Effect of Homophily on Network Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Networkx: Network Analysis with Python
NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users -
Network Topologies Topologies
Network Topologies Topologies Logical Topologies A logical topology describes how the hosts access the medium and communicate on the network. The two most common types of logical topologies are broadcast and token passing. In a broadcast topology, a host broadcasts a message to all hosts on the same network segment. There is no order that hosts must follow to transmit data. Messages are sent on a First In, First Out (FIFO) basis. Token passing controls network access by passing an electronic token sequentially to each host. If a host wants to transmit data, the host adds the data and a destination address to the token, which is a specially-formatted frame. The token then travels to another host with the destination address. The destination host takes the data out of the frame. If a host has no data to send, the token is passed to another host. Physical Topologies A physical topology defines the way in which computers, printers, and other devices are connected to a network. The figure provides six physical topologies. Bus In a bus topology, each computer connects to a common cable. The cable connects one computer to the next, like a bus line going through a city. The cable has a small cap installed at the end called a terminator. The terminator prevents signals from bouncing back and causing network errors. Ring In a ring topology, hosts are connected in a physical ring or circle. Because the ring topology has no beginning or end, the cable is not terminated. A token travels around the ring stopping at each host. -
Topological Optimisation of Artificial Neural Networks for Financial Asset
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSE Theses Online The London School of Economics and Political Science Topological Optimisation of Artificial Neural Networks for Financial Asset Forecasting Shiye (Shane) He A thesis submitted to the Department of Management of the London School of Economics for the degree of Doctor of Philosophy. April 2015, London 1 Declaration I certify that the thesis I have presented for examination for the MPhil/PhD degree of the London School of Economics and Political Science is solely my own work other than where I have clearly indicated that it is the work of others (in which case the extent of any work carried out jointly by me and any other person is clearly identified in it). The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. This thesis may not be reproduced without the prior written consent of the author. I warrant that this authorization does not, to the best of my belief, infringe the rights of any third party. 2 Abstract The classical Artificial Neural Network (ANN) has a complete feed-forward topology, which is useful in some contexts but is not suited to applications where both the inputs and targets have very low signal-to-noise ratios, e.g. financial forecasting problems. This is because this topology implies a very large number of parameters (i.e. the model contains too many degrees of freedom) that leads to over fitting of both signals and noise. -
Social Network Analysis and Information Propagation: a Case Study Using Flickr and Youtube Networks
International Journal of Future Computer and Communication, Vol. 2, No. 3, June 2013 Social Network Analysis and Information Propagation: A Case Study Using Flickr and YouTube Networks Samir Akrouf, Laifa Meriem, Belayadi Yahia, and Mouhoub Nasser Eddine, Member, IACSIT 1 makes decisions based on what other people do because their Abstract—Social media and Social Network Analysis (SNA) decisions may reflect information that they have and he or acquired a huge popularity and represent one of the most she does not. This concept is called ″herding″ or ″information important social and computer science phenomena of recent cascades″. Therefore, analyzing the flow of information on years. One of the most studied problems in this research area is influence and information propagation. The aim of this paper is social media and predicting users’ influence in a network to analyze the information diffusion process and predict the became so important to make various kinds of advantages influence (represented by the rate of infected nodes at the end of and decisions. In [2]-[3], the marketing strategies were the diffusion process) of an initial set of nodes in two networks: enhanced with a word-of-mouth approach using probabilistic Flickr user’s contacts and YouTube videos users commenting models of interactions to choose the best viral marketing plan. these videos. These networks are dissimilar in their structure Some other researchers focused on information diffusion in (size, type, diameter, density, components), and the type of the relationships (explicit relationship represented by the contacts certain special cases. Given an example, the study of Sadikov links, and implicit relationship created by commenting on et.al [6], where they addressed the problem of missing data in videos), they are extracted using NodeXL tool. -
Deep Generative Modeling in Network Science with Applications to Public Policy Research
Working Paper Deep Generative Modeling in Network Science with Applications to Public Policy Research Gavin S. Hartnett, Raffaele Vardavas, Lawrence Baker, Michael Chaykowsky, C. Ben Gibson, Federico Girosi, David Kennedy, and Osonde Osoba RAND Health Care WR-A843-1 September 2020 RAND working papers are intended to share researchers’ latest findings and to solicit informal peer review. They have been approved for circulation by RAND Health Care but have not been formally edted. Unless otherwise indicated, working papers can be quoted and cited without permission of the author, provided the source is clearly referred to as a working paper. RAND’s R publications do not necessarily reflect the opinions of its research clients and sponsors. ® is a registered trademark. CORPORATION For more information on this publication, visit www.rand.org/pubs/working_papers/WRA843-1.html Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. -
