An Update on the Anxiolytic and Neuroprotective Properties of Etifoxine: from Brain GABA Modulation to a Whole-Body Mode of Acti

Total Page:16

File Type:pdf, Size:1020Kb

An Update on the Anxiolytic and Neuroprotective Properties of Etifoxine: from Brain GABA Modulation to a Whole-Body Mode of Acti An update on the anxiolytic and neuroprotective properties of etifoxine: from brain GABA modulation to a whole-body mode of action Philippe Nuss, Florian Ferreri, Michel Bourin To cite this version: Philippe Nuss, Florian Ferreri, Michel Bourin. An update on the anxiolytic and neuroprotective properties of etifoxine: from brain GABA modulation to a whole-body mode of action. Neuropsychi- atric Disease and Treatment, Dove Medical Press, 2019, 15, pp.1781-1795. 10.2147/NDT.S200568. hal-02273267 HAL Id: hal-02273267 https://hal.sorbonne-universite.fr/hal-02273267 Submitted on 28 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Neuropsychiatric Disease and Treatment Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW An update on the anxiolytic and neuroprotective properties of etifoxine: from brain GABA modulation to a whole-body mode of action This article was published in the following Dove Press journal: Neuropsychiatric Disease and Treatment Philippe Nuss1,2 Abstract: Treating the signs and symptoms of anxiety is an everyday challenge in clinical Florian Ferreri1 practice. When choosing between treatment options, anxiety needs to be understood in the Michel Bourin3 situational, psychiatric, and biological context in which it arises. Etifoxine, a non- benzodiazepine anxiolytic drug belonging to the benzoxazine class, is an effective treatment 1Department of Adult Psychiatry and Medical Psychology, Sorbonne University, for anxiety in response to a stressful situation. In the present review, we focused on several Saint-Antoine Hospital, Paris, France; aspects of the cerebral and somatic biological mechanisms involved in anxiety and investi- 2 Inserm UMR_S938, Saint-Antoine gated the extent to which etifoxine’s mode of action can explain its anxiolytic activity. Its Research Centre, Sorbonne University, Paris, France; 3Department of two mechanisms of action are the modulation of GABAergic neurotransmission and neuro- Neurobiology of Anxiety and Depression, steroid synthesis. Recent data suggest that the molecule possesses neuroprotective, neuro- Faculty of Medicine, Nantes University, fl fi For personal use only. plastic, and anti-in ammatory properties. Etifoxine was rst shown to be an effective Nantes, France anxiolytic in patients in clinical studies comparing it with clobazam, sulpiride, and placebo. Randomized controlled studies have demonstrated its anxiolytic efficacy in patients with adjustment disorders (ADs) with anxiety, showing it to be superior to buspirone and comparable to lorazepam and phenazepam, with a greater number of markedly improved responders and a better therapeutic index. Etifoxine’s noninferiority to alprazolam has also been demonstrated in a comparative trial. Significantly less rebound anxiety was observed after abrupt cessation of etifoxine compared with lorazepam or alprazolam. Consistent with this finding, etifoxine appears to have a very low dependence potential. Unlike lorazepam, it has no effect on psychomotor performance, vigilance, or free recall. Severe adverse events are in general rare. Skin and subcutaneous disorders are the most frequently reported, but these generally resolve after drug cessation. Taken together, its dual mechanisms of action in anxiety and the positive data yielded by clinical trials support the use of etifoxine for treating the anxiety signs and symptoms of individuals with ADs. Neuropsychiatric Disease and Treatment downloaded from https://www.dovepress.com/ by 134.157.148.106 on 29-Aug-2019 Keywords: etifoxine, adjustment disorders, TSPO, translocator protein 18 kDa, 3α, allopregnanolone, 5α-THP, GABA, benzodiazepines, anxiety, neuroprotection Introduction Anxiety, an emotional experience characterized by a state of arousal and the expectation of danger, has been part of human experience throughout the ages. Over time, numerous conceptions of anxiety and classifications have been pro- posed, particularly in the medical field. Classifications of anxiety regularly redraw Correspondence: Philippe Nuss the boundaries between its different clinical manifestations, and new research Department of Psychiatry and Medical Psychology, Hospital Saint-Antoine, 