Developmental Biology 8 Sexual Cycles Estrous Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Biology 8 Sexual Cycles Estrous Cycle DEVELOPMENTAL BIOLOGY 8 SEXUAL CYCLES ESTROUS CYCLE The estrous cycle (also oestrous cycle ) comprises the recurring physiologic changes that are induced by reproductive hormones in most mammalian placental females. Humans undergo a menstrual cycle instead. Estrous cycles start after puberty in sexually mature females and are interrupted by anestrous phases or pregnancies. Typically estrous cycles continue until death. Some animals may display bloody vaginal discharge, often mistaken for menstruation, also called a "period". The estrous cycle is the cycle in the female reproductive system that prepares it for reproduction. The cycle is conveniently divided into 4 phases: Proestrus One or several follicles of the ovary are starting to grow. Their number is specific for the species. Typically this phase can last as little as one day or as long as 3 weeks, depending on the species. Under the influence of estrogen the lining in the uterus( endometrium ) starts to develop. Some animals may experience vaginal secretions that could be bloody. The female is not yet sexually receptive. Estrus Estrus refers to the phase when the female is sexually receptive (" in heat," or" on heat" in British English). Under regulation by gonadotropic hormones, ovarian follicles are maturing and estrogen secretions exert their biggest influence. The animal exhibits a sexually receptive behavior, a situation that may be signaled by visible physiologic changes. A signal trait of estrus is the lordosis reflex , in which the animal spontaneously elevates her hind quarters. In some species, the vulvae are reddened. Ovulation may occur spontaneously in some species (e.g. cow), while in others it is induced by copulation (e.g. Cat). If there is no copulation in an induced ovulator, estrus may continue for many days, followed by 'interestrus', and the estrus phase starts again until copulation and ovulation occur. Metestrus During this phase, the signs of estrogen stimulation subside and the corpus luteum starts to form. The uterine lining begins to secrete small amounts of progesterone. This phase typically is brief and may last 1 to 5 days. In some animals bleeding may be noted due to declining estrogen levels. 1 Diestrus Diestrus is characterized by the activity of the corpus luteum that produces progesterone. In the absence of pregnancy the diestrus phase (also termed pseudo-pregnancy) terminates with the regression of the corpus luteum. The lining in the uterus is not shed, but will be reorganized for the next cycle. MENSTRUAL CYCLE The term, ‘menstrual cycle’ refers to the hormonal and reproductive tissue changes that occur in adult female mammals during their reproductive years. The term menstruation refers to the periodic shedding of the uterine lining. (Menstru means "monthly.''). With every cycle, a woman's body prepares for a potential pregnancy, whether or not that is the woman's intention. The menstrual cycle starts, i.e., menarche occurs, at different ages in different species. In Old World monkeys, such as the rhesus monkey, menarche occurs at about 4 years of age. In the great apes, it occurs at about 8-10 years if the animals are living in nature, at about 6-7 years if they live in captivity where they receive more nutritious food and mature more quickly. In humans, menarche occurs at about 11-14, but this can vary depending upon heredity, diet, and perhaps, climate. The duration of the menstrual cycle varies with species; about 29 days in orang-utans, about 30 days in gorillas and about 37 days in chimpanzees. In human the average menstrual cycle takes about 28 days and occurs in phases: the follicular phase, the ovulatory phase (ovulation), and the luteal phase. There are four major hormones (chemicals that stimulate or regulate the activity of cells or organs) involved in the menstrual cycle: follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone. Follicular Phase During the follicular phase (the first 14 days of the menstrual cycle), the granulosa cells and theca interna cells in the developing follicles in the ovary produce increasing amounts of estrogen, but virtually no progesterone. The estrogen (mainly estradiol) which is released prepares the rest of the female reproductive tract for a pregnancy. This phase starts on the first day of Menstrual period. During the follicular phase of the menstrual cycle, the following events occur: Two hormones, follicle stimulating hormone (FSH) and luteinizing hormone (LH), are released from the brain and travel in the blood to the ovaries. 