Kinetics and Mechanistic Analysis of an Extremely Rapid Carbon Dioxide Fixation Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Kinetics and Mechanistic Analysis of an Extremely Rapid Carbon Dioxide Fixation Reaction Kinetics and mechanistic analysis of an extremely rapid carbon dioxide fixation reaction Deguang Huanga, Olga V. Makhlynetsb, Lay Ling Tanc, Sonny C. Leec, Elena V. Rybak-Akimovab, and R. H. Holma,1 aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; bDepartment of Chemistry, Tufts University, Medford, MA 02155; and cDepartment of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L3G1 Contributed by R. H. Holm, November 23, 2010 (sent for review October 30, 2010) Carbon dioxide may react with free or metal-bound hydroxide to afford products containing bicarbonate or carbonate, often cap- tured as ligands bridging two or three metal sites. We report the kinetics and probable mechanism of an extremely rapid fixation re- action mediated by a planar nickel complex ½NiIIðNNNÞðOHÞ1− con- taining a tridentate 2,6-pyridinedicarboxamidate pincer ligand and a terminal hydroxide ligand. The minimal generalized reaction is → M-OH þ CO2 M-OCO2H; with variant M, previous rate constants are ≲103 M−1 s−1 in aqueous solution. For the present bimolecular reaction, the (extrapolated) rate constant is 9.5 × 105 M−1 s−1 in N, N′-dimethylformamide at 298 K, a value within the range of k ∕K ≈ 5– 8 −1 −1 cat M 10 10 M s for carbonic anhydrase, the most efficient catalyst of CO2 fixation reactions. The enthalpy profile of the fixation reaction was calculated by density functional theory. The initial event is the formation of a weak precursor complex between the Ni-OH group and CO2, followed by insertion of a CHEMISTRY CO oxygen atom into the Ni-OH bond to generate a four center 2 — Me2 η2 Fig. 1. Absorption spectra in DMF: black trace ðEt4NÞ½NiðpyN2 ÞðOHÞ; Nið -OCO2HÞ transition state similar to that at the zinc site in blue trace—after bubbling CO2 through the solution for 2 min; red trace carbonic anhydrase. Thereafter, the Ni-OH bond detaches to afford Me2 —after vigorous bubbling of N2 through the solution of ðEt4NÞ½NiðpyN Þ η1 2 the Nið -OCO2HÞ fragment, after which the molecule passes ðHCO3Þ (blue trace) for 20 min. (Inset) Kinetics trace acquired at 450 nm and A A ΔA −k t through a second, lower energy transition state as the bicarbonate 233 K overlaid with a single exponential fit to ¼ ∞ þ expð obs Þ, ligand rearranges to a conformation very similar to that in the where A∞ is the absorbance after complete reaction, ΔA ¼ A0 − A∞, A0 k crystalline product. Theoretical values of metric parameters and is the initial absorbance, and obs is the observed rate constant. Reactant Me2 1− 0 1 1 activation enthalpy are in good agreement with experimental concentrations: f½NiðpyN2 ÞðOHÞ g¼ . mM, ½CO2¼ mM. values [ΔH‡ ¼ 3.2ð5Þ kcal∕mol]. Several features of the CO2 fixation reaction 1 are noteworthy. ∣ – ∣ nickel hydroxide carbon dioxide bicarbonate conversion The reactant is a terminal hydroxide species affording a uniden- reaction mechanism 1 tate bicarbonate (η -OCO2H) product. Far more common is the II reaction of bridged M 2ðμ-OHÞ1;2 precursors to afford binuclear ecent research in this laboratory has been directed toward or occasional trinuclear products bridged by carbonate utilizing Rthe attainment of synthetic analogues of the NiFe3S4 active two or three oxygen atoms (4–9). A second feature is the appar- site of the enzyme carbon monoxide dehydrogenase (1, 2), which þ − ently fast reaction rate, given that CO2 comprises only 0.039 vol catalyzes the interconversion reaction CO2 þ 2H þ 2e ⇌ % of the atmosphere. Although fixation of atmospheric CO2 by CO H2O. In the course of this work, we have prepared