this statement by five new radiometric measurements of monomineral amphibole fractions yielding values of 687 to 741 Ma for granites and 762 Ma for gabbroic rocks. The massif represents an isolated segment of numerous late postorogenic Pan- African A-granite bodies piercing the Nubian-Arabian Shield and is explained as the result of partial melting of Pan-African calc-alkaline shield rocks in the closing stage of the orogeny. KEYWORDS: Yemen, Socotra, Arabian–Nubian Shield, K/Ar data, amphiboles, peralkaline granite, coronitic gabbronorite, Neoproterozoic 1.
    [Show full text]
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Unsupervised Classification of Intrusive Igneous Rock Thin Section Images Using Edge Detection and Colour Analysis Note: Published As S
    Unsupervised Classification of Intrusive Igneous Rock Thin Section Images using Edge Detection and Colour Analysis Note: Published as S. Joseph, H. Ujir and I. Hipiny, "Unsupervised classification of Intrusive igneous rock thin section images using edge detection and colour analysis," 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2017, pp. 530-534, doi: 10.1109/ICSIPA.2017.8120669. S. Joseph H. Ujir and I. Hipiny Faculty of Computer Science & Information Technology Jabatan Mineral dan Geosains (Sarawak), Universiti Malaysia Sarawak Kementerian Sumber Asli dan Alam Sekitar, Kota Samarahan, Sarawak, Malaysia Kuching, Sarawak, Malaysia {uhamimah & mhihipni}@unimas.my [email protected] Abstract—Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert It requires a human expert with substantial knowledge and to examine sampled thin section images under a microscope. In experience in combining multiple petrographic and microscopy this study, we propose a method that uses microscope automation, classification criteria, e.g., texture, colour, cleavage, twinning digital image acquisition, edge detection and colour analysis and tartan pattern, to perform the point counting. Due to this, (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional we argue that an unsupervised classification of the rock thin microscope. Each image is partitioned into a finite number of cells sections to replace the human operator is therefore necessary. that form a grid structure. Edge and colour profile of pixels inside This paper presents our unsupervised classification method each cell determine its classification. The individual cells then and the classification results using edge and colour as the determine the thin section image classification via a majority discriminating features.
    [Show full text]
  • Open-File Report 2005-1235
    Prepared in cooperation with the Idaho Geological Survey and the Montana Bureau of Mines and Geology Spatial databases for the geology of the Northern Rocky Mountains - Idaho, Montana, and Washington By Michael L. Zientek, Pamela Dunlap Derkey, Robert J. Miller, J. Douglas Causey, Arthur A. Bookstrom, Mary H. Carlson, Gregory N. Green, Thomas P. Frost, David E. Boleneus, Karl V. Evans, Bradley S. Van Gosen, Anna B. Wilson, Jeremy C. Larsen, Helen Z. Kayser, William N. Kelley, and Kenneth C. Assmus Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1235 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract .......................................................................................................................................................... 1 Introduction
    [Show full text]
  • Title of Thesis
    Additions and Modifications to the Igneous Rock Classification Scheme Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree in Geological Sciences At The Ohio State University By Matthew R. H. Dugan The Ohio State University 2010 Approved by Anne E. Carey, Advisor School of Earth Sciences T ABLE OF C ONTENTS Abstract………………………………………………………………………....3 Acknowledgements……………………………………………………….…….4 Introduction……………………………………………………………………..5 Discussion……………….………………………………………………………5 Application……………….……………………………………………………..10 References Cited….……….……………………………………………………18 2 Abstract Igneous rocks as they are currently defined are in a sloppy state. Vague wording is throughout the whole of the definition, and there is not even any clear consensus on what it should be defined as. In this paper, I redefine igneous rocks in such a way as to remove a great deal of imprecision, and I go through some of the logical implications of the refined definition. I do not seek to change the intent of the definition, and I do not believe that I have. The most interesting implication of this change is that water, as it occurs on Earth, is an igneous rock, and I construct a basic classification scheme for it. 3 Acknowledgements I wish to thank Dr. Anne Carey for her intense support of the writing of this thesis, her wonderful edits and her dedication to keeping me on this. I also wish to acknowledge my lab group, also lead by Dr. Steve Goldsmith, for their wonderful feedback and encouragement. Dr. Fritz Graf, Professor and chair of the Department of Greek and Latin, was a great asset to me and he deserves recognition for his help in coining neologisms.
