Hull-White Or Black-Karasinski? Implementation Note and Model Comparison for ALM

Total Page:16

File Type:pdf, Size:1020Kb

Hull-White Or Black-Karasinski? Implementation Note and Model Comparison for ALM A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Khan, Aisha; Guan, Eric; Poon, Ser-huang Working Paper Short rate models: Hull-White or Black-Karasinski? Implementation note and model comparison for ALM Manchester Business School Working Paper, No. 562 Provided in Cooperation with: Manchester Business School, The University of Manchester Suggested Citation: Khan, Aisha; Guan, Eric; Poon, Ser-huang (2008) : Short rate models: Hull- White or Black-Karasinski? Implementation note and model comparison for ALM, Manchester Business School Working Paper, No. 562, The University of Manchester, Manchester Business School, Manchester This Version is available at: http://hdl.handle.net/10419/50684 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Working Paper Series Short Rate Models: Hull-White or Black-Karasinski? Implementation Note and Model Comparison for ALM Aisha Khan, Eric Guan and Ser-Huang Poon Manchester Business School Working Paper No. 562 September 2008 Manchester Business School Copyright © 2008, Khan, Guan and Poon. All rights reserved. Do not quote or cite without permission from the author. Manchester Business School The University of Manchester Booth Street West Manchester M15 6PB +44(0)161 306 1320 http://www.mbs.ac.uk/research/workingpapers/ ISSN 0954-7401 The working papers are produced by The University of Manchester - Manchester Business School and are to be circulated for discussion purposes only. Their contents should be considered to be preliminary. The papers are expected to be published in due course, in a revised form and should not be quoted without the authors’ permission. Author(s) and affiliation Professor Ser-Huang Poon Professor of Finance Manchester Business School University of Manchester Crawford House Oxford Road Manchester M13 9PL United Kingdom Tel: +44 161 275 0431 (direct) 0429/0436 (secretary) Fax: +44 161 275 4023 Email: [email protected] http://www.personal.mbs.ac.uk/ser-huang-poon/ http://ssrn.com/author=44637/ Aisha Khan and Eric Guan were postgraduate students at Manchester Business School. Keywords Asset-liability management, Hull-White, Black-Karasinski, Bermudan swaptions, 1-factor model Abstract In this paper, we compare two one-factor short rate models: the Hull White model and the Black- Karasinski model. Despite their inherent shortcomings the short rate models are being used quite extensively by the practitioners for risk-management purposes. The research, as part of students’ projects in collaboration with the Asset-Liability-Management (ALM) Group of ABN AMRO Bank, provides detail procedures on the implementation, and assesses model performance from an ALM perspective. In particular, we compare the two models for pricing and hedging Bermudan swaptions because of its resemblance to prepayment option in typical mortgage loans. To our knowledge, the implementation of the two short rate models (and the Black-Karasinski model in particular) is not well documented. We implemented the two models using interest rate derivatives on Euro and US rates over the period February 2005 to September 2007 and with the Hull-White trinomial tree. Our results show that in terms of the in-sample pricing tests, the one-factor Hull- White model outperforms the Black-Karasinski model. The estimated parameters of Hull-White model are also more stable than those of the Black-Karasinski model. On the other hand, the tests for the hedging performance show that the Black-Karasinski model is more effective in hedging the interest rate risk of the at-the-money 10x1 co-terminal Bermudan swaption. How to quote or cite this document Khan, Guan and Poon (2008). Short Rate Models: Hull-White or Black-Karasinski? Implementation Note and Model Comparison for ALM, Manchester Business School Working Paper, Number 562, available: http://www.mbs.ac.uk/research/workingpapers/ Short Rate Models: Hull-White or Black-Karasinski? Implementation Note and Model Comparison for ALM Aisha Khan, Eric Guan and Ser-Huang Poon June 14, 2008 All authors are at Manchester Business School, UK. Please send all correspondence to Professor Ser-Huang Poon, Manchester Business School Crawford House, University of Manchester, Oxford Road, Manchester M13 9PL, UK. Tel: +44 161 275 4021, Fax: +44 161 275 4023, Email: ser- [email protected]. We would like to thank Peter van der Wal, Vincent van Bergen and Jan Remmerswaal from ABN AMRO for manu useful suggestions and data, Michael Croucher for NAG software support, and Dick Stapleton and Marti Subrahmanyam for many helpful advice. 