2 The hormones stimulate the growth of about 15 to 20 eggs in the ovaries, each in its own "shell," called a follicle. These hormones (FSH and LH) also trigger an increase in the production of the female hormone estrogen. As estrogen levels rise, like a switch, it turns off the production of follicle-stimulating hormone. This careful balance of hormones allows the body to limit the number of follicles that mature. As the follicular phase progresses, one follicle in one ovary becomes dominant and continues to mature. This dominant follicle suppresses all of the other follicles in the group. As a result, they stop growing and die. The dominant follicle continues to produce estrogen. Estrogen (estradiol) has the following effects in the female during the follicular phase: 1. maintenance and development of the secondary (accessory) sexual organs (e.g. the vagina, uterus, Fallopian tubes, fimbriated funnel, the cervix) 2. maintenance and development of the secondary sexual characteristics (e.g. softer skin, breast development and growth, higher voice, fat deposition around the hips) 3. travels to the follicles to help stimulate oogenesis 4. inhibits the release of FSH from the anterior pituitary (adenohypophysis) 5. stimulates the proliferative phase of the endometrium in the uterus 6. causes the cervical mucus to become copious, watery and hospitable to sperm. This cervical mucus will dry in a characteristic "fern-leaf" pattern on a microscope slide. - As the follicle matures into a Graafian follicle (the most mature follicle type) estrogen levels increase until an estrogen surge occurs about 48 hours before ovulation. The estrogen surge is a sudden, rapid increase in estrogen secretion over a short period of time (less than 24 hours). - This estrogen surge from the Graafian follicle in the ovary stimulates ovulation by causing a surge in LH release from the anterior pituitary by positive feedback about 24 hours before ovulation. That is, the more estrogen that is released, then the more LH that is released. The LH released during the LH surge travels to the ovary and stimulates ovulation (ovulation is the release of the oocyte from the ovary and into the fimbriated funnel). - During most of the follicular phase, the increasing estrogen levels inhibit FSH release from the anterior pituitary by negative feedback. This is how the combination oral contraceptive (which contains both estrogen and progesterone) can prevent pregnancy. A woman who is taking the combined oral contraceptive does not typically ovulate because her follicles do not develop 3 (she has low FSH secretion) and her ovaries do not release an estrogen surge (so she does not ovulate). Ovulatory Phase The ovulatory phase, or ovulation, starts about 14 days after the follicular phase started. The ovulatory phase is the midpoint of the menstrual cycle, with the next menstrual period starting about two weeks later. During this phase, the following events occur: The rise in estrogen from the dominant follicle triggers a surge in the amount of luteinizing hormone that is produced by the brain. This causes the dominant follicle to release its egg from the ovary. As the egg is released (a process called ovulation), it is captured by finger-like projections on the end of the fallopian tubes (fimbriae). The fimbriae sweep the egg into the tube. Also during this phase, there is an increase in the amount and thickness of mucus produced by the cervix (lower part of the uterus). If a woman were to have intercourse during this time, the thick mucus captures the man's sperm, nourishes it, and helps it to move towards the egg for fertilization. Luteal Phase The luteal phase of the menstrual cycle begins right after ovulation and involves the following processes: Once it releases its egg, the empty follicle develops into a new structure called the corpus luteum. The corpus luteum is made of two cell types, the luteal cells (which were the granulosa cells in the follicles) and the paraluteal cells (which were the theca interna cells in the follicles). The corpus luteum secretes the hormone progesterone. Progesterone prepares the uterus for a fertilized egg to implant. If intercourse has taken place and a man's sperm has fertilized the egg (a process called conception), the fertilized egg (embryo) will travel through the fallopian tube to implant in the uterus. The woman is now considered pregnant. If the egg is not fertilized, it passes through the uterus. Not needed to support a pregnancy, the lining of the uterus breaks down and sheds, and the next menstrual period begins Progesterone has the following effects in the female during the luteal phase: 1. increases basal body temperature by about 1/2 to 1 degree centigrade 4 2. inhibits the release of LH from the anterior pituitary (adenohypophysis). Prevents ovulation in women who are taking the pill. Women on the pill do not experience an LH surge, so they do not ovulate. 3. stimulates the secretory phase of the endometrium in the uterus 4. causes the cervical mucus to become thick, viscous and inhospitable to sperm. This cervical mucus will not dry in a characteristic "fern-leaf" pattern on a microscope slide. Remember that estrogen is also secreted during the luteal phase, but since progesterone levels are higher during the luteal phase the effects of progesterone are more pronounced than those of estrogen during the second half of the menstrual cycle.
