University of Florida Thesis Or Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation BIOCHEMICAL MODE OF RESISTANCE TO MULTIPLE INSECT PESTS IN A ROMAINE LETTUCE CULTIVAR By AMIT SETHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 Amit Sethi 2 To my beloved father, Amar L. Sethi who has been my role-model for hard work, persistence and personal sacrifices, and who instilled in me the inspiration to set high goals and the confidence to achieve them, and his words of encouragement and push for tenacity ring in my ears. 3 ACKNOWLEDGMENTS It gives me immense pleasure to record my thanks and sense of profound gratitude to my major advisor, Dr. Heather J. McAuslane for her kind inspiration, constant supervision, constructive criticism and encouragement throughout the period of my Ph.D, especially time spent in informal discussions and training that have all been a valuable part of my learning experience. Expressing sense of gratitude and admiration for the kind help extended by Dr. Hans T. Alborn (CMAVE, USDA) and Dr. Bala Rathinasabapathi (Departemnt of Horticultural Sciences) is not mere obedience of convention, but a real appreciation. I am also highly obliged to Dr. Gregg S. Nuessly and Dr. Russell T. Nagata (Everglades Research and Education Center), the members of my committee for their guidance and valuable suggestions for the improvement of this dissertation project. I owe my sincere thanks to Jennifer Hogsette, Jennifer Meyer, and Debbie Boyd for their timely help in the insect colony maintenance when I was away for the conferences. I am thankful to Dr. Peter Teal (CMAVE, USDA) for providing greenhouse space for growing lettuce plants and also Julia Meredith (CMAVE, USDA) for taking care of plants when I was away for scientific conferences. I am also thankful to Dr. Marty Marshall (Departement of Food Science and Food Nutrition) for use of his spectrophotometer. Words fail me to convey the depth of my feelings and gratitude to my lab mates Jennifer Meyer, Karla Addesso, Jennifer Hogsette and Murugesan Rangasamy for their encouragement, generosity and memorable association. I seize the opportunity to express my moral obligations to my brothers and their families, and in-laws for their encouragement and moral support. My father deserves my heartiest thanks 4 for his magnanimity, inspiration and encouragement at times of despair that helped me in innumerable ways in making this effort a success. No appropriate words could be traced in the presently available lexicon to acknowledge the sacrifices, selfless devotion, love and unflinching support extended by my beloved wife Dr. Ramandeep Kaur to complete this study. Putting it last, but feeling it first, I owe God who has given me courage, patience and motivation from time to time in completing my degree successfully. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................10 ABSTRACT...................................................................................................................................14 CHAPTER 1 REVIEW OF LITERATURE.................................................................................................16 Introduction.............................................................................................................................16 Origin and History of Lettuce.................................................................................................17 Types of Lettuce .....................................................................................................................18 Insect Pests and Lettuce..........................................................................................................18 Host Plant Resistance .............................................................................................................21 Biochemical Basis of Host Plant Resistance ..........................................................................24 Host Plant Resistance Due To Proteins...........................................................................24 Protease inhibitors....................................................................................................25 Cysteine protease......................................................................................................25 Oxidative enzymes ...................................................................................................26 Proteins of the cell wall............................................................................................28 Secondary metabolism pathways .............................................................................29 Enzymes involved in secondary metabolism ...........................................................29 Host Plant Resistance Due To Secondary Plant Compounds..........................................30 Phenolics ..................................................................................................................31 Flavonoids ................................................................................................................33 Terpenoids................................................................................................................35 Host Plant Resistance in Lettuce to Insect Pests ....................................................................37 Aphids..............................................................................................................................37 Cabbage Looper...............................................................................................................39 