binuc- þ metal hydroxide species has been previously observed (4, 5, 7, 10), lear NiII∕FeII bridged species with the intention of simulating including with NiII (7, 11–13), no quantitation of reaction rates the Ni…Fe component of the enzyme site that is the locus of and analysis of reaction mechanism are available. The fixation substrate binding, activation, and product release (3). The nickel of carbon dioxide, whereby this greenhouse gas is rendered in site in the binuclear species has been prepared separately in the Me2 1− chemically combined forms, is of current environmental and form of the planar hydroxide complex ½NiðpyN2 ÞðOHÞ con- taining a N,N′-2,6-dimethylphenyl-2,6-pyridinedicarboxamidate biological interest. Fixation leads to utilization of the compound dianion. Whereas bridging hydroxide ligation is common, term- as a renewable carbon resource in the formation of useful organic inal binding is not and in general is stabilized in divalent metal compounds, ideally in catalytically efficient systems (14, 15). complexes by hydrogen bonding or by steric shielding, as is the Atmospheric capture of CO2 allows its sequestration by various case here. As reported recently (3), exposure of a solution of methods including conversion to metal carbonates (16). In biol- Me2 1− ½NiðpyN2 ÞðOHÞ to the atmosphere results in an instanta- ogy, the ubiquitous Zn(II) enzyme carbonic anhydrase catalyzes ⇌ − þ neous color change from red to red–orange. This results in the fixa- the reversible hydration reaction CO2 þ H2O HCO3 þ H , Me2 1− tion of CO2 as the bicarbonate complex ½NiðpyN2 ÞðHCO3Þ which among other functions leads to the removal of CO2 from accompanied by the spectral changes in Fig. 1. tissues in the mammalian respiratory process. Given the fore- Author contributions: D.H., S.C.L., and R.H.H. designed research; D.H., O.V.M., L.L.T., and S.C.L. performed research; S.C.L. and E.V.R.-A. analyzed data; and S.C.L., E.V.R.-A., and R.H.H. wrote the paper. The authors declare no conflict of interest. 1To whom correspondence should be addressed. E-mail: [email protected]. This article contains supporting information online at www.pnas.org/lookup/suppl/ doi:10.1073/pnas.1017430108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1017430108 PNAS Early Edition ∣ 1of6 Downloaded by guest on September 28, 2021 Table 1. Observed rate constants as a function of water Table 2. Kinetics parameters for carbon dioxide fixation with Me2 1− content in DMF ½NiðpyN2 ÞðOHÞ in DMF solutions II k −1 ΔH‡ ΔS‡ k k † Water, equiv vs Ni obs,s , , 2,* 228 K, 2, 298 K, ∕ ∕ −1 −1 −1 −1 0 88.2 Experiment kcal mol cal mol K M s M s ‡ 5 800 82.4 Variable CO2 4.7(1.5) −15(5) 1.04ð7Þ × 10 — 5 5 1600 72.6 Constant CO2 3.2(5) −20(3) 1.45ð1Þ × 10 9.5 × 10 3200 49.7 *Experimental value. Kinetics traces at 450 nm and 218 K were fitted to the single †Extrapolated value. A A ΔA −kt ‡ k k exponential ¼ ∞ þ expð Þ defined in Fig. 1. Concentration See Fig. 2; 2 at each temperature was determined from the slopes of obs vs Me2 1− 0 1 1 0 of reactants: f½NiðpyN2 ÞðOHÞ g¼ . mM, ½CO2¼ . mM. [CO2] plots (data in SI Text). k Each obs is the average of eight runs. on NiII concentration. Consequently, for reaction 1, rate ¼ going factors, we have determined the kinetics of reaction 1 and k Me2 1− k k 2f½NiðpyN2 ÞðOHÞ g½CO2. A full set of obs and 2 data examined its mechanism with the aid of theoretical calculations. is available (SI Text). Second-order rate constants at 228 K and Results and Discussion 298 K are given in Table 2 together with activation parameters obtained from the Eyring equation plotted in Fig. 3. The data Kinetics of CO Fixation. 