1 Short Rate Models: Hull-White or Black-Karasinski? Implementation Note and Model Comparison for ALM Abstract In this paper, we compare two one-factor short rate models: the Hull White model and the Black-Karasinski model. Despite their inherent shortcomings the short rate models are being used quite extensively by the practitioners for risk- management purposes. The research, as part of students’ projects in collaboration with the Asset-Liability-Management (ALM) Group of ABN AMRO Bank, provides detail procedures on the implementation, and assesses model performance from an ALM perspective. In particular, we compare the two models for pricing and hedging Bermudan swaptions because of its resemblance to prepayment option in typical mortgage loans. To our knowledge, the implementation of the two short rate models (and the Black- Karasinski model in particular) is not well documented. We implemented the two models using interest rate derivatives on Euro and US rates over the period February 2005 to September 2007 and with the Hull-White trinomial tree. Our results show that in terms of the in-sample pricing tests, the one-factor Hull- White model outperforms the Black-Karasinski model. The estimated parameters of Hull-White model are also more stable than those of the Black- Karasinski model. On the other hand, the tests for the hedging performance show that the Black-Karasinski model is more effective in hedging the interest rate risk of the at-the-money 10x1 co-terminal Bermudan swaption. 1 Short Rate Models: Hull-White or Black-Karasinski? Implementation Note and Model Comparison 1 Introduction In this paper, we study the choice of short rate models for asset-liability management in a global bank. In particular, we compare the performance of two one-factor short rate models, viz. Hull-White and Black-Karasinski, for hedging a 10x1 Bermudan swaption on an annual basis over a one and a half year period. The 10x1 Bermudan swaption is chosen because it resembles a loan portfolio with early redemption fea- ture, an important product for most banks. Unlike the short-term pricing problem, the one-factor model is often preferred for the longer term ALM purpose because of its simplicity. For long horizon hedging, the multi-factor model could produce more noise as it requires more parameters input. Pricing performance measures a model’s capability of capturing the current term structure and market prices of interest rate sensitive instruments. Pricing performance can always be improved, in an almost sure sense, by adding more explanatory variable and complexities to the dynamics. However, pricing performance alone cannot re‡ect the model’sability in capturing the true term structure dynamics. To assess the appropriateness of model dynamics, one has to study model forecasting and hedging performance. The last few decades have seen the development of a great variety of interest rate models for estimating prices and risk sensitivities of interest rate derivatives. These models can be broadly divided into short rate, forward rate and market models. The class of short-rate models, among others, includes Vasicek (1977), Hull and White (1990), and Black and Karasinski (1991). The Ho-Lee model is an early example of forward-rate modelling. A generalized framework for arbitrage free forward-rate modelling originates from the work of Heath, Jarrow and Morton (HJM, 1992). Market models are a class of models within the HJM framework that model the evolution of rates that are directly observable in the market. Example of such models are the Libor Market Model by Brace, Gatarek, and Musiela (1997) 2 and the Swap Market Model by Jamshidian (1997). All these models have their own strengths and weaknesses. Short-rate models are tractable, easy to understand and implement but do not provide complete freedom in choosing the volatility structure. The HJM framework is