184 continues to reveal further layers of complexity in its pathophysiological mechan- rue du Faubourg Saint-Antoine, Paris isms. In the present review, we focused on the treatment of anxiety with etifoxine, 75012, France Email [email protected] a non-benzodiazepine (BZD) anxiolytic. Our aim was to provide an overall picture submit your manuscript | www.dovepress.com Neuropsychiatric Disease and Treatment 2019:15 1781–1795 1781 DovePress © 2019 Nuss et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work http://doi.org/10.2147/NDT.S200568 you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Powered by TCPDF (www.tcpdf.org) 1 / 1 Nuss et al Dovepress of the anxiolytic properties of etifoxine, both within the The traditional concept of the pathophysiology of anxi- traditional conceptual framework of anxiety disorders and ety has focused on structural and functional brain with respect to the new perspectives opened up by recent dysfunction.5 It regards anxiety as the result of an alteration research. of the coordinated activity of brain pathways, modulated by We focused on the treatment of adjustment disorders local and distant synaptic relays via neurotransmitters. (ADs), a category that was recently redefined in the DSM-5 Structurally, a set of limbic structures have been implicated and ICD-11. Previously, the emphasis was on subjective in anxiety. These include the amygdala, which is tightly distress and emotional disturbances in ADs, principally in connected to the prefrontal cortex and appears to be critical terms of anxious or depressive symptomatology, leading to for the regulation of negative emotion. Various neurotrans- the identification of ADs with anxiety (ADWA) and ADs mitters and modulators play an important functional role in with depression. ADWA were described as being more fre- modulating anxiety-related behaviors. These include med- quent than their depressive counterpart, mainly affecting iators associated with the hypothalamic-pituitary-adrenal young and professionally active individuals.1 The manifesta- (HPA) axis,6 monoaminergic and GABAergic neurotrans- tions of anxiety in ADWA were considered to be just as mission systems,7,8 neuropeptides such as cholecystokinin, severe as those of generalized anxiety disorders.2 and lipid neuromodulators.9 Nonetheless, criticisms were voiced regarding the validity In addition to this brain-centered approach to the patho- of the DSM-IV and ICD-10 diagnostic criteria for ADs. physiology of anxiety, there is increasing evidence to sug- Some of these have been addressed in the newly published gest that anxiety states can also be modulated by the effect classifications, where there has been a shift towardconcep- on the brain of somatic physiological processes such as tualizing ADs as trauma- and stressor-related disorders. inflammation, immunity, and oxidative stress, as well as DSM-5 diagnostic criteria for ADs include transient mala- gut microbiota.10 For instance, dysfunctional interactions daptive or pathological reactions to identifiable stressors or involving the HPA axis and gut microbiota11 have been changes in life circumstances, with symptoms emerging described as contributing to the pathophysiology of anxiety. For personal use only. within 3 months of stress or onset. Anxiety, depression, and In humans, stress, a common feature of all anxiety disorders behavioral disturbances are now seen as potentially asso- has been shown to be associated with several pro- ciated qualifiers, rather than as specifiers. Clinical manifesta- inflammatory response phenotypes that may be unrespon- tions are described as being out of all proportion with the sive to the anti-inflammatory actions of glucocorticoids.12 event. In addition to its intrinsic nature, the stressor must be Moreover, several drugs known to reduce the clinical man- seen within the personal and interpersonal context in which it ifestations of anxiety (antidepressants, certain BZD, and has occurred, and cultural norms. The ICD-11 classification non-BZD anxiolytics) have been shown to attenuate the goes one step further, by identifying core clinical manifesta- above-mentioned abnormal physiological processes, point- tions, namely 1) “preoccupation with the stressor or its con- ing to a possible – and previously underestimated – aspect sequences, including excessive
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
    US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S.
