Top-Level Schedule Distribution Models

Total Page:16

File Type:pdf, Size:1020Kb

Top-Level Schedule Distribution Models Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com PR-155 Top-level Schedule Distribution Models Peter Frederic 19 March 2013 2013 Professional Development & Training Workshop New Orleans, LA June 18-21, 2013 Tecolote Research, Inc. Tecolote Research, Inc. 420 Fairview Ave. Suite 201 415 E. Ocean Ave., Suite H Goleta, CA 93117-3626 Lompoc, CA 93436 (805) 571-6366 (805) 588-1330 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155,Top-level Schedule Distribution Models Top-level Schedule Distribution Models Peter Frederic Tecolote Research, Inc. Abstract In the initial stages of a development project, it is sometimes necessary to build a summary-level schedule for planning and budgeting purposes before the day-by-day details of the project are fully defined or understood. However, when uncertainty assessments are performed on schedule networks containing few activities, the distribution forms chosen for individual activity durations can have a significant impact on the overall results. It is therefore important to choose uncertainty distribution forms that accurately represent the behavior of the sub-network of activities represented by each summary activity. In this paper, we investigated probability theory to see if there were statistical distributions that were well suited to modeling the completion of typical schedule sub-networks consisting of multiple parallel activities. In order to test the applicability of the distributions investigated, we developed an Excel/@Risk tool to compare how various distributions behave versus simulated data from a simplified schedule network. We evaluated numerous distribution forms including: general Beta, PERT Beta, Log-normal, Weibull, Erlang, and Poisson distributions. We concluded that only the general BETA distribution could accurately model a sub-network consisting of multiple parallel paths. We propose additional research to develop Beta parameters to represent a variety of network topologies (e.g. mostly serial/mostly parallel, generous reserves/no reserves, many discrete risks/few discrete risks, etc.). Use or disclosure of data contained on this page is subject to Page i the restriction on the title page of this document. Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models Table of Contents 1 INTRODUCTION ________________________________________________________ 1 2 THE PROCESS __________________________________________________________ 2 2.1 LOG-NORMAL DISTRIBUTION ____________________________________________ 3 2.2 WEIBULL DISTRIBUTION ________________________________________________ 4 2.3 ERLANG DISTRIBUTION _________________________________________________ 5 2.4 POISSON DISTRIBUTION_________________________________________________ 6 2.1 PERT-BETA DISTRIBUTION _____________________________________________ 7 2.1 BETA DISTRIBUTION ___________________________________________________ 8 3 ADDITIONAL RESEARCH REQUIRED ____________________________________ 10 4 CONCLUSIONS_________________________________________________________ 11 Page ii Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models Page iii Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 1 INTRODUCTION In the initial stages of a development project, it is sometimes necessary to build a summary-level schedule for planning and budgeting purposes before the day-by-day details of the project are fully defined or understood. However, when uncertainty assessments are performed on schedule networks containing few activities, the distribution forms chosen for individual activity durations can have a significant impact on the overall results. It is therefore important to choose uncertainty distribution forms that accurately represent the behavior of the sub-network of activities represented by each summary activity. In the sections below,we evaluate numerous distribution forms including: Log-normal, Weibull, Erlang, Poisson, PERT Beta, and general Beta distributions. Page 1 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2 THE PROCESS We investigated probability theory to see if there were statistical distributions that were well suited to modeling the completion of multiple parallel activities. In order to test the applicability of the distributions investigated, we developed an Excel™/@Risk™ tool to compare how various distributions behave versus simulated data from a simplified schedule network. The model simulates 50 parallel activities feeding into one. Each of the 50 activities was modeled as a lognormal distribution with a mean duration of ten days and a standard deviation of four days. The test process is: 1) use @Risk to run 10,000 iterations of the sample network, 2) capture the final completion date in all 10,000 iterations, 3) bin the simulation results into a histogram, and 4) use the Excel Solver to fit PDFs for various distributions to the simulated data histogram. For each distribution type tested, the sections below provide a very brief description of the distribution as well as a probability density graph that shows how well the distribution fit the test data. Page 2 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.1 LOG-NORMAL DISTRIBUTION From Wikipedia: "A log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed… A variable might be modeled as log-normal if it can be thought of as the multiplicative product of many independent random variables each of which is positive." PDF: Where: x = Duration µ = Mean ln(duration) α = Standard deviation ln(duration) The log-normal distribution matches the “50 parallel activities feeding into one” simulation data surprisingly well, but falls significantly short at the high tail of the distribution: Page 3 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.2 WEIBULL DISTRIBUTION From Wikipedia: "The Weibull distribution is used: • In survival analysis • In reliability engineering and failure analysis • In industrial engineering to represent manufacturing and delivery times" PDF: Where: x = Duration k = Shape parameter λ = Scale parameter The Weibull distribution does not match the “50 parallel activities feeding into one” simulation data well: Page 4 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.3 ERLANG DISTRIBUTION From Wikipedia: "The Erlang distribution was developed by A. K. Erlang to examine the number of telephone calls which might be made at the same time to the operators of the switching stations. This work on telephone traffic engineering has been expanded to consider waiting times in queuing systems in general." PDF: Where: x = Duration k = Shape parameter λ = Rate parameter The Erlang distribution matches the “50 parallel activities feeding into one” simulation data fairly well, but falls significantly short at the high tail of the distribution: Page 5 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.4 POISSON DISTRIBUTION From Wikipedia: “…the Poisson distribution (pronounced pwason(or Poisson law of small numbers[1]) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.” Because it is a discrete distribution, it is not applicable to the finish time of multiple parallel activities. Page 6 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.1 PERT-BETA DISTRIBUTION From the @Risk™ help files: "The PERT distribution (meaning Program Evaluation and Review Technique) is rather like a Triangular distribution, in that it has the same set of three parameters. Technically it is a special case of a scaled Beta (or BetaGeneral) distribution. In this sense it can be used as a pragmatic and readily understandable distribution." PDF: f(y, a, m, b) = Where: y = Duration µ = Mean = (a + 4 * m + b) / 6 α = Shape parameter = 6 * (µ - a) / (b - a) β = Shape parameter = 6 * (b - µ) / (b - a) a = Absolute minimum y b = Absolute maximum y m = Most likely value of y and: Because the shape parameters of the PERT form of the Beta curve are constrained, it is not able to match the “50 parallel activities feeding into one” simulation data well, especially at the high tail of the distribution: Page 7 Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tecolote Research, Inc. PR-155, Top-level Schedule Distribution Models 2.1 BETA DISTRIBUTION From
Recommended publications
  • Package 'Prevalence'
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Package ‘prevalence’ Devleesschauwer, Brecht ; Torgerson, Paul R ; Charlier, Johannes ; Levecke, Bruno ; Praet, Nicolas ; Dorny, Pierre ; Berkvens, Dirk ; Speybroeck, Niko Abstract: Tools for prevalence assessment studies. IMPORTANT: the truePrev functions in the preva- lence package call on JAGS (Just Another Gibbs Sampler), which therefore has to be available on the user’s system. JAGS can be downloaded from http://mcmc-jags.sourceforge.net/ Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-89061 Scientific Publication in Electronic Form Published Version The following work is licensed under a Software: GNU General Public License, version 2.0 (GPL-2.0). Originally published at: Devleesschauwer, Brecht; Torgerson, Paul R; Charlier, Johannes; Levecke, Bruno; Praet, Nicolas; Dorny, Pierre; Berkvens, Dirk; Speybroeck, Niko (2013). Package ‘prevalence’. On Line: The Comprehensive R Archive Network. Package ‘prevalence’ September 22, 2013 Type Package Title The prevalence package Version 0.2.0 Date 2013-09-22 Author Brecht Devleesschauwer [aut, cre], Paul Torgerson [aut],Johannes Charlier [aut], Bruno Lev- ecke [aut], Nicolas Praet [aut],Pierre Dorny [aut], Dirk Berkvens [aut], Niko Speybroeck [aut] Maintainer Brecht Devleesschauwer <[email protected]> BugReports https://github.com/brechtdv/prevalence/issues Description Tools for prevalence
    [Show full text]
  • Modelling Censored Losses Using Splicing: a Global Fit Strategy With
    Modelling censored losses using splicing: a global fit strategy with mixed Erlang and extreme value distributions Tom Reynkens∗a, Roel Verbelenb, Jan Beirlanta,c, and Katrien Antoniob,d aLStat and LRisk, Department of Mathematics, KU Leuven. Celestijnenlaan 200B, 3001 Leuven, Belgium. bLStat and LRisk, Faculty of Economics and Business, KU Leuven. Naamsestraat 69, 3000 Leuven, Belgium. cDepartment of Mathematical Statistics and Actuarial Science, University of the Free State. P.O. Box 339, Bloemfontein 9300, South Africa. dFaculty of Economics and Business, University of Amsterdam. Roetersstraat 11, 1018 WB Amsterdam, The Netherlands. August 14, 2017 Abstract In risk analysis, a global fit that appropriately captures the body and the tail of the distribution of losses is essential. Modelling the whole range of the losses using a standard distribution is usually very hard and often impossible due to the specific characteristics of the body and the tail of the loss distribution. A possible solution is to combine two distributions in a splicing model: a light-tailed distribution for the body which covers light and moderate losses, and a heavy-tailed distribution for the tail to capture large losses. We propose a splicing model with a mixed Erlang (ME) distribution for the body and a Pareto distribution for the tail. This combines the arXiv:1608.01566v4 [stat.ME] 11 Aug 2017 flexibility of the ME distribution with the ability of the Pareto distribution to model extreme values. We extend our splicing approach for censored and/or truncated data. Relevant examples of such data can be found in financial risk analysis. We illustrate the flexibility of this splicing model using practical examples from risk measurement.