2 The kinetics of reaction 1 were determined plotted are from the experiment with constant ½CO2¼1 mM. in dimethylformamide (DMF) solutions by stopped-flow spectro- The negative activation entropies are consistent with an associa- – photometry at 218 243 K. As seen in Fig. 1, the absorption tive transition state. Me2 1− spectrum of ½NiðpyN2 ÞðOHÞ contains a peak at 411 nm Table 3 contains a summary of second-order rate constants for Me2 and a shoulder near 490 nm, whereas the product ½NiðpyN2 Þ CO2 fixation at ambient temperature, which may be compared 1− 5 −1 −1 ðHCO3Þ presents maxima at 300 and 381 nm. The reaction was with the extrapolated value of k2 ¼ 9.5 × 10 M s at 298 K for followed by absorbance changes at 450 nm under conditions of reaction 1. These data were obtained in aqueous solution in a ≥10 variable and constant CO2 concentrations ( -fold excess of pH range sufficient to deprotonate coordinated water and thus CO2 with respect to Ni). In treating the low-temperature absor- refer to the minimal reaction M-OH þ CO2 → M-OCO2H. The zþ bance data, no evidence of a preequilibrium was found. A typical synthetic reactants ½LnM-OH are primarily octahedral com- single exponential fit of the data (233 K) in the presence of a plexes of CoIII and five-coordinate ½ZnðcyclenÞðOHÞ1þ, perhaps 10-fold excess of CO2 is included as an inset, from which the the most successful kinetics mimic of the carbonic anhydrase site k pseudo-first-order rate constant obs can be evaluated. The influ- (17). Of the multitude of kinetics information available for car- ence of water on the reaction rate was investigated under the bonic anhydrase, data for the human enzymes I, II, and III are conditions of Table 1. The possibility that CO2 is hydrated by selected because of the availability of k and K data. It is evi- ⇌ cat M small amounts of water in DMF by the reaction CO2 þ H2O dent that the rate constant for reaction 1 enters the domain of − þ Me2 HCO3 þ H and that bicarbonate reacts with ½NiðpyN2 Þ ≳102 1− carbonic anhydrase kinetics and is faster than any metal- ðOHÞ to form a carbonate complex and water appears remote.
Recommended publications
  • N,N-Dimethylformamide
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 31 N,N-DIMETHYLFORMAMIDE Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD First draft prepared by G. Long and M.E. Meek, Environmental Health Directorate, Health Canada, and M. Lewis, Commercial Chemicals Evaluation Branch, Environment Canada Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 03-Sep-2009 Revision Date 17-Jan-2018 Revision Number 4 1. Identification Product Name N,N-Dimethylformamide Cat No. : D131-1; D131-4 CAS-No 68-12-2 Synonyms DMF Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable liquids Category 3 Acute dermal toxicity Category 4 Acute Inhalation Toxicity - Vapors Category 4 Serious Eye Damage/Eye Irritation Category 2 Reproductive Toxicity Category 1B Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system, Central nervous system (CNS). Label Elements Signal Word Danger Hazard Statements Flammable liquid and vapor Harmful in contact with skin Causes serious eye irritation Harmful if inhaled May cause respiratory irritation May cause drowsiness or dizziness May damage the unborn child ______________________________________________________________________________________________ Page 1 / 8 N,N-Dimethylformamide Revision Date 17-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Obtain special instructions before use Do not handle until all safety precautions have been read and understood Use personal protective equipment as required Use only outdoors or in a well-ventilated area Wash face, hands and any exposed skin thoroughly after handling Wear eye/face protection Do not breathe dust/fume/gas/mist/vapors/spray Keep away from heat/sparks/open flames/hot surfaces.
