2.0 Working Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
200073 Doc.Pdf
Wetlands Ecology and Management 12: 235–276, 2004. 235 # 2004 Kluwer Academic Publishers. Printed in the Netherlands. Ecohydrology as a new tool for sustainable management of estuaries and coastal waters E. Wolanski1,*, L.A. Boorman2, L. Chı´charo3, E. Langlois-Saliou4, R. Lara5, A.J. Plater6, R.J. Uncles7 and M. Zalewski8 1Australian Institute of Marine Science, PMB No. 3, Townsville MC, Q. 4810, Australia; 2LAB Coastal, The Maylands, Holywell, St. Ives, Cambs. PE27 4TQ, UK; 3Universidade do Algarve, CCMAR, Campus de Gambelas, Faculdade do Mare do Ambiente, Portugal; 4Laboratoire d’Ecologie, UPRES-EA 1293, Groupe de Recherche ECODIV ‘‘Biodiversite´ et Fonctionnement des Ecosysteemes’’, Universite´ de Rouen, 76821 Mont Saint Aignan, France; 5Zentrum fuur€ Marine Tropeno¨kologie, Fahrenheitstrasse 6, 28359 Bremen, Germany; 6Department of Geography, University of Liverpool, P.O. Box 147, Liverpool, L69 7ZT, UK; 7Plymouth Marine Laboratory, Prospect Place, Plymouth, UK; 8Department of Applied Ecology, University of Lodz, ul. Banacha 12/16, 902-237 Lodz, Poland; *Author for correspondence (e-mail: [email protected]) Received 30 June 2003; accepted in revised form 10 December 2003 Key words: Ecohydrology, Ecology, Environmental degradation, Estuary, Hydrology, Management, Sustainable development Abstract Throughout the world, estuaries and coastal waters have experienced degradation. Present proposed remedial measures based on engineering and technological fix are not likely to restore the ecological processes of a healthy, robust estuary and, as such, will not reinstate the full beneficial functions of the estuary ecosystem. The successful management of estuaries and coastal waters requires an ecohydrology- based, basin-wide approach. This necessitates changing present practices by official institutions based on municipalities or counties as an administrative unit, or the narrowly focused approaches of managers of specific activities (e.g., farming and fisheries, water resources, urban and economic developments, wetlands management and nature conservationists). -
Genome of Phaeocystis Globosa Virus Pgv-16T Highlights the Common Ancestry of the Largest Known DNA Viruses Infecting Eukaryotes
Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes Sebastien Santinia, Sandra Jeudya, Julia Bartolia, Olivier Poirota, Magali Lescota, Chantal Abergela, Valérie Barbeb, K. Eric Wommackc, Anna A. M. Noordeloosd, Corina P. D. Brussaardd,e,1, and Jean-Michel Claveriea,f,1 aStructural and Genomic Information Laboratory, Unité Mixte de Recherche 7256, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille Cedex 9, France; bCommissariat à l’Energie Atomique–Institut de Génomique, 91057 Evry Cedex, France; cDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19711; dDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands; eAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; and fService de Santé Publique et d’Information Médicale, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, FR-13385 Marseille, France Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved May 1, 2013 (received for review February 22, 2013) Large dsDNA viruses are involved in the population control of many viruses: 730 kb and 1.28 Mb for CroV and Megavirus chilensis, globally distributed species of eukaryotic phytoplankton and have respectively. Other studies, targeting virus-specific genes [e.g., a prominent role in bloom termination. The genus Phaeocystis (Hap- DNA polymerase B (8) or capsid proteins (9)] have suggested tophyta, Prymnesiophyceae) includes several high-biomass-forming a close phylogenetic relationship between Mimivirus and several phytoplankton species, such as Phaeocystis globosa, the blooms of giant dsDNA viruses infecting various unicellular algae such as which occur mostly in the coastal zone of the North Atlantic and the Pyramimonas orientalis (Chlorophyta, Prasinophyceae), Phaeocys- North Sea. -
Package 'Ecohydrology'
