Final Screening Assessment for Pseudomonas Putida ATCC 12633
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Evolution Toward Maximum Transport Capacity of the Ttg2 ABC System In
bioRxiv preprint doi: https://doi.org/10.1101/834812; this version posted November 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evolution toward maximum transport capacity of the Ttg2 ABC system in 2 Pseudomonas aeruginosa 3 4 Daniel Yero,1,2 Lionel Costenaro,1# Oscar Conchillo-Solé,1 Mireia Díaz-Lobo,3 Adrià 5 Mayo,1 Mario Ferrer-Navarro,1# Marta Vilaseca,3 Isidre Gibert,1,2* Xavier Daura1,4* 6 7 1Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona 8 (UAB), Barcelona, Spain; 9 2Departament de Genètica i de Microbiologia, UAB, Barcelona, Spain; 10 3Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of 11 Science and Technology, Barcelona, Spain; 12 4Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. 13 14 *Corresponding Authors: Xavier Daura, Tel: (+34)935868940 Email: 15 [email protected]. Isidre Gibert, Tel: (+34)935862050 Email: 16 [email protected]. 17 18 #Present address: Lionel Costenaro, Institut de Biologia Molecular de Barcelona 19 (CSIC), Barcelona, Spain. Mario Ferrer-Navarro, Teknokroma Analítica SA, 20 Barcelona, Spain. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/834812; this version posted November 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding 24 component of an ABC transport system thought to be involved in maintaining the 25 asymmetry of the outer membrane. -
The Burkholderia Genus: Between Mutualism and Pathogenicity
The Burkholderia genus: between mutualism and pathogenicity El género Burkholderia: entre el mutualismo y la patogenicidad David Espinosa-Victoria*, Laboratorio Interacción Molecular Planta-Microorganismo, 1Programa de Edafo- logía Colegio de Postgraduados, Carretera México-Texcoco Km 36.5, Montecillo Estado de México, México, 56230; Lucía López-Reyes, Moisés Graciano Carcaño-Montiel, Laboratorio Microbiología de Suelos, Bene- mérita Universidad Autónoma de Puebla, Avenida San Claudio s/n, Ciudad Universitaria, La Hacienda, Puebla, Puebla, 72592; 1María Serret-López. *Autor para correspondencia: [email protected] Recibido: 28 de Abril, 2020. Aceptado: 04 de Junio, 2020. Espinosa-Victoria D, López-Reyes L, Carcaño-Montiel Abstract. Burkholderia is an ambivalent genus MG and Serret-López M. 2020. The Burkholderia ge- because some of its species establish symbiotic- nus: between mutualism and pathogenicity. Mexican Jo- mutualistic relationships with plants, and urnal of Phytopathology 38(3): 337-359. symbiotic-pathogenic relationships with plants, DOI: 10.18781/R.MEX.FIT.2004-5 animals, and humans. Since the phytopathogenic bacterium B. cepacia was reported as a nosocomial Primera publicación DOI: 17 de Junio, 2020. opportunist, associated with cystic fibrosis, the First DOI publication: June 17, 2020. concern about possible infections in humans arose. The objective of this contribution was to make an analysis of Burkholderia’s functional versatility Resumen. Burkholderia es un género ambivalen- and its effect on human health. Burkholderia te debido a que algunas de sus especies establecen harbored about 100 species and the B. cepacia relaciones simbiótico-mutualistas con las plantas, y complex (BCC) consisting of 22 species. At the simbiótico-patogénicas con plantas, animales y hu- beginning, the existence of two lineages within manos. -
Whole Genome Analyses Suggests That Burkholderia Sensu Lato Contains Two Additional Novel Genera (Mycetohabitans Gen
G C A T T A C G G C A T genes Article Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae Paulina Estrada-de los Santos 1,*,† ID , Marike Palmer 2,†, Belén Chávez-Ramírez 1, Chrizelle Beukes 2, Emma T. Steenkamp 2, Leah Briscoe 3, Noor Khan 3 ID , Marta Maluk 4, Marcel Lafos 4, Ethan Humm 3, Monique Arrabit 3, Matthew Crook 5, Eduardo Gross 6 ID , Marcelo F. Simon 7,Fábio Bueno dos Reis Junior 8, William B. Whitman 9, Nicole Shapiro 10, Philip S. Poole 11, Ann M. Hirsch 3,* ID , Stephanus N. Venter 2,* ID and Euan K. James 4,* ID 1 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico; [email protected] 2 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa; [email protected] (M.P.); [email protected] (C.B.); [email protected] (E.T.S.) 3 Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; [email protected] (L.B.); [email protected] (N.K.); [email protected] (E.H.); [email protected] (M.A.) 4 The James Hutton Institute, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (M.L.) 5 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA; [email protected] -