    [Show full text]
  • Synergistic Effect of 2-Acrylamido-2-Methyl-1-Propanesulfonic Acid on the Enhanced Conductivity for Fuel Cell at Low Temperature
    membranes Article Synergistic Effect of 2-Acrylamido-2-methyl- 1-propanesulfonic Acid on the Enhanced Conductivity for Fuel Cell at Low Temperature Murli Manohar * and Dukjoon Kim * School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 16419, Korea * Correspondence: [email protected] (M.M.); [email protected] (D.K.) Received: 3 November 2020; Accepted: 10 December 2020; Published: 15 December 2020 Abstract: This present work focused on the aromatic polymer (poly (1,4-phenylene ether-ether-sulfone); SPEES) interconnected/ cross-linked with the aliphatic monomer (2-acrylamido -2-methyl-1-propanesulfonic; AMPS) with the sulfonic group to enhance the conductivity and make it flexible with aliphatic chain of AMPS. Surprisingly, it produced higher conductivity than that of other reported work after the chemical stability was measured. It allows optimizing the synthesis of polymer electrolyte membranes with tailor-made combinations of conductivity and stability. Membrane structure is characterized by 1H NMR and FT-IR. Weight loss of the membrane in Fenton’s reagent is not too high during the oxidative stability test. The thermal stability of the membrane is characterized by TGA and its morphology by SEM and SAXS. The prepared membranes improved 1 proton conductivity up to 0.125 Scm− which is much higher than that of Nafion N115 which is 1 0.059 Scm− . Therefore, the SPEES-AM membranes are adequate for fuel cell at 50 ◦C with reduced relative humidity (RH). Keywords: 2-acrylamido-2-methyl-1-propanesulfonic; proton-exchange membrane; conductivity; cross-linking; temperature 1. Introduction Recently, lots of polymer electrolyte membranes have been prepared from the sulfonation of aromatic polymers such as poly(arylene ether sulfone) [1–4] and modified poly(arylene ether sulfone) [5–7] for the application of electrodialysis and fuel cells as their rigid-rod backbone structures are basically quite stable in thermal and mechanical aspects.
    [Show full text]
  • Butadiene, Supp. B
    .. ..--.- PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract Process Economics Program Report No. 35B BUTADIENE (April 1982) Most of the world's butadiene is obtained as a coproduct of ethyl- ene, especially by the steam cracking of naphtha or gas oil. When there is not sufficient co-product butadiene available, supplies can be supplemented by material made by the oxidative dehydrogenation of n-butenes. Regardless of the source, the butadiene must be separated from other C4 hydrocarbons (mainly butane and butenes). Rxtractive distillation is the major separation process in current usem This report coataius process descriptions, capital investment esti- mates, and production cost estimates for the Petro-Tex oxidative dehydrogenation process to produce butadiene frox n-butenes and for the three extractive distillation processes that are presently available for licensing in the United States. The extractive distillation pro- cesses are the Nippon Zeon process (dimethylfornisxidesolvent), the BASP process (N-methyl pyrrolidone solvent), and the Union Carbide pro- cess (dixethylacetsxide solvent). All estimates are for a production rate of 50,000 metric toss per year of butadiene. PRP '80 CRR SUPPLEMENT B by GRANT E. RUSSELL April 1982 A private report by the PROCESS ECONOMICS PROGRAM Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS Program covers major hydrocarbons and their derivatives on a worldwide basis. In addition, the SRI DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, prod- uct, and plant for the United States and Western Europe.
    [Show full text]
  • Dimethylacetamide 2004
    DIMETHYLACETAMIDE 2004 CH3CON(CH3)2 MW: 87.12 CAS: 127-19-5 RTECS: AB7700000 METHOD: 2004, Issue 2 EVALUATION: FULL Issue 1: 15 May 1989 Issue 2: 15 August 1994 OSHA : 10 ppm (skin) PROPERTIES: liquid; BP 164.5 - 166 °C; MP •20 °C; NIOSH: 10 ppm (skin) d 0.937 g/mL @ 25 ° C; VP 1.5 mm Hg ACGIH: 10 ppm (skin) @ 20 °C; flash point 70 °C, explosive (1 ppm = 3.56 mg/m 3 @ NTP) range 1.8 to 11.5% SYNONYMS: N,N-dimethylacetamide; acetyldimethylamine; DMAC SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (silica gel, 150 mg/75 mg) ANALYTE: dimethylacetamide FLOW RATE: 0.01 to 1 L/min DESORPTION: 1 mL methanol; 1 h in ultrasonic bath VOL-MIN: 15 L @ 30 mg/m 3 -MAX: 80 L INJECTION VOLUME: 5 µL SHIPMENT: routine TEMPERATURE-INJECTION: 240 °C SAMPLE -DETECTOR: 320 °C STABILITY: at least 5 days @ 25 °C [1] -COLUMN: 140 °C BLANKS: 2 to 10 field blanks per set CARRIER GAS: N2, 50 mL/min COLUMNS: 1.5 m x 6-mm OD glass; 10% UCON 50-HB-5100, 2% KOH on 100/120 mesh Chromosorb WHP ACCURACY CALIBRATION: analyte in methanol RANGE STUDIED: 18 to 105 mg/m 3 [1]; (45-L samples) RANGE: 0.5 to 4 mg per sample [1,2] BIAS: • 0.8% ESTIMATED LOD: 0.05 mg per sample [2] ˆ OVERALL PRECISION (S rT): 0.067 [1] PRECISION (S ): 0.032 [1] ACCURACY: ± 11.7% r APPLICABILITY: The working range is 10 to 80 mg/m 3 of dimethylacetamide or dimethyformamdide for a 50-L air sample.