Banded Cucumber Beetle................................................................................................40 Leafminer ........................................................................................................................41 Helicoverpa species.........................................................................................................42 Spodoptera species ..........................................................................................................42 Bemisia species or strains................................................................................................43 Thrips...............................................................................................................................43 Research Goals .......................................................................................................................44 6 2 HOST PLANT RESISTANCE IN ROMAINE LETTUCE AFFECTS LARVAL FEEDING BEHAVIOR AND BIOLOGY OF TRICHOPLUSIA NI AND SPODOPTERA EXIGUA (LEPIDOPTERA: NOCTUIDAE) ..............................................46 Introduction.............................................................................................................................46 Materials and Methods ...........................................................................................................48 Plants ...............................................................................................................................48 Insects..............................................................................................................................48 Neonate Survival and Development to Third Instar........................................................49 Survival and Development from Neonate to Adult Emergence......................................50 Fecundity and Longevity of Subsequent Generation ......................................................51 Results.....................................................................................................................................51 Neonate Survival and Development to Third Instar........................................................51 Larval Feeding Behavior .................................................................................................52 Survival and Development from Neonate to Adult Emergence......................................53 Fecundity and Longevity of Subsequent Generation ......................................................54 Discussion...............................................................................................................................54 3 ROMAINE LETTUCE LATEX DETERS FEEDING OF BANDED CUCUMBER BEETLE (COLEOPTERA: CHRYSOMELIDAE) ...............................................................68 Introduction.............................................................................................................................68 Materials and Methods ...........................................................................................................71 Plants and Insects ............................................................................................................71 Artificial Diet Preparation ...............................................................................................73 Latex Collection and Solvent Extraction.........................................................................74 Bioassay Conditions ........................................................................................................75
Recommended publications
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • First Record of Cnidoscolus Obtusifolius Pohl (Euphorbiaceae) for Paraíba State, Northeastern Brazil
    Acta Brasiliensis 4(3): 187-190, 2020 Note http://revistas.ufcg.edu.br/ActaBra http://dx.doi.org/10.22571/2526-4338378 First record of Cnidoscolus obtusifolius Pohl (Euphorbiaceae) for Paraíba State, northeastern Brazil a i b i Maiara Bezerra Ramos h , Maria Gracielle Rodrigues Maciel h , José Iranildo Miranda de c i a,c i Melo h , Sérgio de Faria Lopes a Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. *[email protected] b Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. c Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. Received: April 29, 2020 / Acepted: June 26, 2020/ Published online: September 28, 2020 Abstract Cnidoscolus obtusifolius Pohl (Euphorbiaceae), species so far known from Minas Gerais, Bahia, Alagoas and Pernambuco States in Brazil is reported for the first time for the State of Paraíba, in the northeastern region of the country. Specimens of this taxon were collected in a fragmented area considered a Caatinga vegetation relict, where total annual precipitation is 700 mm on average and elevation of 644 m a.s.l. The records were made in September and October 2019, when the species was in fertile stage as it bore flowers and fruits. Here we provide a description of its morphology along with taxonomic comments, data on the geographical range and detailed images of the species. Keywords: Caatinga; diversity; floristics; Malpighiales. Primeiro registro de Cnidoscolus obtusifolius Pohl (Euphorbiaceae) no estado da Paraíba, nordeste do Brasil Resumo Cnidoscolus obtusifolius Pohl (Euphorbiaceae) espécie até então conhecida para os Estados de Minas Gerais (Sudeste), Bahia, Alagoas e Pernambuco (Nordeste), Brasil, está sendo registrada pela primeira vez no Estado da Paraíba, nordeste do Brasil.