APP201895 APP201895__Appli
APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system. -
Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M. -
Comparative Genomics of Marine Bacteria from a Historically Defined
microorganisms Article Comparative Genomics of Marine Bacteria from a Historically Defined Plastic Biodegradation Consortium with the Capacity to Biodegrade Polyhydroxyalkanoates Fons A. de Vogel 1,2 , Cathleen Schlundt 3,†, Robert E. Stote 4, Jo Ann Ratto 4 and Linda A. Amaral-Zettler 1,3,5,* 1 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands; [email protected] 2 Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, The Netherlands 3 Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA; [email protected] 4 U.S. Army Combat Capabilities Development Command Soldier Center, 10 General Greene Avenue, Natick, MA 01760, USA; [email protected] (R.E.S.); [email protected] (J.A.R.) 5 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands * Correspondence: [email protected]; Tel.: +31-(0)222-369-482 † Current address: GEOMAR, Helmholtz Center for Ocean Research, Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. Abstract: Biodegradable and compostable plastics are getting more attention as the environmen- tal impacts of fossil-fuel-based plastics are revealed. Microbes can consume these plastics and biodegrade them within weeks to months under the proper conditions. The biobased polyhydrox- Citation: de Vogel, F.A.; Schlundt, C.; yalkanoate (PHA) polymer family is an attractive alternative due to its physicochemical properties Stote, R.E.; Ratto, J.A.; Amaral-Zettler, and biodegradability in soil, aquatic, and composting environments. -
Applications of Biotechnology
Applications of Biotechnology Superbug, edible vaccine,hgh,humulin By-Dhriti Ghose Assistant Professor UG and PG Dept Of Botany Raja Narendra Lal Khan Women’s College(Autonomous) Role of transgenics in Bioremediation(Superbug) Bioremediation-(Definition and introduction)The use of either naturally occuring or deliberately introduced microorganisms to consume and break down environmental pollutants, in order to clean a polluted site. Nature has its own way of cleaning the environment by removing xenobiotics(xenobiotics are chemicals found in the environment which are not produced by the organisms.These are mostly produced by human activities and excite public awareness due to their ability to interact with the living environment.)to maintain a perfect balance. but in this era of industrialization the rate of xenobiotics discharges has crossed the tolerance limit of the nature. Therefore, there is a need to find out the method of remediating xenobiotics from the environment. Microbial remediation of xenobiotics has proved the effectiveness and low cost technology but there are several limitations in using microbes. Thus, genetic engineering approaches are used by genetic engineers to construct new strains of microbes (Genetically engineered microorganisms, GEMs or transgenic microorganisms) that have the unique characteristics compared to the wild type and broad spectrum of catabolic potential for bioremediation of xenobiotics. Oil spill occurs due release of petroleum hydrocarbons of any form into the environment due to human activity. The spill can originate from oil tankers,off shore platforms,oil rigs etc. The effect of this on marine ecosystem is terrifying. Prof. Ananda mohan chakraborty et al. (1970) developed and patented a “superbug” that was made to degrade oil and hence can clean up this oil spillover from the sea. -
Download Article (PDF)