    [Show full text]
  • United States Patent (19) (11) 4,219,498 Doi Et Al
    United States Patent (19) (11) 4,219,498 Doi et al. - (45) Aug. 26, 1980 54 PROCESS FOR PREPARING HIGHLY : (56) References Cited PURE-2-ACRYLAMDO-2-METHYLPRO PUBLICATIONS PANESULFONCACID Vogel, "Practical Org. Chem,” 3rd Ed. (1962), pp. 122-125. (75) Inventors: Shunichi Doi; Masatake Kamogawa, both of Yokohama, Japan Primary Examiner-A. Siegel Attorney, Agent, or Firm-Cushman, Darby & Cushman 73) Assignees: Nitto Chemical industry Co., Ltd.; 57 ABSTRACT Mitsubishi Rayon Co., Ltd., both of This disclosure relates to a process for preparing highly Tokyo, Japan pure 2-acylamido-2-methylpropanesulfonic acid, which comprises the steps of adding acetic acid to a slurry 21 Appl. No.: 8,113 containing crystals of 2-acrylamido-2-methylpropane sulfonic acid obtained by the reaction of acrylonitrile, isobutene and either conc. sulfuric acid, fuming sulfuric (22 Filed: Jan. 31, 1979 acid or sulfuric anhydride plus water in a solvent, then distilling the resulting mixture to replace the reaction 30 Foreign Application Priority Data solvent with acetic acid, adding water or hydrous acetic Jun. 12, 1978 JP Japan .................................. 53/69928 acid to the resulting mixture, heating the mixture to dissolve said crystals, and subjecting the solution to 51) Int. Cl’............................................ CO7C 143/02 recrystallization. 52 U.S.C. ................................................ 260/513 N 58 Field of Search .................................... 260/513 N 7 Claims, No Drawings 4,219,498 1. 2 of AMPS used as a starting material. The larger the said PROCESS FOR PREPARNG HIGHLY values, the higher the molecular weight of the copoly PURE-2-ACRYLAMDO-2-METHYLPROPANE mer and the more favorable the effect on papermaking.
    [Show full text]
  • 8. AIGA 112/20 Solvents for Acetylene Filling Category
    SOLVENTS FOR ACETYLENE FILLING AIGA 112/20 Asia Industrial Gases Association N0 2 Venture Drive, #22-28 Vision Exchange, Singapore 608526 Tel: +65 67055642 Fax: +65 68633379 Internet: http://www.asiaiga.org | LinkedIn Profile: https://www.linkedin.com/company/asiaigaorg AIGA 112/20 SOLVENTS FOR ACETYLENE FILLING Acknowledgement This document is adopted from the European Industrial Gases Association document Doc 225 ‘Solvents for Acetylene Filling’. Acknowledgement and thanks are hereby given to EIGA for permission granted for the use of their document. Disclaimer All publications of AIGA or bearing AIGA’s name contain information, including Codes of Practice, safety procedures and other technical information that were obtained from sources believed by AIGA to be reliable and/ or based on technical information and experience currently available from members of AIGA and others at the date of the publication. As such, we do not make any representation or warranty nor accept any liability as to the accuracy, completeness or correctness of the information contained in these publications. While AIGA recommends that its members refer to or use its publications, such reference to or use thereof by its members or third parties is purely voluntary and not binding. AIGA or its members make no guarantee of the results and assume no liability or responsibility in connection with the reference to or use of information or suggestions contained in AIGA’s publications. AIGA has no control whatsoever as regards, performance or non-performance, misinterpretation, proper or improper use of any information or suggestions contained in AIGA’s publications by any person or entity (including AIGA members) and AIGA expressly disclaims any liability in connection thereto.