    [Show full text]
  • Host Specificity and Variation in Oviposition Behaviour of Milkweed
    Ecological Entomology (2020), DOI: 10.1111/een.12899 Host specificity and variation in oviposition behaviour of milkweed stem weevils and implications for species divergence LINA M. ARCILA HERNÁNDEZ,1 STEVEN R. DAVIS2 and ANURAG A. AGRAWAL1 1Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, U.S.A. and 2Department of Invertebrate Zoology, American Museum of Natural History, New York City, New York, U.S.A. Abstract. 1. An herbivore’s life-history strategy, including optimization of resource use, is constrained by its evolutionary history and ecological factors varying across the landscape. 2. We asked if related and co-distributed herbivore species maintain consistency of host preference and oviposition behaviours along the species’ range. We surveyed two putative species of milkweed stem weevils, Rhyssomatus lineaticollis and R. annectens, which co-occur alongside their hosts, Asclepias syriaca and A. incarnata. 3. We confirmed the two species status of weevils, supported by differences in morphology and a bilocus gene phylogeny. Furthermore, we found that species divergence recapitulated the weevils current host plant use. 4. We found oviposition variation within and between species. R. annectens poked the stem haphazardly or girdled it before oviposition. Meanwhile, R. lineaticollis primarily trenched stems in the north, but poked or girdled in the south. Variation in oviposition patterns could be a response to variation in host plant defenses. 5. In nature, weevils strictly oviposited on their respective host plants, while in bioassays, R. lineaticollis exhibited strong preference for A. syriaca and R. annectens fed equally on both host plants. 6. Overall, our results support that milkweed stem weevils are strict specialists but might be undergoing changes in host use.
    [Show full text]
  • Pollination and Breeding System of Melochia Tomentosa L
    ARTICLE IN PRESS Flora ] (]]]]) ]]]–]]] www.elsevier.de/flora Pollination and breeding system of Melochia tomentosa L. (Malvaceae), a keystone floral resource in the Brazilian Caatinga Isabel Cristina Machadoa,Ã, Marlies Sazimab aDepartamento de Botaˆnica, Universidade Federal de Pernambuco, 50232-970 Recife, PE, Brazil bDepartamento de Botaˆnica, Universidade Estadual de Campinas, 13.081-970 Campinas, SP, Brazil Received 10 August 2007; accepted 25 September 2007 Abstract The main goals of the present paper were to investigate the floral biology and the breeding system of Melochia tomentosa in a semi-arid region in Brazil, comparing the role of Apis mellifera with other native pollinators, and to discuss the importance of this plant species as a floral resource for the local fauna in maintaining different guilds of specialized pollinators in the Caatinga. M. tomentosa is very common in Caatinga areas and blooms year-round with two flowering peaks, one in the wet and another in the dry period. The pink, bright-colored flowers are distylous and both morphs are homogamous. The trichomatic nectary is located on the inner surface of the connate sepals, and the nectar (ca. 7 ml) is accumulated in the space between the corolla and the calyx. Nectar sugar concentration reaches an average of 28%. The results of controlled pollination experiments show that M. tomentosa is self-incompatible. Pollen viability varies from 94% to 98%. In spite of being visited by several pollen vectors, flower attributes of M. tomentosa point to melittophily, and A. mellifera was the most frequent visitor and the principal pollinator. Although honeybees are exotic, severely competing with native pollinators, they are important together with other native bees, like Centris and Xylocopa species, for the fruit set of M.