Networking Solutions for Connecting Bluetooth Low Energy Devices - a Comparison
292 3 MATEC Web of Conferences , 0200 (2019) https://doi.org/10.1051/matecconf/201929202003 CSCC 2019 Networking solutions for connecting bluetooth low energy devices - a comparison 1,* 1 1 2 Mostafa Labib , Atef Ghalwash , Sarah Abdulkader , and Mohamed Elgazzar 1Faculty of Computers and Information, Helwan University, Egypt 2Vodafone Company, Egypt Abstract. The Bluetooth Low Energy (BLE) is an attractive solution for implementing low-cost, low power consumption, short-range wireless transmission technology and high flexibility wireless products,which working on standard coin-cell batteries for years. The original design of BLE is restricted to star topology networking, which limits network coverage and scalability. In contrast, other competing technologies like Wi-Fi and ZigBee overcome those constraints by supporting different topologies such as the tree and mesh network topologies. This paper presents a part of the researchers' efforts in designing solutions to enable BLE mesh networks and implements a tree network topology which is not supported in the standard BLE specifications. In addition, it discusses the advantages and drawbacks of the existing BLE network solutions. During analyzing the existing solutions, we highlight currently open issues such as flooding-based and routing-based solutions to allow end-to-end data transmission in a BLE mesh network and connecting BLE devices to the internet to support the Internet of Things (IoT). The approach proposed in this paper combines the default BLE star topology with the flooding based mesh topology to create a new hybrid network topology. The proposed approach can extend the network coverage without using any routing protocol. Keywords: Bluetooth Low Energy, Wireless Sensor Network, Industrial Wireless Mesh Network, BLE Mesh Network, Direct Acyclic Graph, Time Division Duplex, Time Division Multiple Access, Internet of Things. -
Random Graph Models of Social Networks
Colloquium Random graph models of social networks M. E. J. Newman*†, D. J. Watts‡, and S. H. Strogatz§ *Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; ‡Department of Sociology, Columbia University, 1180 Amsterdam Avenue, New York, NY 10027; and §Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853-1503 We describe some new exactly solvable models of the structure of actually connected by a very short chain of intermediate social networks, based on random graphs with arbitrary degree acquaintances. He found this chain to be of typical length of distributions. We give models both for simple unipartite networks, only about six, a result which has passed into folklore by means such as acquaintance networks, and bipartite networks, such as of John Guare’s 1990 play Six Degrees of Separation (10). It has affiliation networks. We compare the predictions of our models to since been shown that many networks have a similar small- data for a number of real-world social networks and find that in world property (11–14). some cases, the models are in remarkable agreement with the data, It is worth noting that the phrase ‘‘small world’’ has been used whereas in others the agreement is poorer, perhaps indicating the to mean a number of different things. Early on, sociologists used presence of additional social structure in the network that is not the phrase both in the conversational sense of two strangers who captured by the random graph. discover that they have a mutual friend—i.e., that they are separated by a path of length two—and to refer to any short path social network is a set of people or groups of people, between individuals (8, 9). -
Optimizing the Topology of Bluetooth Wireless Personal Area Networks Marco Ajmone Marsan, Carla F
Optimizing the Topology of Bluetooth Wireless Personal Area Networks Marco Ajmone Marsan, Carla F. Chiasserini, Antonio Nucci, Giuliana Carello, Luigi De Giovanni Abstract— In this paper, we address the problem of determin- ing an optimal topology for Bluetooth Wireless Personal Area Networks (BT-WPANs). In BT-WPANs, multiple communication channels are available, thanks to the use of a frequency hopping technique. The way network nodes are grouped to share the same channel, and which nodes are selected to bridge traffic from a channel to another, has a significant impact on the capacity and the throughput of the system, as well as the nodes’ battery life- time. The determination of an optimal topology is thus extremely important; nevertheless, to the best of our knowledge, this prob- lem is tackled here for the first time. Our optimization approach is based on a model derived from constraints that are specific to the BT-WPAN technology, but the level of abstraction of the model is such that it can be related to the slave slave & bridge more general field of ad hoc networking. By using a min-max for- mulation, we find the optimal topology that provides full network master master & bridge connectivity, fulfills the traffic requirements and the constraints posed by the system specification, and minimizes the traffic load of Fig. 1. BT-WPAN topology. the most congested node in the network, or equivalently its energy consumption. Results show that a topology optimized for some traffic requirements is also remarkably robust to changes in the traffic pattern. Due to the problem complexity, the optimal so- Master and slaves send and receive traffic alternatively, so as lution is attained in a centralized manner. -
A Framework for Wireless Broadband Network for Connecting the Unconnected