Recommended publications
  • Women's Menstrual Cycles
    1 Women’s Menstrual Cycles About once each month during her reproductive years, a woman has a few days when a bloody fluid leaves her womb and passes through her vagina and out of her body. This normal monthly bleeding is called menstruation, or a menstrual period. Because the same pattern happens each month, it is called the menstrual cycle. Most women bleed every 28 days. But some bleed as often as every 20 days or as seldom as every 45 days. Uterus (womb) A woman’s ovaries release an egg once a month. If it is Ovary fertilized she may become pregnant. If not, her monthly bleeding will happen. Vagina Menstruation is a normal part of women’s lives. Knowing how the menstrual cycle affects the body and the ways menstruation changes over a woman’s lifetime can let you know when you are pregnant, and help you detect and prevent health problems. Also, many family planning methods work best when women and men know more about the menstrual cycle (see Family Planning). 17 December 2015 NEW WHERE THERE IS NO DOCTOR: ADVANCE CHAPTERS 2 CHAPTER 24: WOMEN’S MENSTRUAL CYCLES Hormones and the menstrual cycle In women, the hormones estrogen and progesterone are produced mostly in the ovaries, and the amount of each one changes throughout the monthly cycle. During the first half of the cycle, the ovaries make mostly estrogen, which causes the lining of the womb to thicken with blood and tissue. The body makes the lining so a baby would have a soft nest to grow in if the woman became pregnant that month.
    [Show full text]
  • Phylogenetic Rate Shifts in Feeding Time During the Evolution of Homo
    Phylogenetic Rate Shifts in Feeding Time During the Evolution of Homo The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Organ, Chris L., Charles L. Nunn, Zarin P. Machanda, and Richard W. Wrangham. 2011. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proceedings of the National Academy of Sciences 108(35): 14555-14559. Published Version doi:10.1073/pnas.1107806108 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5342813 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phylogenetic Rate Shifts in Chewing Time During the Evolution of Homo Chris Organ1, Charles L. Nunn2, Zarin Machanda2, Richard Wrangham2 1 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138. 2 Department of Human Evolutionary Biology, Peabody Museum, 11 Divinity Avenue Harvard University, Cambridge MA 02138 Classification: Biological Sciences (Evolution) 1 Abstract Unique among animals, humans eat a diet rich in cooked and non-thermally processed food. The ancestors of modern humans who invented food processing (including cooking) gained critical advantages in survival and fitness through increased caloric intake. However, the time and manner in which food processing became biologically significant is uncertain. Here, we assess the inferred evolutionary consequences of food processing in the human lineage by applying a Bayesian phylogenetic outlier test to the first comparative analysis of feeding time in humans and non-human primates.