    [Show full text]
  • Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 349381, 8 pages http://dx.doi.org/10.1155/2013/349381 Research Article Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan Mohammad Arif,1 S. Wajid Hanif Bukhari,2 Noor Muhammad,3 and Muhammad Sajid1 1 Department of Geology, University of Peshawar, Peshawar 25120, Pakistan 2 Centre of Excellence in Mineralogy, University of Balochistan, Quetta 87300, Pakistan 3 Department of Mining Engineering, NWFP University of Engineering and Technology, Peshawar 25120, Pakistan Correspondence should be addressed to Mohammad Arif; arif [email protected] Received 17 April 2013; Accepted 11 May 2013 Academic Editors: M. Gregoire,N.Hirao,J.A.Morales,L.Tosi,andJ.Yvon´ Copyright © 2013 Mohammad Arif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
    [Show full text]
  • Package 'NORRRM'
    Package ‘NORRRM’ March 11, 2015 Type Package Title Geochemical Toolkit for R Version 1.0.0 Date 2015-01-29 Author Renee Gonzalez Guzman Maintainer Renee Gonzalez Guzman <[email protected]> Imports ggplot2,SDMTools Description CIPW Norm (acronym from the surnames of the authors: Cross, Iddings, Pirrson and Washington) is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks from its geochemical composition. NORRRM (acronym from noRm, R lan- guage and Renee) is the highly consistent program to calculate the CIPW Norm. Depends R (>= 3.1.1) License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2015-03-11 21:49:49 R topics documented: NORRRM-package . .2 AdjRock . .3 Andes . .4 AtomWeight . .5 CIPW............................................6 CIPW.trace . .7 MinWeight . .9 OxiWeight . 10 TASplot . 11 TestTAS . 12 Index 13 1 2 NORRRM-package NORRRM-package Geochemical Toolkit for R Description According to the IUGS (International Union of Geological Science), Subcommission on the Sys- tematics of Igneous Rocks, the primary classification of igneous rocks must be based according to their modal mineral composition, expressed in volume percent. Nevertheless, where these data are not available or can not be determined owing to fine-grained mineral assemblage, glassy content or changes in the original mineralogy, then other criteria based on chemical bulk composition may be used. Computed from the chemical composition, the normative mineralogy is an alternative approach for mineralogical classification and useful for set up the naming of igneous rocks (as parts of the TAS classification, TASplot). The CIPW Norm is the most commonly used calculation algorithm to estimate the standard mineral assemblages for igneous rocks CIPW, generated over more than a hundred years ago and thereafter modified by some authors to the passage of the years (e.g., Verma et al., 2002).
    [Show full text]
  • Diagrams.Pdf
    CLASSIFICATION PLOTS Menu item Module name Scope1 Plot description Details (reference) AFM plot that serves to discriminate between calc-alkaline and tholeiitic AFM (Irvine + Baragar 1971) AFM G (Na2O+K2O) – FeOt – MgO ternary subalkaline series (Irvine & Baragar, 1971). Diagram of Miyashiro (1974) distinguishing between tholeiitic and calc-alkaline SiO2 - FeOt/MgO (Miyashiro 1974) Miyashiro G SiO2 vs. FeOt /MgO binary igneous rocks. SiO2 - K2O Diagram proposed by Peccerillo & Taylor (1976) to distinguish various series of PeceTaylor G SiO2 vs. K2O binary (Peccerillo + Taylor 1976) tholeiitic, calc-alkaline and shoshonitic rocks. Replacement for the previous plot of Peccerillo & Taylor (1976) using less Co - Th (Hastie et al. 2007) Hastie G Co vs. Th mobile elements, designed by Hastie et al. (2007). Diagram to distinguish meta-/peraluminous from peralkaline rocks as well as Molar Na2O – Al2O3 – K2O plot NaAlK G Na2O – Al2O3 – K2O ternary potassic, sodic and ultrapotassic suites. Al2O3/(CaO+Na2O+K2O) vs. Classic A/CNK vs A/NK plot of Shand (1943) discriminating metaluminous, A/CNK - A/NK (Shand 1943) Shand G Al2O3/(Na2O+K2O) (mol. %) peraluminous and peralkaline compositions. The principal variation of the TAS diagram, as proposed by Le Bas et al. (1986) TAS (Le Bas et al. 1986) TAS V SiO2 vs. (Na2O + K2O) binary and codified by Le Maitre (1989). Dividing line between alkaline and subalkaline series is that of Irvine & Baragar (1971). CoxVolc V Variation of the TAS diagram proposed by Cox et al. (1979) and adopted by TAS (Cox et al. 1979) SiO2 vs. (Na2O + K2O) binary CoxPlut P Wilson (1989) for plutonic rocks.
