The 2012 Free and Open Source GIS Software Map – a Guide to Facilitate Research, Development, and Adoption ⇑ Stefan Steiniger , Andrew J.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Package 'Rgdal'
Package ‘rgdal’ September 16, 2021 Title Bindings for the 'Geospatial' Data Abstraction Library Version 1.5-27 Date 2021-09-16 Depends R (>= 3.5.0), methods, sp (>= 1.1-0) Imports grDevices, graphics, stats, utils LinkingTo sp Suggests knitr, DBI, RSQLite, maptools, mapview, rmarkdown, curl, rgeos NeedsCompilation yes Description Provides bindings to the 'Geospatial' Data Abstraction Li- brary ('GDAL') (>= 1.11.4) and access to projection/transformation opera- tions from the 'PROJ' library. Please note that 'rgdal' will be retired by the end of 2023, plan tran- sition to sf/stars/'terra' functions using 'GDAL' and 'PROJ' at your earliest conve- nience. Use is made of classes defined in the 'sp' package. Raster and vector map data can be im- ported into R, and raster and vector 'sp' objects exported. The 'GDAL' and 'PROJ' libraries are ex- ternal to the package, and, when installing the package from source, must be correctly in- stalled first; it is important that 'GDAL' < 3 be matched with 'PROJ' < 6. From 'rgdal' 1.5-8, in- stalled with to 'GDAL' >=3, 'PROJ' >=6 and 'sp' >= 1.4, coordinate reference sys- tems use 'WKT2_2019' strings, not 'PROJ' strings. 'Windows' and 'macOS' binaries (includ- ing 'GDAL', 'PROJ' and their dependencies) are provided on 'CRAN'. License GPL (>= 2) URL http://rgdal.r-forge.r-project.org, https://gdal.org, https://proj.org, https://r-forge.r-project.org/projects/rgdal/ SystemRequirements PROJ (>= 4.8.0, https://proj.org/download.html) and GDAL (>= 1.11.4, https://gdal.org/download.html), with versions either (A) PROJ < 6 and GDAL < 3 or (B) PROJ >= 6 and GDAL >= 3. -
Osmand - This Article Describes How to Use Key Feature
HowToArticles - osmand - This article describes how to use key feature... http://code.google.com/p/osmand/wiki/HowToArticles#First_steps [email protected] | My favorites ▼ | Profile | Sign out osmand Navigation & routing based on Open Street Maps for Android devices Project Home Downloads Wiki Issues Source Search for ‹‹ HowToArticles HowTo Articles This article describes how to use key features How To First steps Featured How To Understand vector en, ru Updated and raster maps How To Download data How To Find on map Introduction How To Filter POI This articles helps you to understand how to use the application, and gives you idea's about how the functionality could be used. How To Customize map view How To How To Arrange layers and overlays How To Manage favorite How To First steps places How To Navigate to point First you can think about which features are most usable and suitable for you. You can use Osmand online and offline for How To Use routing displaying a lot of online maps, pre-downloaded very compact so-called OpenStreetMap "vector" map-files. You can search and How To Use voice routing find adresses, places of interest (POI) and favorites, you can find routes to navigate with car, bike and by foot, you can record, How To Limit internet replay and follow selfcreated or downloaded GPX tracks by foot and bike. You can find Public Transport stops, lines and even usage shortest public transport routes!. You can use very expanded filter options to show and find POI's. You can share your position with friends by mail or SMS text-messages. -
Automatic Generation of a 3D City Model
UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA COMPUTER ENGINEERING DEGREE DEGREE FINAL PROJECT Automatic generation of a 3D city model David Murcia Pacheco June, 2017 AUTOMATIC GENERATION OF A 3D CITY MODEL Escuela Superior de Informática UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA Information Technology and Systems SPECIFIC TECHNOLOGY OF COMPUTER ENGINEERING DEGREE FINAL PROJECT Automatic generation of a 3D city model Author: David Murcia Pacheco Director: Dr. Félix Jesús Villanueva Molina June, 2017 David Murcia Pacheco Ciudad Real – Spain E-mail: [email protected] Phone No.:+34 625 922 076 c 2017 David Murcia Pacheco Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". i TRIBUNAL: Presidente: Vocal: Secretario: FECHA DE DEFENSA: CALIFICACIÓN: PRESIDENTE VOCAL SECRETARIO Fdo.: Fdo.: Fdo.: ii Abstract HIS document collects all information related to the Degree Final Project (DFP) of Com- T puter Engineering Degree of the student David Murcia Pacheco, tutorized by Dr. Félix Jesús Villanueva Molina. This work has been developed during 2016 and 2017 in the Escuela Superior de Informática (ESI), in Ciudad Real, Spain. It is based in one of the proposed sub- jects by the faculty of this university for this year, called "Generación automática del modelo en 3D de una ciudad". -
Gvsig a Real Tool for GIS Technicians