    [Show full text]
  • Conceptive Estrus Behavior in Three Bottlenose Dolphins (Tursiops Truncatus)
    Sciknow Publications Ltd. ABC 2015, 2(1):30-48 Animal Behavior and Cognition DOI: 10.12966/abc.02.03.2015 ©Attribution 3.0 Unported (CC BY 3.0) Conceptive Estrus Behavior in Three Bottlenose Dolphins (Tursiops truncatus) Holley Muraco1* and Stan A. Kuczaj II2 1Mississippi State University 2University of Southern Mississippi *Corresponding author (Email: [email protected]) Citation – Muraco, H., & Kuczaj, S. A. II. (2015). Conceptive estrus behavior in three bottlenose dolphins (Tursiops truncatus). Animal Behavior and Cognition, 2(1), 30-48. doi: 10.12966/abc.02.03.2015 Abstract - Bottlenose dolphins (Tursiops truncatus) are a highly promiscuous species that routinely engage in socio-sexual interactions, yet relatively little has been reported about actual estrus behavior. For this study of three female dolphins located at two aquarium facilities, 20 reproductive behaviors were investigated during three conceptive estrous cycles with known endocrinology. Reproductive behaviors increased with estradiol levels and peak occurrences of behaviors were observed during the luteinizing hormone (LH) surge. Two novel behaviors were observed: (1) genital tracking, an investigatory-type behavior, and (2) immobility, a novel form of standing heat estrus. These behaviors appeared to communicate reproductive readiness and increased copulation success. A total of 314 occurrences of estrus behavior were recorded in 10 hours of footage from the three focal females, and copulation spanned from day -9 to day 0 in one dominant female. Sexual interactions during estrus included female- to-female, immature male-to-female, mature male-to-immature male and masturbation with toys. During estrus, focal females received more behavioral attention than they initiated, and passive and active dorsal fin mounting between females was the most frequent behavior.
    [Show full text]
  • Understanding Reproductive Events in the Mare for Successful Breeding Programs
    Understanding Reproductive Events in the Mare for Successful Breeding Programs By Jillian Fain Bohlen, Department of Animal and Dairy Science Mare Cyclicity A solid understanding of mare cyclicity is the foundation on which to build or evaluate an equine breeding program. Horses differ from other species both in timing of cyclicity as well as endocrine patterns within a cycle. Basic principles can aid horse breeders in more effectively timing and breeding with or without hormone manipulation. Seasonally Polyestrus Mares are classified as seasonally polyestrous animals and are more generally termed “long day breeders.” This classification means mares cycle multiple times in the year but that these times are limited to when days are long. For the mare, this means conception prior to the hot days of summer and optimizing nutritional value for offspring by foaling early spring. This seasonality of the mare’s breeding cycle is mostly dictated by photoperiod; however, available food resources and temperature may also play minor roles. Lighting signals, associated with the photoperiod, are interpreted by the pineal gland and ultimately converted into endocrine signals. At the center of this pathway is melatonin. Melatonin secretion increases during the night phase and quickly decreases at the beginning of the day phase. In seasonal breeders such as sheep (short day) and horses (long day), melatonin has a large impact on when cyclicity will end and ultimately resume. This pattern for long day breeders is evident in Figure 1. In horses, low melatonin levels, which are associated with longer days, stimulate a cascade of hormones that ultimately control the ability of the mare to properly cycle.
    [Show full text]
  • Changes Before the Change1.06 MB
    Changes before the Change Perimenopausal bleeding Although some women may abruptly stop having periods leading up to the menopause, many will notice changes in patterns and irregular bleeding. Whilst this can be a natural phase in your life, it may be important to see your healthcare professional to rule out other health conditions if other worrying symptoms occur. For further information visit www.imsociety.org International Menopause Society, PO Box 751, Cornwall TR2 4WD Tel: +44 01726 884 221 Email: [email protected] Changes before the Change Perimenopausal bleeding What is menopause? Strictly defined, menopause is the last menstrual period. It defines the end of a woman’s reproductive years as her ovaries run out of eggs. Now the cells in the ovary are producing less and less hormones and menstruation eventually stops. What is perimenopause? On average, the perimenopause can last one to four years. It is the period of time preceding and just after the menopause itself. In industrialized countries, the median age of onset of the perimenopause is 47.5 years. However, this is highly variable. It is important to note that menopause itself occurs on average at age 51 and can occur between ages 45 to 55. Actually the time to one’s last menstrual period is defined as the perimenopausal transition. Often the transition can even last longer, five to seven years. What hormonal changes occur during the perimenopause? When a woman cycles, she produces two major hormones, Estrogen and Progesterone. Both of these hormones come from the cells surrounding the eggs. Estrogen is needed for the uterine lining to grow and Progesterone is produced when the egg is released at ovulation.