    [Show full text]
  • ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions
    ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions F (x) = P r(X ≤ x) S(x) = 1 − F (x) dF (x) f(x) = dx H(x) = − ln S(x) dH(x) f(x) h(x) = = dx S(x) Functions of random variables Z 1 Expected Value E[g(x)] = g(x)f(x)dx −∞ 0 n n-th raw moment µn = E[X ] n n-th central moment µn = E[(X − µ) ] Variance σ2 = E[(X − µ)2] = E[X2] − µ2 µ µ0 − 3µ0 µ + 2µ3 Skewness γ = 3 = 3 2 1 σ3 σ3 µ µ0 − 4µ0 µ + 6µ0 µ2 − 3µ4 Kurtosis γ = 4 = 4 3 2 2 σ4 σ4 Moment generating function M(t) = E[etX ] Probability generating function P (z) = E[zX ] More concepts • Standard deviation (σ) is positive square root of variance • Coefficient of variation is CV = σ/µ • 100p-th percentile π is any point satisfying F (π−) ≤ p and F (π) ≥ p. If F is continuous, it is the unique point satisfying F (π) = p • Median is 50-th percentile; n-th quartile is 25n-th percentile • Mode is x which maximizes f(x) (n) n (n) • MX (0) = E[X ], where M is the n-th derivative (n) PX (0) • n! = P r(X = n) (n) • PX (1) is the n-th factorial moment of X. Bayes' Theorem P r(BjA)P r(A) P r(AjB) = P r(B) fY (yjx)fX (x) fX (xjy) = fY (y) Law of total probability 2 If Bi is a set of exhaustive (in other words, P r([iBi) = 1) and mutually exclusive (in other words P r(Bi \ Bj) = 0 for i 6= j) events, then for any event A, X X P r(A) = P r(A \ Bi) = P r(Bi)P r(AjBi) i i Correspondingly, for continuous distributions, Z P r(A) = P r(Ajx)f(x)dx Conditional Expectation Formula EX [X] = EY [EX [XjY ]] 3 Lesson 2: Parametric Distributions Forms of probability
    [Show full text]
  • Identifying Probability Distributions of Key Variables in Sow Herds
    Iowa State University Capstones, Theses and Creative Components Dissertations Summer 2020 Identifying Probability Distributions of Key Variables in Sow Herds Hao Tong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons Recommended Citation Tong, Hao, "Identifying Probability Distributions of Key Variables in Sow Herds" (2020). Creative Components. 617. https://lib.dr.iastate.edu/creativecomponents/617 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 1 Identifying Probability Distributions of Key Variables in Sow Herds Hao Tong, Daniel C. L. Linhares, and Alejandro Ramirez Iowa State University, College of Veterinary Medicine, Veterinary Diagnostic and Production Animal Medicine Department, Ames, Iowa, USA Abstract Figuring out what probability distribution your data fits is critical for data analysis as statistical assumptions must be met for specific tests used to compare data. However, most studies with swine populations seldom report information about the distribution of the data. In most cases, sow farm production data are treated as having a normal distribution even when they are not. We conducted this study to describe the most common probability distributions in sow herd production data to help provide guidance for future data analysis. In this study, weekly production data from January 2017 to June 2019 were included involving 47 different sow farms.