    [Show full text]
  • The Anxiolytic Etifoxine Protects Against Convulsant and Anxiogenic
    Alcohol 43 (2009) 197e206 The anxiolytic etifoxine protects against convulsant and anxiogenic aspects of the alcohol withdrawal syndrome in mice Marc Verleye*, Isabelle Heulard, Jean-Marie Gillardin Biocodex-De´partement de Pharmacologie-Zac de Mercie`res, Chemin d’Armancourt 60200 Compie`gne, France Received 11 December 2008; received in revised form 3 February 2009; accepted 4 February 2009 Abstract Change in the function of g-aminobutyric acidA (GABAA) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans. The present work investigated the effects of anxiolytic compound etifoxine on ethanol-withdrawal paradigms in a mouse model. The benzodiazepine diazepam was chosen as reference compound. Ethanol was given to NMRI mice by a liquid diet at 3% for 8 days, then at 4% for 7 days. Under these conditions, ethanol blood level ranged between 0.5 and 2 g/L for a daily ethanol intake varying from 24 to 30 g/kg. These parameters permitted the emergence of ethanol-withdrawal symptoms once ethanol administration was terminated. Etifoxine (12.5e25 mg/kg) and diazepam (1e4 mg/kg) injected intraperitoneally 3 h 30 min after ethanol removal, decreased the severity in handling-induced tremors and convulsions in the period of 4e6 h after withdrawal from chronic ethanol treatment.
    [Show full text]
  • Etifoxine Impairs Neither Alertness Nor Cognitive Functions of the Elderly: a Randomized, Double-Blind, Placebo-Controlled Crossover Study
    ARTICLE IN PRESS JID: NEUPSY [m6+; June 28, 2018;22:42 ] European Neuropsychopharmacology (2018) 000, 1–8 www.elsevier.com/locate/euroneuro Etifoxine impairs neither alertness nor cognitive functions of the elderly: A randomized, double-blind, placebo-controlled crossover study a ,b , ∗ c b D. Deplanque , F. Machuron , N. Waucquier , b b b a E. Jozefowicz , S. Duhem , S. Somers , O. Colin , c a A. Duhamel , R. Bordet a Univ. Lille, Inserm, CHU Lille, U1171 - Degenerative & Vascular cognitive disorders, F-59000 Lille, France b Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d’Investigation Clinique, F-59000 Lille, France c Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, F-59000 Lille, France Received 22 December 2017; received in revised form 4 May 2018; accepted 17 May 2018 Available online xxx KEYWORDS Abstract Etifoxine; Etifoxine hydrochloride (Stresam ®), a treatment indicated for psychosomatic manifestations of Benzodiazepines; anxiety, could be an alternative to benzodiazepines. While no impact on alertness and cognitive Anxiolytic; functions has been proven among youth, data on elderly are lacking. The primary objective of Cognition; this study was to measure the impact of etifoxine, lorazepam or placebo on alertness in the el- Elderly; derly. The secondary objectives were to evaluate cognitive performances and adverse effects. Geriatric psychiatry In this randomized, placebo-controlled, double-blind, 3-way crossover design, 30 healthy vol- unteers aged 65 to 75 years underwent three one-day sessions. After treatment intake, stan- dardized cognitive tests were conducted using the Cambridge Neuropsychological Test Auto- mated Batteries and other psychological tests (Stroop, Rey Auditory Verbal Learning Test, Digit R Registration: EudraCT 2012-005530-11 and NCT 02147548 ∗ Correspondence to: Department of medical Pharmacology, Faculty of Medicine, 1 place Verdun, 59045 Lille, France.