Recommended publications
  • Martingale Methods in Financial Modelling
    Marek Musiela Marek Rutkowski Martingale Methods in Financial Modelling Second Edition Springer Table of Contents Preface to the First Edition V Preface to the Second Edition VII Part I. Spot and Futures Markets 1. An Introduction to Financial Derivatives 3 1.1 Options 3 1.2 Futures Contracts and Options 6 1.3 Forward Contracts 7 1.4 Call and Put Spot Options 8 1.4.1 One-period Spot Market 10 1.4.2 Replicating Portfolios 11 1.4.3 Maxtingale Measure for a Spot Market 12 1.4.4 Absence of Arbitrage 14 1.4.5 Optimality of Replication 15 1.4.6 Put Option 18 1.5 Futures Call and Put Options 19 1.5.1 Futures Contracts and Futures Prices 20 1.5.2 One-period Futures Market 20 1.5.3 Maxtingale Measure for a Futures Market 22 1.5.4 Absence of Arbitrage 22 1.5.5 One-period Spot/Futures Market 24 1.6 Forward Contracts 25 1.6.1 Forward Price 25 1.7 Options of American Style 27 1.8 Universal No-arbitrage Inequalities 32 2. Discrete-time Security Markets 35 2.1 The Cox-Ross-Rubinstein Model 36 2.1.1 Binomial Lattice for the Stock Price 36 2.1.2 Recursive Pricing Procedure 38 2.1.3 CRR Option Pricing Formula 43 X Table of Contents 2.2 Martingale Properties of the CRR Model 46 2.2.1 Martingale Measures 47 2.2.2 Risk-neutral Valuation Formula 50 2.3 The Black-Scholes Option Pricing Formula 51 2.4 Valuation of American Options 56 2.4.1 American Call Options 56 2.4.2 American Put Options 58 2.4.3 American Claim 60 2.5 Options on a Dividend-paying Stock 61 2.6 Finite Spot Markets 63 2.6.1 Self-financing Trading Strategies 63 2.6.2 Arbitrage Opportunities 65 2.6.3 Arbitrage Price 66 2.6.4 Risk-neutral Valuation Formula 67 2.6.5 Price Systems 70 2.6.6 Completeness of a Finite Market 73 2.6.7 Change of a Numeraire 74 2.7 Finite Futures Markets 75 2.7.1 Self-financing Futures Strategies 75 2.7.2 Martingale Measures for a Futures Market 77 2.7.3 Risk-neutral Valuation Formula 79 2.8 Futures Prices Versus Forward Prices 79 2.9 Discrete-time Models with Infinite State Space 82 3.
    [Show full text]
  • An Empirical Investigation of the Black- Scholes Call
    International Journal of BRIC Business Research (IJBBR) Volume 6, Number 2, May 2017 AN EMPIRICAL INVESTIGATION OF THE BLACK - SCHOLES CALL OPTION PRICING MODEL WITH REFERENCE TO NSE Rajesh Kumar 1 and Rachna Agrawal 2 1Research Scholar, Department of Management Studies 2Associate Professor, Department of Management Studies YMCA University of Science and Technology, Faridabad, Haryana, India ABSTRACT This paper investigates the efficiency of Black-Scholes model used for valuation of call option contracts written on Eight Indian stocks quoted on NSE. It has been generally observed that the B & S Model misprices options considerably on several occasions and the volatilities are ‘high for options which are highly overpriced. Mispriced worsen with the increased in volatility of the underlying stocks. In most of cases options are also highly underpriced by the model. In this research paper, the theoretical options prices of Nifty stock call options are calculated under the B & S Model. These theoretical prices are compared with the actual quoted prices in the market to gauge the pricing accuracy. KEYWORDS Black-Scholes Model, standard deviation, Mean Error, Root Mean Squared Error, Thiel’s Inequality coefficient etc. 1. INTRODUCTION An effective security market provides three principal opportunities- trading equities, debt securities and derivative products. For the purpose of risk management and trading, the pricing theories of stock options have occupied important place in derivative market. These theories range from relatively undemanding binomial model to more complex B & S Model (1973). The Black-Scholes option pricing model is a landmark in the history of Derivative. This preferred model provides a closed analytical view for the valuation of European style options.