    [Show full text]
  • Insetos Produzem Mangabas / Reisla Oliveira
    Editor: Fundo Brasileiro para Biodiversidade - FUNBIO Este material foi produzido por Reisla Oliveira, Clemens Schlindwein, Celso Fei- tosa Martins, Fernando Zanella e José Araújo Duarte Junior como parte do Projeto “Conservação e Manejo de Polinizadores para uma Agricultura Sustentável, através de uma Abordagem Ecossistêmica”. Este Projeto é apoiado pelo Fundo Global para o Meio Ambiente (GEF), sendo implementado em sete países, Brasil, África do Sul, Índia, Paquistão, Nepal, Gana e Quênia. O Projeto é coordenado em nível global pela Organização das Nações Unidas para Alimentação e Agricultura (FAO), com apoio do Programa das Nações Unidas para o Meio Ambiente (PNUMA). No Brasil, é coordena- do pelo Ministério do Meio Ambiente (MMA), com apoio do Fundo Brasileiro para a Biodiversidade (FUNBIO). FICHA TÉCNICA Autores: • Reisla Oliveira, Universidade Federal de Ouro Preto - UFOP, Departamento de Evolução, Biodi- versidade e Meio Ambiente, Ouro Preto, ; e-mail: [email protected] • Celso Feitosa Martins, Universidade Federal da Paraíba - UFPB, Departamento de Sistemática e Ecologia, João Pessoa; e-mail: [email protected] • Fernando Zanella, Universidade Federal da Integração Latino-Americana - UNILA, Curso de Biologia; [email protected] • José Araújo Duarte Junior, Secretaria de Estado da Educação e da Cultura, Natal; josejunior_ [email protected] • Clemens Schlindwein, Universidade Federal de Minas Gerais - UFMG, Departamento de Bo- tânica, Belo Horizonte; [email protected] Revisão: Ceres Belchior; Comitê Editorial do Ministério do Meio Ambiente Projeto gráfico e diagramação: I Graficci Comunicação e Design Tiragem: 1.000 Editor: Fundo Brasileiro para Biodiversidade - FUNBIO Catalogação na Fonte Fundo Brasileiro para a Biodiversidade - Funbio I46 Insetos produzem mangabas / Reisla Oliveira ..
    [Show full text]
  • Target-Site and Metabolic Resistance Against Λ-Cyhalothrin in Cabbage Stem Flea Beetles in Denmark
    Bulletin of Insectology 71 (1): 45-49, 2018 ISSN 1721-8861 Target-site and metabolic resistance against λ-cyhalothrin in cabbage stem flea beetles in Denmark Dorte H. HØJLAND, Michael KRISTENSEN Department of Agroecology, Aarhus University, Slagelse, Denmark Abstract The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera Chrysomelidae) is a major pest of oilseed rape through- out Europe. Pyrethroids has been widely used for control of P. chrysocephala, but in recent years control failure has occurred, possibly due to resistance. Thirteen out of 15 populations collected in Denmark were susceptible to λ-cyhalothrin. Just two popu- lations, both from the south of Denmark had decreased susceptibility. The target site resistance allele, kdr, was found in a fre- quency from 0.00 to 0.76. There seemed to be a good relationship of the frequency of the target site mutation and resistance levels with some regional differences. Based on the data presented here target site mutation is a good indicator of decreased λ-cyhalothrin susceptibility. However, it is not the sole contributor to pyrethroid resistance in Danish P. chrysocephala, and the potential involvement of metabolic resistance should be investigated. Key words: Psylliodes chrysocephala, pyrethroid, insecticide resistance, kdr, knockdown resistance. Introduction where they migrate to winter rape crops and mate, feed and lay their eggs in the soil close to host plants. The The Brassicaceae family is a broad family of approxi- main damage is caused by the tunneling of feeding larva mately 3,200 different species. These are important in (Williams, 2004) which weakens the lower part of the agriculture worldwide due to their nutritional, medical stem and upper part of the roots making infested plants and crop rotation potential.