A Framework for Wireless Broadband Network for Connecting the Unconnected Meghna Khaturia, Prasanna Chaporkar and Abhay Karandikar Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai-400076 Email: fmeghnak,chaporkar,[email protected] Abstract—A significant barrier in providing affordable rural providing broadband in rural areas of India. Ashwini [6] broadband is to connect the rural and remote places to the optical and Aravind [7] are some other examples of rural network Point of Presence (PoP) over a distances of few kilometers. A testbeds deployed in India. Hop-Scotch is a long distance Wi- lot of work has been done in the area of long distance Wi- Fi networks. However, these networks require tall towers and Fi network based in UK [8]. LinkNet is a 52 node wireless high gain (directional) antennas. Also, they work in unlicensed network deployed in Zambia [9]. Also, there has been a band which has Effective Isotropically Radiated Power (EIRP) substantial research interest in designing the long distance Wi- limit (e.g. 1 W in India) which restricts the network design. In Fi based mesh networks for rural areas [10]–[12]. All these this work, we propose a Long Term Evolution-Advanced (LTE- efforts are based on IEEE 802.11 standard [13] in unlicensed A) network operating in TV UHF to connect the remote areas to the optical PoP. In India, around 100 MHz of TV UHF band i.e. 2:4 GHz or 5:8 GHz. When working with these band IV (470-585 MHz) is unused at any location and can frequency bands over a long distance point to point link, be put to an effective use in these areas [1]. -
Navigating Networks by Using Homophily and Degree
Navigating networks by using homophily and degree O¨ zgu¨r S¸ ims¸ek* and David Jensen Department of Computer Science, University of Massachusetts, Amherst, MA 01003 Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved July 11, 2008 (received for review January 16, 2008) Many large distributed systems can be characterized as networks We show that, across a wide range of synthetic and real-world where short paths exist between nearly every pair of nodes. These networks, EVN performs as well as or better than the best include social, biological, communication, and distribution net- previous algorithms. More importantly, in the majority of cases works, which often display power-law or small-world structure. A where previous algorithms do not perform well, EVN synthesizes central challenge of distributed systems is directing messages to whatever homophily and degree information can be exploited to specific nodes through a sequence of decisions made by individual identify much shorter paths than any previous method. nodes without global knowledge of the network. We present a These results have implications for understanding the func- probabilistic analysis of this navigation problem that produces a tioning of current and prospective distributed systems that route surprisingly simple and effective method for directing messages. messages by using local information. These systems include This method requires calculating only the product of the two social networks routing messages, referral systems for finding measures widely used to summarize all local information. It out- informed experts, and also technological systems for routing performs prior approaches reported in the literature by a large messages on the Internet, ad hoc wireless networking, and margin, and it provides a formal model that may describe how peer-to-peer file sharing. -
Scale- Free Networks in Cell Biology
Scale- free networks in cell biology Réka Albert, Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University Summary A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts, and have revealed organizational features shared with numerous non-biological networks. How do we quantitatively describe a network of hundreds or thousands of interacting components? Does the observed topology of cellular networks give us clues about their evolution? How does cellular networks’ organization influence their function and dynamical responses? This article will review the recent advances in addressing these questions. Introduction Genes and gene products interact on several level. At the genomic level, transcription factors can activate or inhibit the transcription of genes to give mRNAs. Since these transcription factors are themselves products of genes, the ultimate effect is that genes regulate each other's expression as part of gene regulatory networks. Similarly, proteins can participate in diverse post-translational interactions that lead to modified protein functions or to formation of protein complexes that have new roles; the totality of these processes is called a protein-protein interaction network. -
Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs
Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs Mounia Hamidouche?, Laura Cottatellucciy, Konstantin Avrachenkov ? Departement of Communication Systems, EURECOM, Campus SophiaTech, 06410 Biot, France y Department of Electrical, Electronics, and Communication Engineering, FAU, 51098 Erlangen, Germany Inria, 2004 Route des Lucioles, 06902 Valbonne, France [email protected], [email protected], [email protected]. Abstract—In this article, we analyze the limiting eigen- multivariate statistics of high-dimensional data. In this case, value distribution (LED) of random geometric graphs the coordinates of the nodes can represent the attributes of (RGGs). The RGG is constructed by uniformly distribut- the data. Then, the metric imposed by the RGG depicts the ing n nodes on the d-dimensional torus Td ≡ [0; 1]d and similarity between the data. connecting two nodes if their `p-distance, p 2 [1; 1] is at In this work, the RGG is constructed by considering a most rn. In particular, we study the LED of the adjacency finite set Xn of n nodes, x1; :::; xn; distributed uniformly and matrix of RGGs in the connectivity regime, in which independently on the d-dimensional torus Td ≡ [0; 1]d. We the average vertex degree scales as log (n) or faster, i.e., choose a torus instead of a cube in order to avoid boundary Ω (log(n)). In the connectivity regime and under some effects. Given a geographical distance, rn > 0, we form conditions on the radius rn, we show that the LED of a graph by connecting two nodes xi; xj 2 Xn if their `p- the adjacency matrix of RGGs converges to the LED of distance, p 2 [1; 1] is at most rn, i.e., kxi − xjkp ≤ rn, the adjacency matrix of a deterministic geometric graph where k:kp is the `p-metric defined as (DGG) with nodes in a grid as n goes to infinity.