    [Show full text]
  • Ivan Brick's Vita
    VITA Ivan E. Brick Rutgers University Rutgers Business School at Newark and New Brunswick 1 Washington Park Newark, NJ 07102 Telephone: (973) 353-5155 Email: [email protected] WORK EXPERIENCE: Rutgers University – Rutgers Business School - Dean’s Professor of Business 2016 - Present - Chair, Finance and Economics 1996 - Present Department - Associate Dean for Faculty 1993 - 1996 - Professor 1990 - Present - Acting Director Center for Entrepreneurial Management 1995 - 1997 - Director, David Whitcomb Center for Research in Financial Services 1988 - Present - Member of the Board of Directors, Rutgers Minority Investment Corporation 1991 - 1997 - Associate Professor 1984 - 1990 - Members of Graduate Faculty 1983 - Present of Rutgers - Newark - Assistant Professor 1978 - 1984 Rutgers University - Rutgers College - New Brunswick - Instructor 1976 - 1978 Columbia University - Visiting Associate Professor Summer - 1983 - Visiting Assistant Professor Spring - 1978 - Preceptor Summer - 1976 EDUCATION: Columbia University - Ph.D. - January 1979 Major: Finance Dissertation: The Debt Maturity Structure Decision Columbia University - M. Phil. - May 1976 Major: Finance Yeshiva University - B.A. - June 1973 2 Major: Mathematics Minor: Economics CONSULTING: Clients include E.F. Hutton, American Telephone and Telegraph, Chemical Bank, Paine Webber, Mitchell Hutchins Inc., Bell Communications Research, Seton Company, Financial Accounting Institute, Economic Studies, Inc., New York Institute of Finance, and Robert Wallach. PUBLICATIONS: 1) "Monopoly Price-Advertising Decision-Making under Uncertainty," Journal of Industrial Economics, March 1981 (with Harsharanjeet Jagpal), pp. 279-285. 2) "Labor Market Equilibria under Limited Liability," Journal of Economics and Business, January 1982 (with Ephraim F. Sudit), pp. 51-58. 3) "A Note on Beta and the Probability of Default," Journal of Financial Research, Fall 1981 (with Meir Statman), pp.
    [Show full text]
  • Introduction to Black's Model for Interest Rate
    INTRODUCTION TO BLACK'S MODEL FOR INTEREST RATE DERIVATIVES GRAEME WEST AND LYDIA WEST, FINANCIAL MODELLING AGENCY© Contents 1. Introduction 2 2. European Bond Options2 2.1. Different volatility measures3 3. Caplets and Floorlets3 4. Caps and Floors4 4.1. A call/put on rates is a put/call on a bond4 4.2. Greeks 5 5. Stripping Black caps into caplets7 6. Swaptions 10 6.1. Valuation 11 6.2. Greeks 12 7. Why Black is useless for exotics 13 8. Exercises 13 Date: July 11, 2011. 1 2 GRAEME WEST AND LYDIA WEST, FINANCIAL MODELLING AGENCY© Bibliography 15 1. Introduction We consider the Black Model for futures/forwards which is the market standard for quoting prices (via implied volatilities). Black[1976] considered the problem of writing options on commodity futures and this was the first \natural" extension of the Black-Scholes model. This model also is used to price options on interest rates and interest rate sensitive instruments such as bonds. Since the Black-Scholes analysis assumes constant (or deterministic) interest rates, and so forward interest rates are realised, it is difficult initially to see how this model applies to interest rate dependent derivatives. However, if f is a forward interest rate, it can be shown that it is consistent to assume that • The discounting process can be taken to be the existing yield curve. • The forward rates are stochastic and log-normally distributed. The forward rates will be log-normally distributed in what is called the T -forward measure, where T is the pay date of the option.