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • Sociality in Caterpillars: Investigations Into the Mechanisms Associated with Grouping Behaviour, from Vibroacoustics to Sociogenomics
    Sociality in Caterpillars: Investigations into the Mechanisms Associated with Grouping Behaviour, from Vibroacoustics to Sociogenomics by Chanchal Yadav A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in Biology Carleton University Ottawa, Ontario © 2020, Chanchal Yadav Abstract Social grouping is widespread among larval insects, particularly in a number of phytophagous larval Lepidoptera (caterpillars). Although the benefits of social grouping are widely recognized, the proximate mechanisms mediating grouping behaviour, such as group formation and maintenance, are poorly understood. My Ph.D. thesis takes a pioneering approach to understanding these mechanisms, specifically, by studying the roles of vibroacoustics and sociogenomics, using the masked birch caterpillar, Drepana arcuata (Lepidoptera: Drepanoidea), as a model. There are two main objectives of my thesis - (i) to test the hypothesis that caterpillars employ plant-borne vibratory signals to recruit conspecifics to social groups; and (ii) to test the hypothesis that differential gene expression is associated with developmental transitions from social to solitary behavioural states. For the first objective, I documented morphological and behavioural changes in the larvae, showing that there are five larval instars, and developmental changes in social and signalling behaviour. Specifically, early instars (I, II) live in small social groups, and late instars (IV, V) live solitarily, with third instars (III) being transitional. Instars I-III generate four signal types (AS, BS, MS, MD), instars IV, V generate three signals (AS, MS, MD). I then used an experimental approach to test if early instars employ vibrations during social recruitment, and found that vibratory signals are used to advertise feeding and silk shelters, leading to recruitment, with higher signalling rates resulting in faster joining times by conspecifics.
    [Show full text]
  • EPPO W Orkshop 2017
    EPPO Workshop on Integrated Management of EPPO Workshop 2017 EPPO Workshop Insect Pests in Oilseed Rape Julius Kühn-Institute Berlin, 2017-09-20/22 European and Mediterranean Plant Protection Organization (OEPP/EPPO) Programme EPPO Workshop on Integrated Management of Insect Pests in Oilseed Rape JKI, Königin-Luise-Straße 19, Berlin-Dahlem, Germany – Room A/300 EPPO Workshop 2017 EPPO Workshop Wednesday, September 20 08:15 Registration OPENING MORNING SESSION Welcome and Opening address 08:45 Welcome by JKI – Udo Heimbach Vlasta Zlof - EPPO Introductory presentations Chair: Udo Heimbach 09:10 Growers’ perspective: importance of insect control for oilseed rape production Manuela Specht - UFOP, Germany 09:40 Managing insect pests of canola in Canada Héctor A. Cárcamo – Agriculture and Agri-Food Canada 10:10 The insect pests of oilseed rape: biology and potential for control by IPM Samantha Cook – Rothamsted Research, UK Discussion on presentations 10:55 Coffee break 11:25 Update on insecticide resistance mechanisms and potential cross-resistance issues in major insect pest in oilseed rape Ralf Nauen – Bayer, Germany Discussion on presentation Country presentations of current situation and recommendations on controlling oilseed rape insect pests with particular reference to resistance management 12:00 Summary of findings from a participant country questionnaire on pest insects in oilseed rape Udo Heimbach – JKI, Germany France: Alternative management of insect pests on oilseed rape in winter and spring Marc Delos – SRAL/ DRAAF-Occitanie
    [Show full text]
  • Phenology of Cabbage Stem Flea Beetle (Psylliodes Chrysocephala L) in Oilseed Rape
    Pestic. Phytomed. (Belgrade), 31(3-4), 2016, 139–144 UDC 632.7:57.02:635.12 DOI: 10.2298/PIF1604139S Original scientific paper Phenology of cabbage stem flea beetle (Psylliodes chrysocephala L) in oilseed rape Lazar Sivčev1*, Draga Graora2, Ivan Sivčev1, Vladimir Tomić3 and Boris Dudić3 1 Institute for Plant Protection and Environment, Teodora Drajzera 9, Belgrade, Serbia 2 Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, Serbia 3 Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia *Corresponding author: [email protected] Received: 7 October, 2016 Accepted: 3 November, 2016 SUMMARY The cabbage stem flea beetle (Psylliodes chrysocephala (L.) is an important pest of winter oilseed rape in Serbia. Beetles colonize oilseed rape in early October and are active in the field until first frost and wintertime. In autumn, adults can be seen laying eggs in the soil around plants. Larvae of P. chrysocephala developed intensively on leaf petioles in November, reaching their highest numbers at the end of the month. No infested plants were found in a conventional field, while 14.5% of all dissected leaf petioles were infested on an integrated field. On unprotected plants in an organic field, 76.0% of the plants were infested with larvae at the growth-stage BBCH 18-19, with 31.1% infested leaves on average. As a results, the number of plants was reduced by 51%, i.e. from 43.0/m2 recorded in the autumn to 22.0/m2 in the following spring. A new generation of P. chrysocephala beetles emerged from the soil in the first half of June and rapidly escaped the fields from almost dry plants.