Package ‘EcoHydRology’ February 15, 2013 Version 0.4.7 Title A community modeling foundation for Eco-Hydrology. Author Fuka DR, Walter MT, Archibald JA, Steenhuis TS, and Easton ZM Maintainer Daniel Fuka <[email protected]> Depends R (>= 2.10), operators, topmodel, DEoptim, XML Description This package provides a flexible foundation for scientists, engineers, and policy makers to base teaching exercises as well as for more applied use to model complex eco-hydrological interactions. License GPL-2 Repository CRAN Date/Publication 2013-01-16 08:11:25 KeepSource TRUE NeedsCompilation no R topics documented: EcoHydRology-package . .2 alter_files . .3 AtmosphericEmissivity . .4 BaseflowSeparation . .5 build_gsod_forcing_data . .6 calib_swat_ex . .7 change_params . .8 declination . .8 EnvirEnergy . .9 EstCloudiness . 10 EvapHeat . 11 get_cfsr_latlon . 12 get_gsod_stn . 13 1 2 EcoHydRology-package get_usgs_gage . 15 GroundHeat . 16 GSOD_history . 17 hydrograph . 18 Longwave . 19 NetRad . 20 OwascoInlet . 21 PET_fromTemp . 22 PotentialSolar . 23 RainHeat . 24 SatVaporDensity . 24 SatVaporPressure . 25 SatVapPresSlope . 26 SensibleHeat . 26 setup_swatcal . 27 slopefactor . 28 SnowMelt . 29 SoilStorage . 30 Solar . 31 solarangle . 32 solaraspect . 32 SWAT2005 . 33 swat_general . 34 swat_objective_function . 39 swat_objective_function_rch . 40 testSWAT2005 . 40 transmissivity . 41 Index 43 EcoHydRology-package A community modeling foundation for Eco-Hydrology. Description This package provides a flexible foundation for scientists, engineers, and policy -
Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M. -
Pioneering Soil Viromics to Elucidate Viral Impacts on Soil Ecosystem Services
Pioneering Soil Viromics to Elucidate Viral Impacts on Soil Ecosystem Services DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gareth Trubl Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee: Virginia Rich, Advisor Matthew Sullivan, Co-Advisor Kelly Wrighton Matthew Anderson Copyrighted by Gareth Trubl 2018 Abstract Permafrost contains 30–50% of global soil carbon (C) and is rapidly thawing. While the fate of this C is unknown, it will be shaped in part by microbes and their associated viruses, which modulate microbial activities via mortality and metabolic control. To date, viral research in soils has been outpaced by that in aquatic environments due to the technical challenges of accessing soil viruses, compounded by the dramatic physicochemical heterogeneity in soils. The Stordalen Mire long-term ecological field site in Arctic Sweden encompasses a mosaic of natural permafrost thaw stages, and has been well characterized biogeochemically and microbiologically, making it an ideal site to characterize the soil virosphere and its potential impacts on the C cycle. A viral resuspension protocol was developed to generate quantitatively- amplified dsDNA viromes. The protocol yielded ~108 virus-like particles (VLPs) g−1 of soil across three thaw-stage habitats, and seven resulting viromes yielded 53 vOTUs. Viral-specific bioinformatics methods were used to recover viral populations, define their gene content, connect them to other related viruses (globally) and potential hosts (locally). Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. -
Viruses-10-00676
UvA-DARE (Digital Academic Repository) Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris Piedade, G.J.; Wesdorp, E.M.; Montenegro-Borbolla , E.; Maat, D.S.; Brussaard, C.P.D. DOI 10.3390/v10120676 Publication date 2018 Document Version Final published version Published in Viruses License CC BY Link to publication Citation for published version (APA): Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla , E., Maat, D. S., & Brussaard, C. P. D. (2018). Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses, 10(12), [676]. https://doi.org/10.3390/v10120676 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 viruses Article Influence of Irradiance and Temperature on the Virus MpoV-45T Infecting the Arctic Picophytoplankter Micromonas polaris Gonçalo J. -
Groundwater Microbial Communities in Times of Climate Change
Groundwater Microbial Communities in Times of Climate Change Alice Retter, Clemens Karwautz and Christian Griebler* University of Vienna, Department of Functional & Evolutionary Ecology, Althanstrasse 14, 1090 Vienna, Austria; * corresponding author Email: [email protected], [email protected], [email protected] DOI: https://doi.org/10.21775/cimb.041.509 Abstract Climate change has a massive impact on the global water cycle. Subsurface ecosystems, the earth largest reservoir of liquid freshwater, currently experience a significant increase in temperature and serious consequences from extreme hydrological events. Extended droughts as well as heavy rains and floods have measurable impacts on groundwater quality and availability. In addition, the growing water demand puts increasing pressure on the already vulnerable groundwater