Arnulf Christl OSGeo President OSGeo Spatially Empowered Open Source Geospatial World Forum 2011 – Hyderabad, India Agenda Free Software Licenses FS Open Source Methodology OS What is OSGeo? FOSS4G Vision and Mission How it works: Formal Structures Local Chapters, Conferences & Fairs OSGeo Live This presentation is available as editable ODP (2.4MB) and PDF (1.1MB) GWF 2011 – Hyderabad, India OSGeo - Spatially Empowered Open Source 2/35 Proprietary Licensing You are not allowed to copy You are not allowed to modify You are not allowed to give away You are not allowed to improve You are not allowed to install You are not allowed to share You are not allowed to... ...today the revival is in the Terms of Services! GWF 2011 – Hyderabad, India OSGeo - Spatially Empowered Open Source 3/35 Free Software Licensing Free Software Licensing Not as in "free beer" but as in free speech You are free to: use it anywhere for any purpose understand and improve it pass it on to anybody else make money by providing training, maintenance and services GWF 2011 – Hyderabad, India OSGeo - Spatially Empowered Open Source 4/35 Free Software Licensing Free Software Licensing Not as in "free beer" but as in free speech You are free to: dd!! use it anywhere for anye purpose teee understand andnn improvet it aa pass it onaa torr anybody else make moneyuu by providing training,GG maintenance and services GWF 2011 – Hyderabad, India OSGeo - Spatially Empowered Open Source 5/35 Free Software Licensing Free Software is a legal licensing model that protects your interests. The opposite is proprietary (or closed) software. -
Quick Guide to Free Geoinformatics for Disaster Management
Disaster Risk Reduction Research Group - Centre for Applied Geoscience School of Earth and Environmental Sciences University of Portsmouth, UK. Quick Guide to Free Geoinformatics for Disaster Management Mathias Leidig & Richard Teeuw April 2016 (version 2.3) Copyright statement: This work is published under the creative commons license 3 (CC BY-NC-SA 3.0). The license grants you to share, copy, distribute, transmit and adapt this document for non-commercial purposes under share alike conditions (http://creativecommons.org/licenses/by-nc-sa/3.0/). Please refer to this document and its authors when modifying. Disaster Risk Reduction Research Group - Centre for Applied Geoscience School of Earth and Environmental Sciences University of Portsmouth, UK. Contents Introduction ................................................................................................ 3 1. Free datasets ....................................................................................... 4 Table 1: Geospatial data sources ............................................................ 4 2. Free Software ................................................................................... 13 Table 2.1. Free GIS software .............................................................. 15 Table 2.2. Free image processing software ......................................... 17 Table 2.3. Free data viewer ................................................................. 20 Table 2.4. GoogleEarth related tools ................................................... 20 Mini -
Comparison of Open Source Virtual Globes
FOSS4G 2010 Comparison of Open Source Virtual Globes Mathias Walker Pirmin Kalberer Sourcepole AG, Bad Ragaz www.sourcepole.ch FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes About Sourcepole > GIS-Knoppix: first GIS live-CD > QGIS > Core developer > QGIS Mapserver > OGR / GDAL > Interlis driver > schema support for PostGIS driver > Ruby on Rails > MapLayers plugin > Mapfish server plugin FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Overview > Multi-platform Open Source Virtual Globes > Installation > out-of-the-box application > Adding user data > Features > Demo movie > Comparison > User data > Technology > Desired Virtual Globe features FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Open Source Virtual Globes > NASA World Wind Java SDK > ossimPlanet > gvSIG 3D > osgEarth > Norkart Virtual Globe > Earth3D > Marble > comparison to Google Earth FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes Test user data > Test data of Austrian skiing region Lech > projection: WGS84 (EPSG:4326) > OpenStreetMap WMS > winter orthophoto > GeoTiff, 20cm resolution, 4.5GB > KML Tile Cache > ski lifts, ski slopes, cable cars and POIs > KML > Shapefile > elevation (ASTER) > GeoTiff, ~30m resolution, 445MB FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes NASA World Wind Java SDK > created by NASA's Learning Technologies project > now developed by NASA staff and open source community developers FOSS4G Barcelona 7.-9.9.10 Comparison of Open Source Virtual Globes -
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages. -
Free and Open Source GIS in South America: Political Inroads and Local Advocacy