    [Show full text]
  • Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales
    1 Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales. Annals of the Entomological Society of America 112: 318-329. 3 https://doi.org/10.1093/aesa/say043 4 5 6 Trap Crops and Insectary Plants in the Order Brassicales 7 Francisco Rubén Badenes-Perez 8 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 9 Madrid, Spain 10 E-mail: [email protected] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABSTRACT This paper reviews the most important cases of trap crops and insectary 26 plants in the order Brassicales. Most trap crops in the order Brassicales target insects that 27 are specialist in plants belonging to this order, such as the diamondback moth, Plutella 28 xylostella L. (Lepidoptera: Plutellidae), the pollen beetle, Meligethes aeneus Fabricius 29 (Coleoptera: Nitidulidae), and flea beetles inthe genera Phyllotreta Psylliodes 30 (Coleoptera: Chrysomelidae). In most cases, the mode of action of these trap crops is the 31 preferential attraction of the insect pest for the trap crop located next to the main crop. 32 With one exception, these trap crops in the order Brassicales have been used with 33 brassicaceous crops. Insectary plants in the order Brassicales attract a wide variety of 34 natural enemies, but most studies focus on their effect on aphidofagous hoverflies and 35 parasitoids. The parasitoids benefiting from insectary plants in the order Brassicales 36 target insects pests ranging from specialists, such as P. xylostella, to highly polyfagous, 37 such as the stink bugs Euschistus conspersus Uhler and Thyanta pallidovirens Stål 38 (Hemiptera: Pentatomidae).
    [Show full text]
  • (Autor) Effect of Plant Characteristics on Host Plant Selection and Larval Performance of Specialist Insect Pests on Brassicaceae
    Alexander Döring (Autor) Effect of plant characteristics on host plant selection and larval performance of specialist insect pests on Brassicaceae https://cuvillier.de/de/shop/publications/6221 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: [email protected], Website: https://cuvillier.de Chapter I Chapter I: General introduction Oilseed rape Oilseed rape (Brassica napus L.) is the most important oilseed crop in Germany, in 2009 covering an acreage of 1.47 million hectares (Eurostat, 2009). Due to its higher yield potential winter oilseed rape is grown much more commonly than to spring rape (Kimber and McGregor, 1995). In 2010 winter oilseed rape yielded in average 39 dt/ha in Germany (Anonymus, 2011). The oil extracted from the harvested seeds is commonly used for human nutrition or for the production of biodiesel (Alford, 2003). The seed meal is used in animal nutrition because of its high content of protein and essential amino acids (Bell, 1995). Today most often cultivars with low content of erucic acid and glucosinolates in the seeds are grown, also known as ‘canola quality’ or ‘double low quality’ (Bell, 1995; Alford, 2003). Due to the low content of erucic acid, the oil is suitable for human nutrition. The low level of glucosinolates in the meal increases its suitability for animal nutrition (Bell, 1995; Uppström, 1995). Oilseed rape pests in Germany In Germany oilseed rape is attacked by a wide range of insect pests during the whole growing season (Alford et al., 2003). Economic damage is most often caused by only six insect species: cabbage stem flea beetle (Psylliodes chrysocephala), rape stem weevil (Ceutorhynchus napi), cabbage stem weevil (Ceutorhynchus pallidactylus), pollen beetle (Meligethes aeneus), cabbage seed weevil (Ceutorhynchus obstrictus) and brassica pod midge (Dasineura brassicae) (Williams, 2010).
    [Show full text]