ecosystems. Global change induces undesired dynamics in the typically nutrient and energy poor aquifers that are home to a diverse and specialized microbiome and fauna. Current and future changes in subsurface environmental conditions, without doubt, alter the composition of communities, as well as important ecosystem functions, for instance the cycling of elements such as carbon and nitrogen. A key role is played by the microbes. Understanding the interplay of biotic and abiotic drivers in subterranean ecosystems is required to anticipate future effects of climate change on groundwater resources and habitats. This review summarizes potential threats to groundwater ecosystems with emphasis on climate change and the microbial world down below our feet in the water saturated subsurface. Introduction Groundwater ecosystems contain 97 % of the non-frozen freshwater resources and as such provide an important water supply for irrigation of agricultural land, industrial caister.com/cimb 509 Curr. -
Ecohydrology of Natural and Restored Wetlands in a Glacial Plain
Syracuse University SURFACE Dissertations - ALL SURFACE December 2018 Ecohydrology of Natural and Restored Wetlands in a Glacial Plain Kyotaek Hwang Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Engineering Commons Recommended Citation Hwang, Kyotaek, "Ecohydrology of Natural and Restored Wetlands in a Glacial Plain" (2018). Dissertations - ALL. 990. https://surface.syr.edu/etd/990 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract More than half of wetland area in the U.S. have been converted to other land use types for agricultural use and development. Limited understanding of ecological services provided to society by wetlands is another reason for the massive wetland loss in the past. Section 404 of the Clean Water Act and the 1989 federal mandate of “no net wetland loss” supported increased efforts for wetland restoration and creation to compensate for two centuries of ecosystem degradation. Hydrology is a critical driver for wetland formation and sustainability, yet few studies have investigated the ecosystem benefits of restored or constructed wetlands relative to natural wetlands. Considering that unexpected ecohydrologic behaviors such as drought have been reported as a main cause of unsuccessful restoration over the U.S., understanding and quantifying water movement within the local seeing is imperative to future wetland restoration. From an environmental engineering perspective, wetlands are regarded as complex environments controlled by regional geomorphology, atmosphere, geologic setting, and human activity. -
Water, Climate, and Vegetation: Ecohydrology in a Changing World”
Hydrol. Earth Syst. Sci., 16, 4633–4636, 2012 www.hydrol-earth-syst-sci.net/16/4633/2012/ Hydrology and doi:10.5194/hess-16-4633-2012 Earth System © Author(s) 2012. CC Attribution 3.0 License. Sciences Preface “Water, climate, and vegetation: ecohydrology in a changing world” L. Wang1,2, J. Liu3, G. Sun4, X. Wei5, S. Liu6, and Q. Dong7 1Department of Earth Sciences, Indiana University – Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA 2Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW, 2052, Australia 3School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China 4Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Raleigh, NC 27606, USA 5Earth and Environmental Sciences, University of British Columbia (Okanagan campus), 3333 University way, Kelowna, BC V1V 1V7, Canada 6Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China 7Fort Collins Science Center, USGS, Fort Collins, CO 80526, USA Correspondence to: L. Wang ([email protected]) Ecohydrology has advanced rapidly in the past few (Liu and Yang, 2010). We foresee that ecohydrologists will decades. A search of the topic “ecohydrology” in the Web be increasingly called upon to address questions regarding of Science showed an exponential growth of both publica- vegetation and climate changes and their influence on water tions and citations. The number of publications and citations security at a range of spatial and temporal scales in the future. increased from 7 and 6, respectively in 2000 to 65 and 1262 This special issue is a product of three ecohydrology ses- by 26 November 2012 (Fig. -
Ecohydrology