    [Show full text]
  • Re-Cycling the Menstrual Cycle: a Multidisciplinary Reinterpretation of Menstruation
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1998 Re-Cycling the Menstrual Cycle: A Multidisciplinary Reinterpretation of Menstruation Heather H. Rea Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Anthropology Commons Recommended Citation Rea, Heather H., "Re-Cycling the Menstrual Cycle: A Multidisciplinary Reinterpretation of Menstruation" (1998). Master's Theses. 3942. https://scholarworks.wmich.edu/masters_theses/3942 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RE-CYCLING THE MENSTRUAL CYCLE: A MULTIDISCIPLINARY REINTERPRETATION OF MENSTRUATION by Heather H. Rea A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Arts Department of Anthropology Western Michigan University Kalamazoo, Michigan December 1998 Copyright by Heather H. Rea 1998 ACKNOWLEDGMENTS I would like to thank my thesis committee, Dr. Robert Anemone, Dr. David Karowe, and Dr. Erika Loeffler. Without their combined patience, insights, and senses of humor, this thesis would not have been completed. I would especially like to thank Dr. Loeffler who has been a supportive and inspirational boss, teacher, and friend throughout my graduate work. I would like to thank Marc Rea who suffered through the early stages of this thesis and my graduate work. He also suffered with me through our long-lost-psychotic-puppy's diaper-wearing first cycle of heat which inspired everything.
    [Show full text]
  • How to Study Male and Female Rodents
    How to Study Female and Male Rodents Jill B. Becker, PhD Molecular and Behavioral Neuroscience Institute Department of Psychology University of Michigan Ann Arbor, Michigan © 2018 Becker How to Study Female and Male Rodents 7 Introduction Becker, 2016). When a sex difference is found, some NOTES This chapter discusses how to think about and investigators will want to determine more about the determine the appropriate manipulations and neurobiological processes that are responsible for the procedures for investigating sex differences in, and differences. the effects of gonadal hormones on, experimental outcomes in adult rats and mice. I will also discuss Effect of Gonadal Hormones on estrous cycles, surgical procedures, and hormone a Trait treatments. I will conclude with a discussion of One of the next questions that will arise is whether variability and statistical methods that can be used gonadal hormones have an effect on the trait. Two to minimize animal numbers when adding sex as a approaches can help determine whether this is biological variable to your research. the case. One can examine whether the female’s behavior varies with the estrous cycle. Alternatively, What Is a Sex Difference? one can remove the gonads by ovariectomy (OVX) The first question researchers usually ask is whether or castration (CAST) and then selectively replace there is a sex difference in a trait. The answer to this hormones. We will address the estrous cycle first. question is not a simple “yes” or “no”; it turns out to be more complicated. As illustrated in Figure 1A, Determining Estrous Cycle Stages males and females can exhibit different traits, as is The estrous cycle is the product of the hypothalamic- true for reproduction.