Central Washington University ScholarWorks@CWU All Faculty Scholarship for the College of the Sciences College of the Sciences 9-2019 Free and open source GIS in South America: political inroads and local advocacy Sterling Quinn Central Washington University Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac Part of the Geographic Information Sciences Commons Recommended Citation Quinn, S. (2019). Free and open source GIS in South America: political inroads and local advocacy. International Journal of Geographical Information Science, 34(3), 464–483. https://doi.org/10.1080/ 13658816.2019.1665672 This Article is brought to you for free and open access by the College of the Sciences at ScholarWorks@CWU. It has been accepted for inclusion in All Faculty Scholarship for the College of the Sciences by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. The following is the author’s accepted edition of the article. The Version of Record of this manuscript was published in the International Journal of Geographical Information Science in September 2019 and is available at https://www.tandfonline.com/doi/full/10.1080/13658816.2019.1665672 Free and open source GIS in South America: political inroads and local advocacy Sterling Quinn Department of Geography -- Central Washington University [email protected] Geographical information systems (GIS) practitioners worldwide enjoy a growing array of free and open source software (FOSS) options. This software has expanded the accessibility of GIS in economically developing countries while fostering local technical expertise. This article reviews FOSS GIS uptake and advocacy in South America, especially how it relates to a climate of political friendliness toward FOSS in the region. -
Pyqgis Developer Cookbook Release 2.18
PyQGIS developer cookbook Release 2.18 QGIS Project April 08, 2019 Contents 1 Introduction 1 1.1 Run Python code when QGIS starts.................................1 1.2 Python Console............................................2 1.3 Python Plugins............................................3 1.4 Python Applications.........................................3 2 Loading Projects 7 3 Loading Layers 9 3.1 Vector Layers.............................................9 3.2 Raster Layers............................................. 11 3.3 Map Layer Registry......................................... 11 4 Using Raster Layers 13 4.1 Layer Details............................................. 13 4.2 Renderer............................................... 13 4.3 Refreshing Layers.......................................... 15 4.4 Query Values............................................. 15 5 Using Vector Layers 17 5.1 Retrieving information about attributes............................... 17 5.2 Selecting features........................................... 18 5.3 Iterating over Vector Layer...................................... 18 5.4 Modifying Vector Layers....................................... 20 5.5 Modifying Vector Layers with an Editing Buffer.......................... 22 5.6 Using Spatial Index......................................... 23 5.7 Writing Vector Layers........................................ 23 5.8 Memory Provider........................................... 24 5.9 Appearance (Symbology) of Vector Layers............................. 26 5.10 Further -
Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data. -
Remotely Execute GRASS GIS Scripts on Your Server
g.remote Remotely execute GRASS GIS scripts on your server Vaclav Petras Center for Geospatial Analytics OSGeo Research and Education Laboratory North Carolina State University May 7, 2015 cba GRASS GIS: g.remote NCSU Center for Geospatial Analytics 1 / 12 Server for everybody there are servers, HPC clusters, clouds lying around once somebody set it up, it’s easy to get to it if you know what ssh -X means and you also want to work locally in the same environment GRASS GIS: g.remote NCSU Center for Geospatial Analytics 2 / 12 Tangible Landscape currently locked to MS Windows desktop needs powerful processing backend for larger simulations pure in-cloud or client-server with WPS would be overkill GRASS GIS: g.remote NCSU Center for Geospatial Analytics 3 / 12 g.remote developed for hybrid desktop-server workflow tests of processing or part of processing locally store and process the big data on a server synchronous processing easily to integrate into scripts GRASS GIS: g.remote NCSU Center for Geospatial Analytics 4 / 12 Usage Basic call in command line g.remote user=john server=example.com \ grassdata=/grassdata \ location=nc_spm mapset=practice1 \ grass_script=/path/to/script.py data are stored on the server Python script is local and transferred to the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 5 / 12 Usage Addition of inputs and outputs g.remote ... \ raster=elevation \ output_raster=waterflow data are transfered to and from the server GRASS GIS: g.remote NCSU Center for Geospatial Analytics 6 / 12 Usage GRASS GIS: g.remote NCSU Center for Geospatial Analytics 7 / 12 Architecture Three layers connection to server (class) Paramiko ssh + scp (OpenSSH Client) can accommodate web-based applications or local programs GRASS session (class) runs GRASS modules, scripts and Python code inside GRASS session using the connection transports GRASS data (maps, region, . -
Assessmentof Open Source GIS Software for Water Resources
Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1.