BEE 6740 Spring 2010 Ecohydrology Daily Evapotranspiration via Penman-Montheith -1 Notation: ET = Evapotranspiration = Qe/(vw) [m d ] -1 v = latent heat of vaporization [2500 kJ kg ] 3 -3 w = density of water [10 kg m ] o o T = temperature [ K or C] 3 v = vapor density [kg/m ] o 3 v = saturation vapor density [kg/m ] -6 e = vapor pressure = 4.26x10 v T [mb] {T in oK} Penman-Monteith Equation (Monteith, J.L. 1965. Evaporation and environment. In: Proc. 19th Symposium Soc. Exp. Bio. P. 205-233) o Q C va va rn a r (1) Q a [kJ m-2 d-1] e r 1 c ra o -3 vs = saturated vapor density @ canopy surface [kg m ] -3 va = vapor density of air [kg m ] ~ psychrometric constant [4.95x10-4 kg m-3 oC-1] C = v = slope of the saturation curve on the psychrometric chart [kg m-3 oC-1] 3.221x104 exp0.8876T 0.08 for 0<T<25oC [kg m-3 oC-1] 3.405x104 exp0.0642T for T<0oC [kg m-3 oC-1] ra = atmospheric resistance to vapor transfer, very sensitive to windspeed [d/m] 2 z d z z d z 2 ln h ln m ln z zh zm m (2) ra = ~ X 86400 s/d uk 2 uk 2 u = average windspeed [m/s] k = von Karman Constant [0.41] z = measurement height [m] zm = momentum roughness parameter ≈ 0.13-0.2h [m] zh = heat roughness parameter ≈ 0.2zm [m] d = zero plane displacement ~ 0.77h [m] h = vegetation height [m] NOTE: because the sensitivity of Eq. -
Ecohydrology Demonstration Sites - Solution Oriented Living Laboratories for the Implementation of Ecohydrology from Molecular to Basin Scale
Ecohydrology Demonstration Sites - solution oriented living laboratories for the implementation of ecohydrology from molecular to basin scale Blanca E. Jiménez-Cisneros Director of the Division of Water Sciences and Secretary of the International Hydrological Programme (IHP), UNESCO IHP-VIII 2014-2021 THEME 5 Water Security, Addressing Local, Regional and Global Challenges IHP-VIII 2014-2021- Theme 5 Ecohydrology, engineering harmony for a sustainable world Global challenge -> Urgent need to reverse degradation of water resources and stop further decline in biodiversity. Ecohydrologyconcept in the perspective of evolution of relations between man and environment (Zalewski, 2011) IHP-VIII 2014-2021- Theme 5 Ecohydrology, engineering harmony for a sustainable world Focal Areas 5.1 - Hydrological dimension of a catchment– identification of potential threats and opportunities for a sustainable development. 5.2 - Shaping of the catchment ecological structure for ecosystem potential enhancement ─ biological productivity and biodiversity. 5.3 - Ecohydrology system solution and ecological engineering for the enhancement of water and ecosystem resilience and ecosystem services. 5.4 - Urban Ecohydrology – storm water purification and retention in the city landscape, potential for improvement of health and quality of life. 5.5 - Ecohydrological regulation for sustaining and restoring continental to coastal connectivity and ecosystemfunctioning. UNESCO and Water Division of International Water Sciences Hydrological Programme (IHP) Intergovernmental -
Article Pub- New University Programs (Rickwood Et Al., 2010) (Table 1)
Hydrol. Earth Syst. Sci., 16, 1685–1696, 2012 www.hydrol-earth-syst-sci.net/16/1685/2012/ Hydrology and doi:10.5194/hess-16-1685-2012 Earth System © Author(s) 2012. CC Attribution 3.0 License. Sciences Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving M. E. McClain1,2, L. Ch´ıcharo3, N. Fohrer4, M. Gavino˜ Novillo5, W. Windhorst6, and M. Zalewski7,8 1Department of Water Science and Engineering, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands 2Department of Earth and Environment, Florida International University, 11200 SW 8th Street, Miami Florida 33199, USA 3Universidade de Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal 4Department of Hydrology and Water Resource Management, Institute for the Conservation of Natural Resources, Kiel University, Kiel 24118, Germany 5Facultad de Ingenier´ıa, Universidad Nacional de la Plata, La Plata – Buenos Aires, Argentina 6Department of Ecosystem Management, Institute for the Conservation of Natural Resources, Kiel University, Kiel, Germany 7International Institute of Polish Academy of Sciences, European Regional Centre for Ecohydrology under the Auspices of UNESCO, 3 Tylna Str., 90-364 Łod´ z,´ Poland 8Department of Applied Ecology University of Lodz, 12/16 Banacha Str., 90-237 Łod´ z,´ Poland Correspondence to: M. E. McClain ([email protected]) Received: 19 January 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 1 February 2012 Revised: 29 May 2012 – Accepted: 29 May 2012 – Published: 22 June 2012 Abstract. Ecohydrology is a relatively new and rapidly in hydrology, ecology, and biogeochemistry is emphasized, growing subject area in the hydrology curriculum.