    [Show full text]
  • Annual Accounts and Report
    Annual Accounts and Report as at 30 June 2018 WorldReginfo - 5b649ee5-9497-487a-9fdb-e60cdfc3179f LIMITED COMPANY SHARE CAPITAL € 443,521,470 HEAD OFFICE: PIAZZETTA ENRICO CUCCIA 1, MILAN, ITALY REGISTERED AS A BANK. PARENT COMPANY OF THE MEDIOBANCA BANKING GROUP. REGISTERED AS A BANKING GROUP Annual General Meeting 27 October 2018 WorldReginfo - 5b649ee5-9497-487a-9fdb-e60cdfc3179f www.mediobanca.com translation from the Italian original which remains the definitive version WorldReginfo - 5b649ee5-9497-487a-9fdb-e60cdfc3179f BOARD OF DIRECTORS Term expires Renato Pagliaro Chairman 2020 * Maurizia Angelo Comneno Deputy Chairman 2020 Alberto Pecci Deputy Chairman 2020 * Alberto Nagel Chief Executive Officer 2020 * Francesco Saverio Vinci General Manager 2020 Marie Bolloré Director 2020 Maurizio Carfagna Director 2020 Maurizio Costa Director 2020 Angela Gamba Director 2020 Valérie Hortefeux Director 2020 Maximo Ibarra Director 2020 Alberto Lupoi Director 2020 Elisabetta Magistretti Director 2020 Vittorio Pignatti Morano Director 2020 * Gabriele Villa Director 2020 * Member of Executive Committee STATUTORY AUDIT COMMITTEE Natale Freddi Chairman 2020 Francesco Di Carlo Standing Auditor 2020 Laura Gualtieri Standing Auditor 2020 Alessandro Trotter Alternate Auditor 2020 Barbara Negri Alternate Auditor 2020 Stefano Sarubbi Alternate Auditor 2020 * * * Massimo Bertolini Secretary to the Board of Directors www.mediobanca.com translation from the Italian original which remains the definitive version WorldReginfo - 5b649ee5-9497-487a-9fdb-e60cdfc3179f
    [Show full text]
  • Option Pricing: a Review
    Option Pricing: A Review Rangarajan K. Sundaram Introduction Option Pricing: A Review Pricing Options by Replication The Option Rangarajan K. Sundaram Delta Option Pricing Stern School of Business using Risk-Neutral New York University Probabilities The Invesco Great Wall Fund Management Co. Black-Scholes Model Shenzhen: June 14, 2008 Implied Volatility Outline Option Pricing: A Review Rangarajan K. 1 Introduction Sundaram Introduction 2 Pricing Options by Replication Pricing Options by Replication 3 The Option Delta The Option Delta Option Pricing 4 Option Pricing using Risk-Neutral Probabilities using Risk-Neutral Probabilities The 5 The Black-Scholes Model Black-Scholes Model Implied 6 Implied Volatility Volatility Introduction Option Pricing: A Review Rangarajan K. Sundaram These notes review the principles underlying option pricing and Introduction some of the key concepts. Pricing Options by One objective is to highlight the factors that affect option Replication prices, and to see how and why they matter. The Option Delta We also discuss important concepts such as the option delta Option Pricing and its properties, implied volatility and the volatility skew. using Risk-Neutral Probabilities For the most part, we focus on the Black-Scholes model, but as The motivation and illustration, we also briefly examine the binomial Black-Scholes Model model. Implied Volatility Outline of Presentation Option Pricing: A Review Rangarajan K. Sundaram The material that follows is divided into six (unequal) parts: Introduction Pricing Options: Definitions, importance of volatility. Options by Replication Pricing of options by replication: Main ideas, a binomial The Option example. Delta The option delta: Definition, importance, behavior. Option Pricing Pricing of options using risk-neutral probabilities.
    [Show full text]
  • Pricing of Index Options Using Black's Model
    Global Journal of Management and Business Research Volume 12 Issue 3 Version 1.0 March 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4588 & Print ISSN: 0975-5853 Pricing of Index Options Using Black’s Model By Dr. S. K. Mitra Institute of Management Technology Nagpur Abstract - Stock index futures sometimes suffer from ‘a negative cost-of-carry’ bias, as future prices of stock index frequently trade less than their theoretical value that include carrying costs. Since commencement of Nifty future trading in India, Nifty future always traded below the theoretical prices. This distortion of future prices also spills over to option pricing and increase difference between actual price of Nifty options and the prices calculated using the famous Black-Scholes formula. Fisher Black tried to address the negative cost of carry effect by using forward prices in the option pricing model instead of spot prices. Black’s model is found useful for valuing options on physical commodities where discounted value of future price was found to be a better substitute of spot prices as an input to value options. In this study the theoretical prices of Nifty options using both Black Formula and Black-Scholes Formula were compared with actual prices in the market. It was observed that for valuing Nifty Options, Black Formula had given better result compared to Black-Scholes. Keywords : Options Pricing, Cost of carry, Black-Scholes model, Black’s model. GJMBR - B Classification : FOR Code:150507, 150504, JEL Code: G12 , G13, M31 PricingofIndexOptionsUsingBlacksModel Strictly as per the compliance and regulations of: © 2012.
    [Show full text]
  • Interest Rate Caps “Smile” Too! but Can the LIBOR Market Models Capture It?
    Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture It? Robert Jarrowa, Haitao Lib, and Feng Zhaoc January, 2003 aJarrow is from Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853 ([email protected]). bLi is from Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853 ([email protected]). cZhao is from Department of Economics, Cornell University, Ithaca, NY 14853 ([email protected]). We thank Warren Bailey and seminar participants at Cornell University for helpful comments. We are responsible for any remaining errors. Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture It? ABSTRACT Using more than two years of daily interest rate cap price data, this paper provides a systematic documentation of a volatility smile in cap prices. We find that Black (1976) implied volatilities exhibit an asymmetric smile (sometimes called a sneer) with a stronger skew for in-the-money caps than out-of-the-money caps. The volatility smile is time varying and is more pronounced after September 11, 2001. We also study the ability of generalized LIBOR market models to capture this smile. We show that the best performing model has constant elasticity of variance combined with uncorrelated stochastic volatility or upward jumps. However, this model still has a bias for short- and medium-term caps. In addition, it appears that large negative jumps are needed after September 11, 2001. We conclude that the existing class of LIBOR market models can not fully capture the volatility smile. JEL Classification: C4, C5, G1 Interest rate caps and swaptions are widely used by banks and corporations for managing interest rate risk.
    [Show full text]
  • Banca Popolare Dell’Alto Adige Joint-Stock Company
    2016 FINANCIAL STATEMENTS 1 Banca Popolare dell’Alto Adige Joint-stock company Registered office and head office: Via del Macello, 55 – I-39100 Bolzano Share Capital as at 31 December 2016: Euro 199,439,716 fully paid up Tax code, VAT number and member of the Business Register of Bolzano no. 00129730214 The bank adheres to the inter-bank deposit protection fund and the national guarantee fund ABI 05856.0 www.bancapopolare.it – www.volksbank.it 2 3 „Wir arbeiten 2017 konzentriert daran, unseren Strategieplan weiter umzusetzen, die Kosten zu senken, die Effizienz und Rentabilität der Bank zu erhöhen und die Digitalisierung voranzutreiben. Auch als AG halten wir an unserem Geschäftsmodell einer tief verankerten Regionalbank in Südtirol und im Nordosten Italiens fest.“ Otmar Michaeler Volksbank-Präsident 4 DIE VOLKSBANK HAT EIN HERAUSFORDERNDES JAHR 2016 HINTER SICH. Wir haben vieles umgesetzt, aber unser hoch gestecktes Renditeziel konnten wir nicht erreichen. Für 2017 haben wir uns vorgenommen, unsere Projekte und Ziele mit noch mehr Ehrgeiz zu verfolgen und die Rentabilität der Bank deutlich zu erhöhen. 2016 wird als das Jahr der Umwandlung in eine Aktien- Beziehungen und wollen auch in Zukunft Kredite für Familien und gesellschaft in die Geschichte der Volksbank eingehen. kleine sowie mittlere Unternehmen im Einzugsgebiet vergeben. Diese vom Gesetzgeber aufgelegte Herausforderung haben Unser vorrangiges Ziel ist es, beste Lösungen für unsere die Mitglieder im Rahmen der Mitgliederversammlung im gegenwärtig fast 60.000 Mitglieder und über 260.000 Kunden November mit einer überwältigenden Mehrheit von 97,5 Prozent zu finden. angenommen. Gleichzeitig haben wir die Weichen gestellt, um All dies wird uns in die Lage versetzen, in Zukunft wieder auch als AG eine erfolgreiche und tief verankerte Regionalbank Dividenden auszuschütten.