    [Show full text]
  • QUICK OVERVIEW of PROBABILITY DISTRIBUTIONS the Following Is A
    distribution is its memoryless property, which means that the future lifetime of a given object has the same distribution regardless of the time it existed. In other words, time has no effect on future outcomes. Success Rate () > 0. QUICK OVERVIEW OF PROBABILITY DISTRIBUTIONS PROBABILITY DISTRIBUTIONS: ALL OTHERS The following is a quick synopsis of the probability distributions available in Real Options Valuation, Inc.’s various software applications such as Risk Simulator, Real Options SLS, ROV Quantitative Data Miner, ROV Modeler, and others. Arcsine. U-shaped, it is a special case of the Beta distribution when both shape PROBABILITY DISTRIBUTIONS: MOST COMMONLY USED and scale are equal to 0.5. Values close to the minimum and maximum have high There are anywhere from 42 to 50 probability distributions available in the ROV probabilities of occurrence whereas values between these two extremes have very software suite, and the most commonly used probability distributions are listed here in small probabilities or occurrence. Minimum < Maximum. order of popularity of use. See the user manual for more technical details. Bernoulli. Discrete distribution with two outcomes (e.g., head or tails, success or failure), which is why it is also known simply as the Yes/No distribution. The Bernoulli distribution is the Binomial distribution with one trial. This distribution is the fundamental building block of other more complex distributions. Probability of Success 0 < (P) < 1. Beta. This distribution is very flexible and is commonly used to represent variability over a fixed range. It is used to describe empirical data and predict the random behavior of percentages and fractions, as the range of outcomes is typically between 0 and 1.
    [Show full text]
  • Multivariate Phase Type Distributions - Applications and Parameter Estimation
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Multivariate phase type distributions - Applications and parameter estimation Meisch, David Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Meisch, D. (2014). Multivariate phase type distributions - Applications and parameter estimation. Technical University of Denmark. DTU Compute PHD-2014 No. 331 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Ph.D. Thesis Multivariate phase type distributions Applications and parameter estimation David Meisch DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby PHD-2014-331 Preface This thesis has been submitted as a partial fulfilment of the requirements for the Danish Ph.D. degree at the Technical University of Denmark (DTU). The work has been carried out during the period from June 1st, 2010, to January 31th 2014, in the Section of Statistic in the Department of Applied Mathematics and Computer Science at DTU.
    [Show full text]
  • Handbook on Probability Distributions
    R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗).
    [Show full text]
  • CONTINUOUS DISTRIBUTIONS Laplace Transform
    J. Virtamo 38.3143 Queueing Theory / Continuous Distributions 1 CONTINUOUS DISTRIBUTIONS Laplace transform (Laplace-Stieltjes transform) Definition The Laplace transform of a non-negative random variable X 0 with the probability density ≥ function f(x) is defined as st sX st f ∗(s)= ∞ e− f(t)dt = E[e− ] = ∞ e− dF (t) alsodenotedas (s) Z0 Z0 LX Mathematically it is the Laplace transform of the pdf function. • In dealing with continuous random variables the Laplace transform has the same role as • the generating function has in the case of discrete random variables. s – if X is a discrete integer-valued ( 0) r.v., then f ∗(s)= (e− ) ≥ G J. Virtamo 38.3143 Queueing Theory / Continuous Distributions 2 Laplace transform of a sum Let X and Y be independent random variables with L-transforms fX∗ (s) and fY∗ (s). s(X+Y ) fX∗ +Y (s) = E[e− ] sX sY = E[e− e− ] sX sY = E[e− ]E[e− ] (independence) = fX∗ (s)fY∗ (s) fX∗ +Y (s)= fX∗ (s)fY∗ (s) J. Virtamo 38.3143 Queueing Theory / Continuous Distributions 3 Calculating moments with the aid of Laplace transform By derivation one sees d sX sX f ∗0(s)= E[e− ]=E[ Xe− ] ds − Similarly, the nth derivative is n (n) d sX n sX f ∗ (s)= E[e− ] = E[( X) e− ] dsn − Evaluating these at s = 0 one gets E[X] = f ∗0(0) − 2 E[X ] =+f ∗00(0) . n n (n) E[X ] = ( 1) f ∗ (0) − J. Virtamo 38.3143 Queueing Theory / Continuous Distributions 4 Laplace transform of a random sum Consider the random sum Y = X + + X 1 ··· N where the Xi are i.i.d.
    [Show full text]
  • Field Guide to Continuous Probability Distributions
    Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations.