    [Show full text]
  • UNDERSTANDING PHARMACOLOGY of ANTIEPILEPTIC DRUGS: Content
    UNDERSTANDING PHARMACOLOGY OF ANTIEPILEPTIC DRUGS: PK/PD, SIDE EFFECTS, DRUG INTERACTION THANARAT SUANSANAE, BPharm, BCPP, BCGP Assistance Professor of Clinical Pharmacy Faculty of Pharmacy, Mahidol University Content Mechanism of action Pharmacokinetic Adverse effects Drug interaction 1 Epileptogenesis Neuronal Network Synaptic Transmission Stafstrom CE. Pediatr Rev 1998;19:342‐51. 2 Two opposing signaling pathways for modulating GABAA receptor positioning and thus the excitatory/inhibitory balance within the brain Bannai H, et al. Cell Rep 2015. doi: 10.1016/j.celrep.2015.12.002 Introduction of AEDs in the World (US FDA Registration) Mechanism of action Pharmacokinetic properties Adverse effects Potential to develop drug interaction Formulation and administration Rudzinski LA, et al. J Investig Med 2016;64:1087‐101. 3 Importance of PK/PD of AEDs in Clinical Practice Spectrum of actions Match with seizure type Combination regimen Dosage regimen Absorption Distribution Metabolism Elimination Drug interactions ADR (contraindications, cautions) Mechanisms of Neuronal Excitability Voltage sensitive Na+ channels Voltage sensitive Ca2+ channels Voltage sensitive K+ channel Receptor‐ion channel complex Excitatory amino acid receptor‐cation channel complexes • Glutamate • Aspartate GABA‐Cl‐ channel complex 4 Mechanism of action of clinically approved anti‐seizure drugs Loscher W, et al. CNS Drugs 2016;30:1055‐77. Summarize Mechanisms of Action of AEDs AED Inhibition of Increase in Affinity to Blockade of Blockade of Activation of Other glutamate GABA level GABAA sodium calcium potassium excitation receptor channels channels channels Benzodiazepines + Brivaracetam + + Carbamazepine + + (L) Eslicarbazepine + Ethosuximide + (T) Felbamate +(NMDA) + + + + (L) + Gabapentin + (N, P/Q) Ganaxolone + Lacosamide + Lamotrigine + + + + (N, P/Q, R, T) + inh. GSK3 Levetiracetam + + (N) SV2A, inh.
    [Show full text]
  • WO 2007/109289 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 27 September 2007 (27.09.2007) WO 2007/109289 Al (51) International Patent Classification: (74) Agents: INSOGNA, Anthony, M. et al; Jones Day, 222 C07D 265/14 (2006.01) A61P 25/00 (2006.01) East 41st Street, New York, NY 10017-6702 (US). A61K 31/535 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US2007/006959 AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, (22) International Filing Date: 20 March 2007 (20.03.2007) FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, (25) Filing Language: English LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, (26) Publication Language: English RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: 60/784,513 20 March 2006 (20.03.2006) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): XYTIS kind of regional protection available): ARIPO (BW, GH, INC. [US/US]; 101 Theory Suite 100, Irvine, CA 92617 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (US).
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • Possible Modulation of Neurobehavioural Patterns by Anxiolytics Drugs
    Zaved Ahmed Khan et al. / International Journal of Pharma Sciences and Research (IJPSR) Vol.1(11), 2010, 457-464 Possible modulation of neurobehavioural patterns by anxiolytics drugs Zaved Ahmed Khan ,FICER (Corresponding Author) Assistant Professor Medical Biotechnology Division School of Biosciences and Technology, VIT University, Vellore-632014 TN, India Dr Asit Ranjan Ghosh Professor Medical Biotechnology Division School of Biosciences and Technology, VIT University, Vellore-632014 TN, India ABSTRACT Stress is very common and affects as many as one in eight every people in their teen years. Depression, which is common form of stress related disorder affects people of every color, race, economic status, or age. However, it does seem to affect more females than males during adolescence and adulthood. Stress affects mind, body, and behavior in many ways. The signs and symptoms of stress vary from person to person, but all have the potential to harm our health, emotional wellbeing, and relationships with others. The stress response of the body is meant to protect and support us in maintaining stability. Our body is constantly adjusting to its surroundings. When a physical or mental event threatens this equilibrium, we react to it. Anxiety is characterized by a persistent and disproportionate fear unrelated to any genuine risk. It can increase to an extent that may interfere with even normal routine of life and person may feel apprehensive regarding happenings of normal things in life. The present paper discusses anti-anxiety potential of 15 anxiolytics with emphasis on their pre-clinical and clinical reports.majority of drugs have been found to be acting through modulation of serotonin and gamma butyric acid (GABA) neurotransmitters.