Biologia 66/2: 288—293, 2011 Section Cellular and Molecular Biology DOI: 10.2478/s11756-011-0021-6 The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Hacer Muratoglu, Zihni Demirbag &KazimSezen* Karadeniz Technical University, Faculty of Arts and Sciences, Department of Biology, 61080 Trabzon, Turkey; e-mail: [email protected] Abstract: Colorado potato beetle, Leptinotarsa decemlineata (Say), is a devastating pest of potatoes in North America and Europe. L. decemlineata has developed resistance to insecticides used for its control. In this study, in order to find a more effective potential biological control agent against L. decemlineata, we investigated its microbiota and tested their insecticidal effects. According to morphological, physiological and biochemical tests as well as 16S rDNA sequences, microbiota was identified as Leclercia adecarboxylata (Ld1), Acinetobacter sp. (Ld2), Acinetobacter sp. (Ld3), Pseudomonas putida (Ld4), Acinetobacter sp. (Ld5) and Acinetobacter haemolyticus (Ld6). The insecticidal activities of isolates at 1.8×109 bacteria/mL dose within five days were 100%, 100%, 35%, 100%, 47% and 100%, respectively, against the L. decemlineata larvae. The results indicate that Leclercia adecarboxylata (Ld1) and Pseudomonas putida (Ld4) isolates may be valuable potential biological control agents for biological control of L. decemlineata. Key words: Leptinotarsa decemlineata; 16S rDNA; microbiota; insecticidal activity; microbial control. Abbreviations: ANOVA, one-way analysis of variance; LSD, least significant difference; PBS, phosphate buffer solution. Introduction used because of marketing concerns and limited num- ber of transgenic varieties available. Also, recombinant Potato is an important crop with ∼4.3 million tons defence molecules in plants may affect parasitoids or of production on 192,000 hectares of growing area predators indirectly (Bouchard et al. -
Comparative Analysis of the Core Proteomes Among The
Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P. -
Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS .................................................................................................... -
16S Rdna Analysis for Characterization of Pesudomonas Sp
16S rDNA analysis for characterization of Pseudomonas sp. strain MF30 isolated from Rumex acetocella roots in northern Sweden (Received: 15.09 .2006; Accepted: 28.09.2006) Idress H. Attitalla*;Ali A. Bataw**; Jolanta J. Borowicz***and Sture Brishammar*** *Omar Al-Mukhtar University, Faculty of Science, Botany Department, Box 919, El-Beida, Libya **Omar Al-Mukhtar University, Faculty of Science, Zoology Department, Box 919, El-Beida, Libya ***Maselaboratoratorerna AB, Box 148, Uppsala, Sweden Corresponding author1. [email protected] ABSTRACT A bacterial strain obtained from the northern part of Sweden previously classified as Pseudomonas veronii based on biochemical and physioloical tests. In this study, phylogenetic tree was constructed using a nearly complete sequence within the 16S rDNA gene. The strain of Pseudomonas sp. subdivided into two rather distinctly related groups, neither of which is very close to the group within the Pseudomonas fluorescens cluster. Although the phylogenetic analysis is not conclusive, it is consistent with other observations, especially the capacities of the this strain as a biocontrol agent. Taken all together, the results suggest that the MF30 strain should be classifed as another Pseudomonas species, either Pseudomonas antarctica or P. meridina. Key words: Phylogenetic analysis, 16S rDNA gene, Pseudomonas species, P. veronii, P. antarctica, P. meridina. INTRODUCTION received attention even though they possess abilities to influence plant growth and acteria belonging to the fluorescent development through different mechanisms pseudomonads, known for the (Weller, 1988; O’Sullivan and O’Gara, 1992). B diversity of their metabolites They are now recognised as being antagonistic (Leisinger and Margaff, 1979), contain to several opportunistic soil-borne fungi species that are recognized as human and as (Weller, 1988; Keel et al., 1996) and to seed- animal pathogens (Nakazawa and Abe, 1996) borne fungi (Hökeberg et al., 1997).