    [Show full text]
  • (RODENTIA: CRICETIDAE) in COLOMBIA Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Villamizar-Ramírez, Ángela M.; Serrano-Cardozo, Víctor H.; Ramírez-Pinilla, Martha P. REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Mastozoología Neotropical, vol. 24, núm. 1, julio, 2017, pp. 177-189 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45753369015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 24(1):177-189, Mendoza, 2017 Copyright ©SAREM, 2017 http://www.sarem.org.ar Versión impresa ISSN 0327-9383 http://www.sbmz.com.br Versión on-line ISSN 1666-0536 Artículo REPRODUCTIVE ACTIVITY OF A POPULATION OF Nephelomys meridensis (RODENTIA: CRICETIDAE) IN COLOMBIA Ángela M. Villamizar-Ramírez1, Víctor H. Serrano-Cardozo1, 3, and Martha P. Ramírez-Pinilla2, 3 1 Laboratorio de Ecología, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. [Correspondence: Víctor H. Serrano-Cardozo <[email protected]>] 2 Laboratorio de Biología Reproductiva de Vertebrados, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. 3 Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia. ABSTRACT. We studied the annual reproductive activity of a population of Nephelomys meridensis in an Andean oak forest in the Cordillera Oriental of Colombia. Monthly during a year, Sherman live traps were established in 5 fixed stations (20 traps per station) during 4 nights per month, along an altitudinal range of 2530-2657 m.
    [Show full text]
  • Evolution of Menstruation in Mammals
    Vol. 8(22), pp. 960-964, 11 June, 2013 DOI 10.5897/SRE2013.5365 Scientific Research and Essays ISSN 1992-2248 © 2013 Academic Journals http://www.academicjournals.org/SRE Perspective Evolution of menstruation in mammals Rabi Ibrahim Rabady Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110, Jordan. Accepted 31 May, 2013 Why do placental mammals dismantle their endometrium in cyclic pattern? And why the amount of blood that is lost relative to the reabsorbed amount differs between species Some species as in humans shed notable amount of blood in association with menstruation that occurs by the end of the menstrual cycle, whereas, other species barely discharge any blood in what is known as the estrous cycle. This essay discusses such evolutionary processes by presenting previous hypotheses and presents a new hypothesis in an attempt to give more insight into the evolution of menstruation in mammals and in humans in particular. Key words: Menstruation, mammals, biochemical samples, accelerating evolution, self energy loss bait. PREVIOUS HYPOTHESES Many have questioned the advantage blood shedding the energy needed to maintain it during infertility since during menstruation (Finn, 1987, 1998; Profet, 1993; the duration of maintaining the placenta during the Strassmann, 1996). One hypothesis correlated this to infertility is comparable to the duration of both dismantling energy saving concerns since it is cheaper to build new the old placenta and rebuilding new one as it is evident in endometrium rather than maintaining it during the humans. Second, such hypothesis may be accepted for infertility duration. Whereas, others suggested that ovary those species that go through estrous cycle in which menstruation cleans the uterus from sperm-borne evolution had led to total blood reabsorbing than rather pathogens that are flushed by blood sheding (Profet, losing any in order to lower the energy burden on the 1993).
    [Show full text]
  • Menstrual Cycle in Four New World Primates: Poeppig's Woolly Monkey
    Theriogenology 123 (2019) 11e21 Contents lists available at ScienceDirect Theriogenology journal homepage: www.theriojournal.com Menstrual cycle in four New World primates: Poeppig's woolly monkey (Lagothrix poeppigii), red uakari (Cacajao calvus), large- headed capuchin (Sapajus macrocephalus) and nocturnal monkey (Aotus nancymaae) * Pedro Mayor a, b, c, d, , Washington Pereira b, Víctor Nacher a, Marc Navarro a, Frederico O.B. Monteiro b, Hani R. El Bizri d, e, f, Ana Carretero a a Departament de Sanitat i Anatomia Animals, Universitat Autonoma de Barcelona, Bellaterra, E-08193, Barcelona, Spain b Programa de Pos-Graduaç ao~ em Saúde e Produçao~ Animal na Amazonia,^ Universidade Federal Rural da Amazonia^ (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Postal Code, 66077-830, Belem, Para, Brazil c FundAmazonia, Museum of Amazonian Indigenous Cultures, 332 Malecon Tarapaca, Iquitos, Peru d ComFauna, Comunidad de Manejo de Fauna de Manejo de Fauna Silvestre en la Amazonía y en Latinoamerica, 332 Malecon, Tarapaca, Iquitos, Peru e Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentavel Mamiraua (IDSM), Estrada do Bexiga 2584, Fonte Boa, CEP, 69553-225, Tefe, Amazonas, Brazil f School of Science and the Environment, Manchester Metropolitan University, Oxford Road, M15 6BH, Manchester, United Kingdom article info abstract Article history: Genital organs from 33 nocturnal monkeys Aotus namcymaae, 29 Poeppig's woolly monkeys (Lagothrix Received 29 May 2018 poeppigii), 21 red uakaris (Cacajao calvus) and 11 large-headed capuchins (Sapajus macrocephalus) were Received in revised form histologically analyzed in order to describe the endometrial changes related to the ovarian cycle. 10 August 2018 A. nancymaae and S.