    [Show full text]
  • Stresam® Summary of Product Characteristics
    SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT STRESAM®, capsule 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Active ingredient: Etifoxine hydrochloride ..................................................................... 50 mg For excipients: see 6.1 3. PHARMACEUTICAL FORM Capsule (blue and white). 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Psychosomatic manifestations of anxiety such as autonomic dystonia, notably of a cardiovascular nature. 4.2 Posology and method of administration Posology Usually 3 to 4 capsules a day, taken as 2 or 3 divided doses. Treatment duration : a few days to a few weeks. Method of administration Swallow the capsules with a little amount of water. 4.3 Contraindications - states of shock, - severely impaired liver and/or renal function, - myasthenia. 4.4 Special warnings and special precautions for use Warning Because of the presence of lactose, this medicine is contraindicated in patients with congenital galactosemia, glucose and galactose malabsorption syndrome or lactase deficit. Precautions Because of risks of reciprocal potentialisation: - combination with central depressants must be prescribed cautiously, - simultaneous intake of alcoholic drinks is inadvisable. 4.5 Interactions with other medicinal products and other forms of interaction INADVISABLE COMBINATIONS + ALCOHOL : Alcohol increases the sedative effect of these substances. Impaired alertness may make vehicle driving and machinery operation dangerous. Avoid alcoholic drinks and medicines containing alcohol. COMBINATIONS
    [Show full text]
  • Investigating the Role of the Central and the Peripheral Benzodiazepine Receptor on Stress and Anxiety Related Parameters
    Investigating the role of the central and the peripheral benzodiazepine receptor on stress and anxiety related parameters Inaugural-Dissertation zur Erlangung der Doktorwürde der Fakultät für Humanwissenschaften der Universität Regensburg vorgelegt von LISA-MARIE BAHR aus Hausen Regensburg 2020 Erstgutachter: Prof. Dr. rer. soc. Andreas Mühlberger Zweitgutachterin: PD Dr. med. habil. Caroline Nothdurfter I ACKNOWLEDGEMENT I wish to thank a number of people that have supported me on this exciting journey and substantially contributed to the success of this work. First of all, I want to thank my supervisors Priv.-Doz. Caroline Nothdurfter and Professor Andreas Mühlberger for always promoting me, being open for any kind of questions and teaching me to take responsibilities. Likewise, I want to thank Professor Jens Schwarzbach for the patient teaching in the fields of brain imaging and for the support in the analysis of our MRI data. Furthermore, I want to thank Professor Rainer Rupprecht for the comprehensive support in organizational and economic matters. I am thankful for the great time and the opportunities I had within my graduate school and wish to thank its spokesperson Professor Inga Neumann and all other supervisors and PhD students of the program, especially Viola Wagner and Kerstin Kuffner for going through this together. The realization of the study would not have been possible without a number of people and I want to thank Franziska Maurer and Kevin Weber for their extensive help in data acquisition, Dr. Johannes Weigl and Dr. Andre Manook for their support concerning the medical parts, Professor Thomas Wetter for the study monitoring, Doris Melchner, Anett Dörfelt, Dr.
    [Show full text]
  • Etifoxine Versus Alprazolam for the Treatment of Adjustment Disorder with Anxiety: a Randomized Controlled Trial
    Adv Ther DOI 10.1007/s12325-015-0176-6 ORIGINAL RESEARCH Etifoxine Versus Alprazolam for the Treatment of Adjustment Disorder with Anxiety: a Randomized Controlled Trial Dan J. Stein To view enhanced content go to www.advancesintherapy.com Received: September 6, 2014 Ó The Author(s) 2015. This article is published with open access at Springerlink.com ABSTRACT was treated with 150 mg/day for etifoxine, and the other with 1.5 mg/day for alprazolam for Background: Adjustment disorder with anxiety 28 days. Patients were followed for 4 weeks of (ADWA) is a highly prevalent condition, treatment, and for an additional week after particularly in primary care practice. There are treatment discontinuation. The primary relatively few systematic treatment trials in the outcome measure was the Hamilton Anxiety area of ADWA, and there are few data on Rating Scale (HAM-A), while secondary predictors of treatment response. Etifoxine is a outcome measures included the Sheehan promising agent insofar as it is not associated Disability Scale (SDS), the Clinical Global with dependence, but in primary care settings Impressions-Change Scale (CGI-C), and the benzodiazepines continue to be frequently Self-Report for the Assessment of Adjustment prescribed for psychiatric symptoms. A Disorders. Non-inferiority analysis was used to randomized controlled trial of etifoxine versus assess the primary outcome measure, and a alprazolam for ADWA was undertaken, focusing multivariate logistic regression was employed to on efficacy and safety measures, and including investigate predictors of response. an investigation of predictors of clinical Results: Two hundred and two adult response. outpatients with ADWA were enrolled at 17 Methods: This was a comparative, multicenter, primary care sites.