    [Show full text]
  • Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration
    minerals Review Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration Benedikt M. Steiner Camborne School of Mines, University of Exeter, Penryn TR10 9FE, UK; [email protected] Received: 22 July 2019; Accepted: 17 August 2019; Published: 20 August 2019 Abstract: The increasing demand for green technology and battery metals necessitates a review of geological exploration techniques for Li–Cs–Ta (LCT) pegmatites, which is applicable to the work of mining companies. This paper reviews the main controls of LCT pegmatite genesis relevant to mineral exploration programs and presents a workflow of grassroots exploration techniques, supported by examples from central Europe and Africa. Geological exploration commonly begins with information gathering, desktop studies and Geographic Information System (GIS) data reviews. Following the identification of prospective regional areas, initial targets are verified in the field by geological mapping and geochemical sampling. Detailed mineralogical analysis and geochemical sampling of rock, soil and stream sediments represent the most important tools for providing vectors to LCT pegmatites, since the interpretation of mineralogical phases, deportment and liberation characteristics along with geochemical K/Rb, Nb/Ta and Zr/Hf metallogenic markers can detect highly evolved rocks enriched in incompatible elements of economic interest. The importance of JORC (Joint Ore Reserves Committee) 2012 guidelines with regards to obtaining geological, mineralogical and drilling data is discussed and contextualised, with the requirement of treating LCT pegmatites as industrial mineral deposits. Keywords: LCT; pegmatite; lithium; exploration; targeting 1. Introduction Over the last four decades research into rare metal Li–Cs–Ta (LCT) pegmatite mineralisation has predominantly focused on the understanding of late-stage magmatic fractionation and hydrothermal alteration processes enriching incompatible elements of potential economic interest in felsic peraluminous melts.
    [Show full text]
  • Formation of the Yosemite Creek Granodiorite: a Field and Geochemical Study
    Formation of the Yosemite Creek Granodiorite: a field and geochemical study 14 12 10 8 6 4 15 2 14 phonolite0 13 40 50 60 70 80 12 tephri- trachyte (q<20%) phonolite 11 trachydacite (q>20%) foidite 10 phono- tephrite trachy- 9 andesite rhyolite 8 tephrite ba sa ltic (ol<10%) trachy- 7 andesite basanite trachy- 6 (ol>10%) basalt 5 4 dacite 3 asalt andesite b ba sa ltic 2 picro- andesite basalt 1 0 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 1000 syn-COLG WPG 100 10 VAG 250 1 200 1 10 100 1000 150 100 50 0 0 500 1000 1500 2000 by Erik Bliekendaal Master of Science Thesis Solid Earth Vrije Universiteit Amsterdam 2012 [..] Preface My personal interests in geology developed towards the debate of crust-mantle differentiation during my master. The processes involved in crust-mantle differentiation makes the Earth as it is nowadays. The scale of this phenomena exceed all human proportions with a time-scale that spans the complete history of Earth and will continue far into the future. Length and depth scales of the crust-mantle processes are immense with respect to human proportions. I feel it to be a honour to work with and attribute to such a important and interesting subject. The scientific debate is firm and spreads over a numerous geological disciplines. In my opinion the most interesting of these disciplines are the petrology and geochemistry. Especially the debate with respect to these disciplines is heated and firm due to new geochemical analytical techniques.
    [Show full text]
  • Neogene Volcanism in Gutai Mts
    STUDIA UNIVERSITATIS BABEŞ-BOLYAI, GEOLOGIA, XLVIII, 1, 2003, 3-16 NEOGENE VOLCANISM IN GUTÂI MTS. (EASTERN CARPATHIANS): A REVIEW MARINEL KOVACS & ALEXANDRINA FÜLÖP* ABSTRACT. Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians): a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive) and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma). It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intrusive volcanic activity developed contemporaneously with the paroxysm of the intermediate volcanism. The intrusive rocks consist mainly of porphyritic aspects of a compositional series from gabbroes to granodiorites. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction- related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry. Keywords: Neogene, Gutâi Mts., calc-alkaline volcanism, andesites, extrusive domes, intrusions, subduction, crustal assimilation. INTRODUCTION The volcanism and its products are a special attraction for geologists all over the world. Significant progress in decifering the genesis and evolution of magmatism in the Carpathian-Pannonian Region and its inner volcanic arc have been achieved during the last 10-15 years.
    [Show full text]
  • Petrography Edward F
    Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture.
    [Show full text]