    [Show full text]
  • Estrous Cycle
    1 ESTROUS CYCLE (Proestrus) The estrous cycle or oestrus cycle (derived from Latin oestrus 'frenzy',) is the recurring physiological changes that are induced by reproductive hormones in most mammalian therian females. Estrous cycles start after sexual maturity in females and are interrupted by anestrous phases or by pregnancies. Typically, estrous cycles continue until death. The majority of mammals become sexually-receptive (express estrus) and ovulates spontaneously at defined intervals. The female will only allow the male to mate during a restricted time coinciding with ovulation. Stages- The estrous cycle can be divided into four stages: 1)Proestrus, 2)Estrus, 3)Metestrus, and 4)Diestrus based on behaviour changes or structural changes in internal and external genitalia. Fore Phase 2 Fig- Hormonal and Ovarian Changes during the Estrous Cycle PROESTRUS o follicle enlarges o estrogen increases o vasularity of the female reproductive tract increases o endometrial glands begin to grow o estrogen levels peak It is the first phase of the estrous cycle and is the building-up phase During this phase the ovarian follicle (under the influence of FSH and LH) enlarges and begins to secrete estrogens 3 One or several follicles of the ovary start to grow. Their number is species specific. Typically this phase can last for one day to three weeks, depending on the species. Under the influence of estrogen the lining in the uterus (endometrium) starts to develop. The female is not yet sexually receptive; The old corpus luteum gets degenerated; The vaginal epithelium proliferates and the vaginal smear shows a large number of non-cornified nucleated epithelial cells.
    [Show full text]
  • The Bovine Estrous Cycle
    livestock SOUTH DAKOTA STATE UNIVERSITY® MAY 2020 ANIMAL SCIENCE DEPARTMENT The Bovine Estrous Cycle Review and Revision: Robin Salverson | SDSU Extension Cow/Calf Field Specialist Original Publication: 2004 - George Perry | former Professor & SDSU Extension Beef Reproductive Management Specialist The percentage of cows that become pregnant during a breeding season has a direct effect on ranch profitability. Consequently, a basic understanding of the bovine estrous cycle can increase the effectiveness of reproductive management. After heifers reach puberty (first ovulation) or following the postpartum anestrous period (a period of no estrous cycles) in cows, a period of estrous cycling begins. Estrous cycles give a heifer or cow a chance to become pregnant about every 21 days. Figure 1: Standing to be mounted by a bull or another cow During each estrous cycle, follicles develop in wavelike is the only conclusive sign that a cow is in standing estrus and ready to be bred. patterns, which are controlled by changes in hormone concentrations. In addition, the corpus luteum (CL) A female enters standing estrus gradually. Prior to develops following ovulation of a follicle. While it is standing estrus she may appear nervous and restless present, this CL inhibits other follicles from ovulating. (for example, walking a fence line in search of a bull The length of each estrous cycle is measured by the or bawling more than usual). Prior to standing to be number of days between each standing estrus. mounted by a bull or other cows, she will usually try to mount other animals. These signs will progress until The Anestrous Period standing estrus occurs.
    [Show full text]