    [Show full text]
  • Discoversim™ Version 2 Workbook
    DiscoverSim™ Version 2 Workbook Contact Information: Technical Support: 1-866-475-2124 (Toll Free in North America) or 1-416-236-5877 Sales: 1-888-SigmaXL (888-744-6295) E-mail: [email protected] Web: www.SigmaXL.com Published: December 2015 Copyright © 2011 - 2015, SigmaXL, Inc. Table of Contents DiscoverSim™ Feature List Summary, Installation Notes, System Requirements and Getting Help ..................................................................................................................................1 DiscoverSim™ Version 2 Feature List Summary ...................................................................... 3 Key Features (bold denotes new in Version 2): ................................................................. 3 Common Continuous Distributions: .................................................................................. 4 Advanced Continuous Distributions: ................................................................................. 4 Discrete Distributions: ....................................................................................................... 5 Stochastic Information Packet (SIP): .................................................................................. 5 What’s New in Version 2 .................................................................................................... 6 Installation Notes ............................................................................................................... 8 DiscoverSim™ System Requirements ..............................................................................
    [Show full text]
  • A New Heavy Tailed Class of Distributions Which Includes the Pareto
    risks Article A New Heavy Tailed Class of Distributions Which Includes the Pareto Deepesh Bhati 1 , Enrique Calderín-Ojeda 2,* and Mareeswaran Meenakshi 1 1 Department of Statistics, Central University of Rajasthan, Kishangarh 305817, India; [email protected] (D.B.); [email protected] (M.M.) 2 Department of Economics, Centre for Actuarial Studies, University of Melbourne, Melbourne, VIC 3010, Australia * Correspondence: [email protected] Received: 23 June 2019; Accepted: 10 September 2019; Published: 20 September 2019 Abstract: In this paper, a new heavy-tailed distribution, the mixture Pareto-loggamma distribution, derived through an exponential transformation of the generalized Lindley distribution is introduced. The resulting model is expressed as a convex sum of the classical Pareto and a special case of the loggamma distribution. A comprehensive exploration of its statistical properties and theoretical results related to insurance are provided. Estimation is performed by using the method of log-moments and maximum likelihood. Also, as the modal value of this distribution is expressed in closed-form, composite parametric models are easily obtained by a mode matching procedure. The performance of both the mixture Pareto-loggamma distribution and composite models are tested by employing different claims datasets. Keywords: pareto distribution; excess-of-loss reinsurance; loggamma distribution; composite models 1. Introduction In general insurance, pricing is one of the most complex processes and is no easy task but a long-drawn exercise involving the crucial step of modeling past claim data. For modeling insurance claims data, finding a suitable distribution to unearth the information from the data is a crucial work to help the practitioners to calculate fair premiums.
    [Show full text]
  • The Negative Binomial-Erlang Distribution with Applications
    International Journal of Pure and Applied Mathematics Volume 92 No. 3 2014, 389-401 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: http://dx.doi.org/10.12732/ijpam.v92i3.7 ijpam.eu THE NEGATIVE BINOMIAL-ERLANG DISTRIBUTION WITH APPLICATIONS Siriporn Kongrod1, Winai Bodhisuwan2 §, Prasit Payakkapong3 1,2,3Department of Statistics Kasetsart University Chatuchak, Bangkok, 10900, THAILAND Abstract: This paper introduces a new three-parameter of the mixed negative binomial distribution which is called the negative binomial-Erlang distribution. This distribution obtained by mixing the negative binomial distribution with the Erlang distribution. The negative binomial-Erlang distribution can be used to describe count data with a large number of zeros. The negative binomial- exponential is presented as special cases of the negative binomial-Erlang distri- bution. In addition, we present some properties of the negative binomial-Erlang distribution including factorial moments, mean, variance, skewness and kurto- sis. The parameter estimation for negative binomial-Erlang distribution by the maximum likelihood estimation are provided. Applications of the the nega- tive binomial-Erlang distribution are carried out two real count data sets. The result shown that the negative binomial-Erlang distribution is better than fit when compared the Poisson and negative binomial distributions. AMS Subject Classification: 60E05 Key Words: mixed distribution, count data, Erlang distribution, the negative binomial-Erlang distribution, overdispersion c 2014 Academic Publications, Ltd. Received: December 4, 2013 url: www.acadpubl.eu §Correspondence author 390 S. Kongrod, W. Bodhisuwan, P. Payakkapong 1. Introduction The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time, since data in multiple research fields often achieve the Poisson distribution.
    [Show full text]