    [Show full text]
  • Risk Measures with Normal Distributed Black Options Pricing Model
    Mälardalen University, Västerås, Sweden, 2013 -06 -05 School of Education, Culture and Communication Division of Applied Mathematics Bachelor Degree Project in Financial Mathematics Risk Measures with Normal Distributed Black Options Pricing Model Supervisors: Anatoliy Malyarenko, Jan Röman Author: Wenqing Huang Acknowledgements I would like to express my great gratitude to my supervisors Anatoliy Malyarenko and Jan R.M. Röman for the great guidance they rendered to me through their comments and thoughts. Not only did they help me in this thesis, they also gave me a good foundation through their lectures. A special appreciation to the other lecturers in the Division of Applied Mathematics of Mälardalen University, their lectures have been of great help in the realization of this thesis as well. 2 Abstract The aim of the paper is to study the normal Black model against the classical Black model in a trading point of view and from a risk perspective. In the section 2, the derivation of the model is subject to the assumption that implementation of a dynamic hedging strategy will eliminate the risk of holding long or short positions in such options. In addition, the derivation of the formulas has been proved mathematically by the notable no-arbitrage argument. The idea of the theory is that the fair value of any derivative security is computed as the expectation of the payoff under an equivalent martingale measure. In the third section, the Greeks have been derived by differentiation. Also brief explanation regarding how one can approximate log-normal Black with normal version has been explored in the section 4.
    [Show full text]
  • Dynamic Hedging Strategies
    DYNAMIC HEDGING STRATEGIES Dynamic Hedging Strategies In this article, the authors use the Black-Scholes option pricing model to simulate hedging strategies for portfolios of derivatives and other assets. by Simon Benninga and Zvi Wiener dynamic hedging strategy typically involves two 1. A SIMPLE EXAMPLE positions: To start off, consider the following example, which we A have adapted from Hull (1997): A ®nancial institution has Í A static position in a security or a commitment by a sold a European call option for $300,000. The call is writ- ®rm. For example: ten on 100,000 shares of a non-dividend paying stock with the following parameters: ± A ®nancial institution has written a call on a stock or a portfolio; this call expires some time in the future Current stock price = $49 and is held by a counterparty which has the choice Strike price = X = $50 of either exercising it or not. Stock volatility = 20% Risk-free interest rate r =5%. ± A U.S. ®rm has committed itself to sell 1000 widgets Option time to maturity T = 20 weeks at some de®ned time in the future; the receipts will Stock expected return = 13% be in German marks. The Black-Scholes price of this option is slightly over Í An offsetting position in a ®nancial contract. Typically, $240,000 and can be calculated using the Mathematica this counter-balancing position is adjusted when market program de®ned in our previous article: conditions change; hence the name dynamic hedging strategy: In[1]:= Clear[snormal, d1, d2, bsCall]; snormal[x_]:= [ [ ]] + ; To hedge its written call, the issuing ®rm decides to buy 1/2*Erf x/Sqrt 2.
    [Show full text]
  • International Risk Management Conference 2016 “Risk
    International Risk Management Conference 2016 Ninth Annual Meeting of The Risk, Banking and Finance Society Jerusalem, Israel: June 13-15, 2016 www.irmc.eu CALL FOR PAPERS “Risk Management and Regulation in Banks and Other Financial Institutions – How to Achieve Economic Stability?” KEYDATES: Call for Papers Deadline: March 15, 2016 (Full papers – Final Draft); Paper acceptance: April 8, 2016 The Hebrew University of Jerusalem (http://new.huji.ac.il/en) anD the IRMC permanent orGanizers (University of Florence, NYU Stern Salomon Center) in collaboration with Bank of Israel anD PRMIA, invite you to join the ninth edition of the International Risk Management Conference in Jerusalem, Israel, June 13-15, 2016. The conference will bring together leaDing experts from various acaDemic Disciplines anD professionals for a three-day conference incluDing three keynote plenary sessions, three parallel featured sessions and a professional workshop. The conference welcomes all relevant methodological and empirical contributions. Keynote and Featured Speakers: Robert Israel Aumann (Hebrew University of Jerusalem). Member of the United States National Academy of Sciences anD Professor at the Center for the StuDy of Rationality in the Hebrew University of Jerusalem in Israel. Aumann received the Nobel Prize in Economics in 2005 for his work on conflict anD cooperation through Game-theory analysis. Edward I. Altman (NYU Stern), Carol Alexander (University of Sussex & EDitor in Chief JBF), Linda Allen (City University of New York), the Scientific Committee Chairman Menachem Brenner (NYU Stern), Michel Crouhy (Natixis), Karnit Flug (Bank of Israel Governor - TBC), Ben Golub (CRO Blackrock), Fernando Zapatero (USC Marshall School of Business) anD the Professional Risk Manager International Association.
    [Show full text]