    [Show full text]
  • Dimethylformamide As a Carbon Monoxide Source in Fast Palladium
    Dimethylformamide as a Carbon Monoxide SCHEME 1 Source in Fast Palladium-Catalyzed Aminocarbonylations of Aryl Bromides Yiqian Wan, Mathias Alterman,* Mats Larhed, and Anders Hallberg* Department of Organic Pharmaceutical Chemistry, BMC, carbon monoxide limit the use of carbonylation reactions Uppsala University, P.O. Box 574, for the small-scale synthesis of compound libraries.2 SE-751 23 Uppsala, Sweden More than three decades ago, Corey and Hegedus reported the use of several equivalents of the hazardous [email protected]; Ni(CO)4 as a combined C-X activator and liquid carbon [email protected] monoxide source3 for efficient aminocarbonylation reac- tions with vinyl bromides. Recently, our laboratory Received May 24, 2002 reported that the less harmful Mo(CO)6 acts as a solid carbon monoxide releasing reagent4 in microwave-as- 5 Abstract: Dimethylformamide (DMF) acts as an efficient sisted palladium-catalyzed carbonylation reactions. This source of carbon monoxide and dimethylamine in the pal- technique of in situ delivery of carbon monoxide is very ladium-catalyzed aminocarbonylation (Heck carbonylation) suitable for high-throughput organic synthesis. However, of p-tolyl bromide to provide the dimethylamide. Addition it is obvious that the concept of in situ liberation would of amines to the reaction mixture in excess delivers the be even more appealing if inexpensive organic materials, corresponding aryl amides in good yields. The amines preferably the solvent itself, could serve as the source of employed, benzylamine, morpholine, and aniline, all consti- carbon monoxide. In fact, the common solvent dimeth- tute good reaction partners. The reaction proceeds smoothly ylformamide (DMF) has previously been utilized as a with bromobenzene and more electron-rich aryl bromides, liquid carbon monoxide source but only for preparation but electron-deficient aryl bromides fail to undergo ami- of inorganic metal-carbonyl complexes.6 nocarbonylation.
    [Show full text]
  • N,N-Dimethylformamide
    N,N-Dimethylformamide 68-12-2 Hazard Summary Dimethylformamide is used as an industrial solvent and in the production of fibers, films, and surface coatings. Acute (short-term) exposure to dimethylformamide has been observed to damage the liver in animals and in humans. Symptoms of acute exposure in humans include abdominal pain, nausea, vomiting, jaundice, alcohol intolerance, and rashes. Chronic (long-term) occupational exposure to dimethylformamide by inhalation has resulted in effects on the liver and digestive disturbances in workers. Human studies suggested a possible association between dimethylformamide exposure and testicular cancer, but further studies failed to confirm this relationship. EPA has not classified dimethylformamide with respect to its carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (4), which contains information on inhalation chronic toxicity of dimethylformamide and the RfC, and EPA's Health and Environmental Effects Profile for N,N-Dimethylformamide. (2) Uses Dimethylformamide is primarily used as an industrial solvent. Dimethylformamide solutions are used to process polymer fibers, films, and surface coatings; to permit easy spinning of acrylic fibers; to produce wire enamels, and as a crystallization medium in the pharmaceutical industry. (2) Sources and Potential Exposure Individuals are most likely to be exposed to dimethylformamide in the workplace. (1) Dimethylformamide has been detected in the effluents from a sewage treatment plant and industrial plant. (2) Assessing Personal Exposure The measurement of a metabolite of dimethylformamide, methyl formamide, in urine has been recommended as a guide to monitor exposure. (3) Health Hazard Information Acute Effects: Acute exposure to dimethylformamide has been observed to damage the liver in animal studies and in humans.