    [Show full text]
  • Pharmacology of Antiepileptic Drugs
    Epileptogenesis, modulating factors, and treatment approaches PHARMACOLOGY OF ANTIEPILEPTIC DRUGS THANARAT SUANSANAE BSc (Pharm), BCPP, BCGP Associate Professor of Clinical Pharmacy Faculty of Pharmacy, Mahidol University Rakhade SN, Jensen FE. Nat Rev Neurol. 2009 Jul;5(7):380-91. doi: 10.1038/nrneurol.2009.80. Lukasiuk K. Epileptogenesis. Encyclopedia of the Neurological Sciences, 2014. Pages 196-9. https://doi.org/10.1016/B978-0-12-385157-4.00297-9. Excitotoxicity and neurodegeneration in epilepsy NMDA/AMPA/Kainate mGluR Neuronal network synaptic transmission Stafstrom CE. Pediatr Rev 1998;19:342-51. Lorigados L, et al. Biotecnologia Aplicada 2013;30:9-16. Chronological development timeline of antiepileptic drug Mechanisms of neuronal excitability and target of actions for AED + . Mechanism of action ↑ Voltage sensitive Na channels . Pharmacokinetic properties ↑ Voltage sensitive Ca2+ channels . Adverse effects + . Potential to develop drug interaction ↓ Voltage sensitive K channel . Formulation and administration Receptor-ion channel complex ↑ Excitatory amino acid receptor-cation channel complexes • Glutamate • Aspartate ↓ GABA-Cl- channel complex Rudzinski LA, et al. J Investig Med. 2016 Aug;64(6):1087-101. doi: 10.1136/jim-2016-000151. Mechanism of action of clinically approved anti-seizure drugs Action of antiepileptic drugs on neurons CBZ, carbamazepine; OXC, oxcarbazepine; LTG, lamotrigine; LCM, lacosamide; ESL, eslicarbazepine acetate; PHT, phenytoin; fPHT, fosphenytoin; TPM, topiramate; ZNS, zonisamide; RFN, rufinamide; LEV,
    [Show full text]
  • Review Memorandum
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k163590 B. Purpose for Submission: New device C. Measurand: Benzodiazepines D. Type of Test: Qualitative screening test: enzyme immunoassay (EIA) Quantitative confirmatory test: LC/MS/MS E. Applicant: Psychemedics Corporation F. Proprietary and Established Names: Psychemedics Microplate EIA for Benzodiazepines in Hair G. Regulatory Information: Product Code Classification Regulation Section Panel JXM Class II 21 CFR 862.3170 Toxicology (91) H. Intended Use: 1. Intended use(s): Refer to Indications for Use below. 2. Indication(s) for use: The Psychemedics Microplate EIA For Benzodiazepines in Hair is an in vitro diagnostic device for the qualitative detection of benzodiazepines in hair. The assay is intended for 1 use in workplace settings for the qualitative analysis of human head and body hair. The assay uses a cutoff calibrator of 1 ng oxazepam/10 mg hair. Psychemedics plans to perform this test at one site. Psychemedics has not performed an evaluation of reproducibility at different laboratories. The Psychemedics Microplate EIA For Benzodiazepines in Hair provides only a preliminary analytical test result. A more specific alternate chemical method must be used to obtain a confirmed analytical result. Liquid Chromatography/Mass spectrometry/Mass spectrometry (LC/MS/MS) using deuterated internal standards in multiple reaction monitoring (MRM) mode is the confirmatory method used by Psychemedics Corporation. This confirmatory method uses a cutoff of 0.2 ng of the identified benzodiazepine/10 mg hair. 3. Special conditions for use statement(s): This assay is for over the counter use. The Psychemedics Microplate EIA for Benzodiazepines in Hair combines a screening method (immunoassay) with a confirmation method (LC/MS/MS) in one test system.
    [Show full text]