    [Show full text]
  • Detection Of
    Article Cite This: J. Am. Chem. Soc. 2017, 139, 18552−18557 pubs.acs.org/JACS •− Detection of CO2 in the Electrochemical Reduction of Carbon Dioxide in N,N‑Dimethylformamide by Scanning Electrochemical Microscopy Tianhan Kai, Min Zhou, Zhiyao Duan, Graeme A. Henkelman, and Allen J. Bard* Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States *S Supporting Information ABSTRACT: The electrocatalytic reduction of CO2 has been studied extensively and produces a number of products. The initial reaction in the CO2 reduction is often taken to be the 1e formation of the radical anion, CO •−. However, the electrochemical detection and •− 2 •− characterization of CO2 is challenging because of the short lifetime of CO2 , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation •− and quantitative determination of CO2 in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a fi •− Hg/Au lm UME, which were utilized as the SECM tips. The CO2 produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at ffi •− SECM substrate (e.g., an Au UME). The collection e ciency (CE) for CO2 depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 108 M−1 s−1) and half-life (10 ns) of CO •− can be evaluated by fitting the collection efficiency vs distance curve. The 2 •− dimerized species of CO2 , oxalate, can also be determined quantitatively.
    [Show full text]
  • Predicting the Hydroxymethylation Rate of Phenols with Formaldehyde by Molecular Orbital Calculation
    J Wood Sci (2002) 48:153-158 © The Japan Wood Research Society 2002 ORIGINAL ARTICLE Tohru Mitsunaga · Anthony H. Conner Charles G. Hill, Jr. Predicting the hydroxymethylation rate of phenols with formaldehyde by molecular orbital calculation Received: March 21.2001 / Accepted: May 11,2001 Abstract The rates ( k ) of hydroxymethylation of phenol, concentrated mainly on kinetics. 1-5 These studies have dealt resorcinol. phloroglucinol, and several methylphenols in not only with calculating reaction rates but also with com- diluted 10% dimethylformamide aqueous alkaline solution plex processes for isolating and identifying intermediates were calculated based on the consumption of phenols and and reaction products. Recently, computational chemistry formaldehyde. The k values of phloroglucinol and resorci- methods have been introduced that allow analysis of reac- nol relative to that of phenol were about 62000 and 1200 tion mechanisms and prediction of the reactivity in syn- times, respectively. The phenols that have methyl or hy- thetic chemistry and protein technology. Therefore, using droxyl groups at the C-3 or C-5 position (or both) have computational chemistry to predict the reactivities of a wide larger rate constants than phenols with substituents at variety of phenolic compounds with formaldehyde would other positions. Several kinds of atomic charge of the car- make it possible to obtain new insight into the reaction bons on the aromatic ring of phenols were calculated using mechanisms for curing phenolic adhesives. The correlation the semiempirical or ab initio method. The correlations between charges and rate constants are discussed in this between the average k (Ave. k ) and average electrostatic report.
    [Show full text]
  • N,N-Dimethylformamide (D4551)
    N,N-Dimethylformamide Product Number D 4551 Store at Room Temperature Product Description Preparation Instructions Molecular Formula: C3H7NO This product is freely miscible with water and with Molecular Weight: 73.10 most common organic solvents, including alcohols, CAS Number: 68-12-2 esters, ethers, ketones, and chlorinated and aromatic Melting Point: -61 °C1 hydrocarbons. The pH of a 0.5 M DMF aqueous 1 Boiling Point: 153 °C1 solution is 6.7. Density: 0.9445 g/ml (25 °C)1 Synonyms: DMF, DMFA1 References 1. The Merck Index, 12th ed., Entry# 3292. This product is designated as molecular biology grade. 2. Hawley's Condensed Chemical Dictionary, Lewis, It has been tested to be suitable as a solvent for R. J., Sr., ed., John Wiley and Sons (New York: chromogenic substrates (X-Gal) in molecular biology 2001), p. 396. applications. 3. Du, C. M., et al., Characterizing the selectivity of stationary phases and organic modifiers in DMF is a polar organic solvent that is widely used in reversed-phase high-performance liquid the synthesis of organic compounds. The high solvent chromatographic systems by a general solvation power and stability of DMF at elevated temperatures equation using gradient elution. J. Chromatogr. contribute to its utility. DMF is a solvent for vinyl Sci., 38(11), 503-511 (2000). resins, acetylene, butadiene, and polyacrylic fibers. It 4. Roed, L., et al., Nonaqueous is also a catalyst in carboxylation reactions.1,2 electrochromatography on C30 columns: separation of retinyl esters. Electrophoresis, DMF is also utilized in chromatographic applications 20(12), 2373-2378 (1999). such as HPLC, capillary electrochromatography, and 5.
    [Show full text]